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Let M,({") be the space of Siegel modular forms of degree n and even weight k. In this paper firstly a
certain subspace Spez(M}((Z")), the Spezialschar of M,((Z"), is introduced. In the setting of the Siegel
threefold, it is proven that this Spezialschar is the Maass Spezialschar. Secondly, an embedding

of M,(f) into a direct sum EBE;QOJ Syszk+2U is given. This leads to a basic characterization of
the Spezialschar property. The results of this paper are directly related to the nonvanishing of
certain special values of L-functions related to the Gross-Prasad conjecture. This is illustrated by a
significant example in the paper.

1. Introduction

Maass introduced and applied in a series of papers [1-3] the concept of a Spezialschar to

prove the Saito-Kurokawa conjecture [4, 5]. Let M,(cz) be the space of Siegel modular forms
of degree 2 and weight k. Let A be the set of positive semidefinite half-integral matrices
of degree 2. Hence T € A can be identified with the quadratic form T = [n,r,m]. A

modular form F € Ml((z) is in the Spezialschar if the Fourier coefficients A(T') of F satisfy the
relation

A(nrm) = 3 dHA<[@ 2,1]), (1.1)

dl(n,r,m)

forall T € A. The space of special forms is called the Maass Spezialschar M},
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The purpose of this paper is twofold. First we introduce the concept of the Spezialschar

Spez(M ,({2")) for Siegel modular forms of even degree 2n. This is done in terms of the Hecke
algebra H#" attached to Siegel modular forms of degree n. Let us fix the embedding

Spn X Spm B— Spn+m/

aO0bo0
ab ab 0a0b (1.2)
X ) —
cd c d c0dOo
0c0d

Let | be the Petersson slash operator and let T be the normalized Heckeoperator T € H" (see
(4.21)). Let >y = (T x 12,) — (12, x T) and

Spez( M) = {F € M{™ |Flor = 0, VT € "} (1.3)

Then we have the following theorem.

Theorem 1.1. The Spezialschar introduced in this paper is the Maass Spezialschar in the case of the
Siegel threefold.

Spez (M,(f)) = MMoass, (1.4)

The second topic of this paper is the characterization of the space of Siegel modular
forms of degree two and the corresponding Spezialschar in terms of Taylor coefficients and
certain differential operators:

S
Diaw: MY — M (1.5)

here v € Ny and Mi{;} = Symz(Mk+2,,). To simplify the notation, let My := Mf{l). It would
be very interesting to generalize this approach also to other situations, as to the Hermitian
modular forms [6].

Before we summarize the main results, we give an example which also serves as an
application. Let Fy, F», and F3 be a Hecke eigenbasis of the space of Siegel cusp forms S%) of

weight 20 and degree 2. Let F; and F, generate the Maass Spezialschar. Let f1 and f, be the
normalized Hecke eigenbasis of S&). Then we have

Dr4Fj=aifi® fi+fi(f1® fa+ 28 f1) +Yif2 0 fo. (1.6)

It it conjectured by Gross and Prasad [7] that the coefficients a;, f;, and y; are related to special
values of certain automorphic L-functions. The Gross-Prasad conjecture has been proven by
Ichino [8] for the Maass Spezialschar and v = 0. Moreover, we show in this paper that the
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vanishing at such special values has interesting consequences. We have F; € S if and
only if the special value f; is zero.

Theorem 1.2. Let k € Ny be even. Then we have the embedding

[k/10] 2) S S S
De =@,y ik MP — M8 e oS 0 (1.7)

For F € S( ) , we have Dy F € Ssym

Surprisingly the Maass Spezialschar property can be recovered in Msym o SSym @

Sym
Sk+2 [k/10]

M. Let us define the diagonal subspaces M! = {3 a;f; ® f; € Msym} and S = iym NM?.
Then we can state the following theorem.

in the following transparent way. Let (f;) be the normalized Hecke eigenbasis of

Theorem 1.3. Let F € M,(f). Then we have
FeM{™ e DF € MY ® 5., @ ® S 51 /10, (1.8)

and similarly

Fe sy e D Fe PSP, . (1.9)

These two theorems give a transparent explanation of our example from a general
point of view. In Section 5, we deduce an application related to a multiplicity one theorem of
SL; instead of GL(2).

Notation. Let Z € C™" and tr the trace of a matrix; then we put e{Z} = >™"2)_For | € Z, we
define i = (2.71'i)l. Let x € R; then we use Knuth’s notation [x| to denote the greatest integer
smaller or equal to x. Let A, denote the set of half-integral positive semidefinite matrices.
We parametrize the elements T = (;2 r::) with T = [n,r, m]. The subset of positive-definite
matrices we denote with AJ.

2. Ultraspherical Differential Operators

The first two sections of this paper follow the strategy of Eichler and Zagier [9]. Nevertheless,
there are several topics which are different (e.g., divisors of Jacobi forms and Siegel modular
forms).

Let us start with the notation of the ultraspherical polynomial py .. Let k and v be
elements of Ny. Let a and b be elements of a commutative ring. Then we put

@v)!  (k+2v—p-2)!
w(2v=2pu)t  (k+v-2)!

Prav(a,b) = > (-1)¥ a? 2 ph, (2.1)
pn=0

If we specialize the parameters, we have pro(a,b) = 1 and pr2,(0,0) = 0 for v € N.
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Let H, be the Siegel upper half-space of degree n. Let Mf(") be the vector space of Siegel

modular forms on H,, with respect to the full modular group I', = Sp,,(Z). Moreover, let S,((")
denote the subspace of cusp forms. If n = 1, we drop the index to simplify notation. We denote

the coordinates of the threefold Hj by (7, z, T) for (: ;) € Hy and put g = e{7}, ¢ = e{z}, and
g =e{T}. Let dx be the dimension of Sk.

Definition 2.1. Let k,v € Ny and let k be even. Then we define the ultraspherical differential
operator ® on the space of holomorphic functions F on Hj in the following way:

z 10 /1\°0 29
Qk,ZlF(T,T) = Pk,21}<ﬁ$, (E) gﬁ)lj

In the case v = 0, we get the pullback F(7,0,7) of F on H x H.
Let F € M,(f) with Tth Fourier coefficient AT (n,r,m) for T = [n,r,m] € A,. Then we

(1, 7). (2.2)
z=0

have

Do F (1,7) = D, AL, (n,m)q"g" with

n,m=0

AL (mm) = > praw(r,nm) A" (n,r,m).

reZr2<4nm

(2.3)

Let Miym = Sym? My, Siym = Sym?Sy, and Siym = (Sk ® Sk)¥™. Let us further introduce a
related Jacobi differential operator %f(’;} This is given by exchanging sr_1(0/07) with m in
the definition of the ultraspherical differential operator given in (2.2). Applying the operator

9;;’:} on Jacobi forms @ € J ,, of weight k and index m on H x C matches with the effect of
theBperator D,,, introduced in [9, Section 3 formula (2)] on ®.

Since F € M,(f) has a Fourier-Jacobi expansion of the form
F(1,z,7) = > @5 (1,2)§", with ®}, € Jim, (2.4)
m=0

it makes sense to consider 9, with respect to this decomposition in a Fourier-Jacobi
expansion

Deow =D 277, (2.5)
m=0 o
Lemma 2.2. Let k,v € Ny and let k be even. Then Dy, maps M,(cz) to Mi?;l and to Siir;v if v#0.
Moreover, the subspace S,((Z) of cusp forms is always mapped to Si}f;;

Proof. We know from the work of Eichler and Zagier [9] since 9;;’; = Dy, that %ig’lq)fn €

Miiay. Let v > 0; then Qi'gi)(bfn € Siioy and for F € S,(cz) we have %Ii’;';(bfn € Sk.py for all
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v € Nyg. We are now ready to act with the ultraspherical differential operator with respect to
its Fourier-Jacobi expansion directly on the Fourier-Jacobi expansion of F in a canonical way

Dk (r,7) = Y (Dp®h) (17", (2.6)

m=0

where all “coefficients” al (1) = %igf}@fn(ﬂ are modular forms. This shows us, that if we

apply the Peterson slash operator k.2, ) here y € I' to this function with respect to the variable
T, the function is invariant. The same argument also works for the Fourier-Jacobi expansion
with respect to 7. From this we deduce that 9, F(7,T) = Zi,j a;;fi(t) f;(T). Here (f;), is
a basis of Mj.y,. Finally the cuspidal conditions in the lemma also follow from symmetry
arguments. O

Remark 2.3. Let F : H, — C be holomorphic. Let g € SL,(R) and let S = <£ 2), where

T = <(1);>.Thenwehave

Diav (Fle(g % 12)) = (DrawF) k2w (g % 12),
Dre2v (Fle(12 % 8)) = (BreavF)lks2v (12 x 8), (2.7)
Dy ov (FIkS) (1, T) = (Bi2vF) livaw (T, 7).

Remark 2.4. There are other possibilities for construction of differential operators as used in
this section (see Ibukiyama for an overview [10]). But since the connection between our
approach and the theory developed of Eichler and Zagier [9] is so useful we decided to do it
this way. We also wanted to introduce the concept of Fourier-Jacobi expansion of differential
operators, which is interesting in its own right.

3. Taylor Expansion of Siegel Modular Forms

The operators Dy », can be seen at this point as somewhat artificial. If we apply Dy »,, to Siegel

modular forms F, we lose information. For example, we know that dim S%) = 3 and contains
a two-dimensional subspace of Saito-Kurokawa lifts. Since dim Sggm = 1, we obviously lose
information if we apply D,0. But even worse let F; and F, be a Hecke eigenbasis of the space
of Saito-Kurokawa lifts and F3; a Hecke eigenform of the orthogonal complement; then we

have 2,00F; #0 for j = 1,2,3. The general case seems to be even worse, since for example,

dim M ,(f) ~ k% and dim Miym ~ k2. On the other hand, from an optimistic viewpoint we may
find about k pieces Dy 5, F which code all the relevant information needed to characterize the
Siegel modular forms F.

Garrett in his papers [11, 12] introduced the method of calculating pullbacks of
modular forms to study automorphic L-functions. We also would like to mention the work
of Gelbart et al. at this point ([13]). And recently Ichino in his paper: “Pullbacks of Saito-
Kurokawa lifts” [8] extended Garrett’s ideas in a brilliant way to prove the Gross-Prasad
conjecture [7] for Saito-Kurokawa lifts. In the new language we have introduced, it is obvious
to consider Garrett’s pullbacks as the Oth Taylor coefficients of F around z = 0. Hence it
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seems to be very lucrative to study also the higher Taylor coefficients and hopefully get some
transparent link.
Letk € Ny beeven. Let F € M,(cz) and @ € Ji ;. Then we denote by

F(r,z,7) = D x5, (1,7)2%,  @(1,2) = D x5, (1)z”, (3.1)
v=0 v=0

the corresponding Taylor expansions with respect to z around z = 0. Here we already used
the invariance of F and @ with respect to the transformation z — (—z) since k is even. Suppose
X2v, is the first nonvanishing Taylor coefficient; then we denote 2v, the vanishing order of the
underlying form. If the form is identically zero, we define the vanishing order to be oo. To
simplify our notation, we introduce normalizing factor

1 \? (k +2v -2)!(2v)!
o= (— . 2
Yezv <2.71'1> (k+2v/2-2)! (32)
Further we put
. o , o o
Yoo = FpmmiXow by = (o) 5m= D (3:3)
Then a straightforward calculation leads to the following useful formula.
Lemma 3.1. Let k,v € Ny and let k be even. Let F € M,(cz). Then we have
v (k+2v—pu-2)! 52"){2_2,1
vE)(T,T) = yiew (1) = . 3.4
B2:F) (m7) Y’“Z—ﬂz:;,( TS Ty < BrioTh (34)

A similar formula is valid for Jacobi forms with normalizing factor y,f;'f) = Y 2v-

Corollary 3.2. Let 2vg be the vanishing order of F € M,(cz). Then we have Dy, F = 0 for v < vy and

~ ~ Sym
Do F (7, 7) = Yoo X3y, (T, 7) € M5, \ {0}, (35)
Similarly, we have for ® € J ,, with vanishing order 2vy the properties %;1’;)(1) = 0 for v < vy and

Jm _ [0}
9k,ZVO(D - Yk/ZJXQVO € Mk+2v0-

Example 3.3. Itis well known that dim S%) =1.Let® =Dy € S%) be normalized in such a way
that A®(1,1,1) = 1. Then it follows from D199® = 0 that A®(1,0,1) = -2 since dim S?gm =0.

Then @ has the Taylor expansion

(1,2, 7) = gﬂzA(T)A(%)zz + A(T)A(F) 2 + O<z6>, (3.6)
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we can also express the Taylor coefficients xi in terms of the modular forms @y, F. This can
be done by inverting the formula (3.4). Finally we get

& (k+2v-2u-1)!
sz_z(k+2v—/4—l)!y!

#=0

S oy (37)

Before we state our first main result about the entropy of the family ®F, Dx2F, Dx4F,...
we introduce some further notation.

S k7101 ¢
Wi=5"e @ S5
j=1

k+2j7
(3.8)
cus Sym L7101 Sym
Wi p:Sky ® @ SkZ—Z]"

j=1

These spaces will be the target of our next consideration. More precisely we define a linear
map from the space of Siegel modular forms of degree 2 into these spaces with remarkable
properties. The following result is equivalent to Theorem 1.2 in the introduction, given with
a slightly different notation.

Theorem 3.4. Let k € Ny be even. Then we have the linear embedding

M < Wy,

Dy : |k/10] (3.9)

F— P DinF.
v=0

Since %k,QSI((Z) is cuspidal we have the embedding of Sl(f) into WIC(USP.

Remark 3.5. It can be deduced from [14] that Dy © Dy, is surjective. Hence for k < 20 we
have

(i) M,(cz) is isomorphic to M for k < 10;

(ii) Ml(cz) is isomorphic to Miym ® Siym for 10 < k <20 and SI(<2) =~ S ® Siin.

Proof. First of all we recall that we have already shown that %k,QM,(CZ) c M,S(ym and By, M ,(3) c
Si}g‘v forv>0.Let Fe M ,(f) and suppose that D F is identically zero. Then it would follow

from our inversion formula (3.7) that

[ee]

F(r,z,T) = >, xn(r,0)z". (3.10)
v=|k/10]+1

For such F the general theory of Siegel modular forms of degree 2 says that the special

function @y € Sl(cz), which we already studied in one of our examples, divides F in the C-
algebra of modular forms. And this is fulfilled at least with a power of |[k/10] +1 =t > 0.
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Hence there exists a Siegel modular form G of weight k—10t,. But since this weight is negative
and nontrivial Siegel modular forms of negative weight do not exist, the form G has to be
identically zero. Hence we have shown that if Dy F = 0 then F = 0. And this proves the
statement of the theorem. O

Remark 3.6. The number |k/10| in the Theorem is optimal. This follows directly from
properties of @.

Remark 3.7. Let Ei’l (f) be a Klingen Eisenstein series attached to f € Sk. Let Ex denote an
elliptic Eisenstein series of weight k. Then it can be deduced from [12] that %k,gEi’l (f) =
f.@)Ek + Ej 8>j'n10c15iynﬂ

Remark 3.8. 1t would be interesting to have a different proof of the Theorem 3.4 independent
of the special properties of ®y.

Remark 3.9. The asymptotic limit of the dimension of the quotient of W;/ M,(f) is equal to
91/25. Let us put dy = dim M.

(i) The dimension of the target space Wy is given by

k/10

dim Wi ~ -2 i (k + 2x)*dx
(3.11)
L1 s
2882-35% " °
(ii) The asymptotic dimension formula of M ,((2) is given by
M@ L1 s

(see, [1, Introduction]).

4. The Spezialschar

In this section, we first recall some basic facts on the Maass Spezialschar [5]. Then we
determine the image of the Spezialschar in the space Wy for all even weights k. Then finally
we introduce a Spezialschar as a certain subspace of the space of Siegel modular forms of
degree 2n and weight k. Then we show that in the case n = 1 this Spezialschar coincides with
the Maass Spezialschar.

4.1. Basics of the Maass Spezialschar

Let Jim be the space of Jacobi forms of weight k and index m. We denote the subspace of
cusp forms with | kC;lSp. Let |x,, be the slash operator for Jacobi forms and V; (I € Ny) the
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operator, which maps Jx;, to Jim. More precisely, let ®(7,z) = > c(n,7)q"¢" € Jim. Then
(@l mVi)(1,2) = 3, c*(n,1)q"¢" with

* _ k-1
c*(n,r) = Z a c<;,;>, forleN, (4.1)

al(n,r,l)

and for [ = 0, we have ¢*(0,0) = ¢(0,0)(-2k/Byk) and for [ = 0 and n > 0 we have c¢*(n,r) =
¢(0,0)0%-1(n). This includes the theory of Eisenstein series in a nice way [9].

Definition 4.1. The lifting U is given by the linear map

Jki — M,
4.2)

D — > (Dl VD)7
1=0

The image of this lifting is the Maass Spezialschar M}'#* of weight k. The subspace of cusp
forms we denote with S5}/,
Remark 4.2.

(i) The lifting is invariant by the Klingen parabolic of Sp,(Z). Since the Fourier
coefficients satisfy A(n,r,m) = A(m, r,n), the map U is well defined.

(ii) If we restrict the Saito-Kurokawa lifting to Jacobi cusp forms, we get Siegel cusp
forms.

(iii) Let @ € Ji,, and I, p € No. Then we have

2,5 (@lemVi) = <9£f;ﬂq>) LT" (4.3)

Here T; is the Hecke operator on the space of elliptic modular forms.

(iv) Let F € M}:Aaass be the lift of ® € Ji ;. Then F is a Hecke eigenform if and only if ®
is a Hecke-Jacobi eigenform.

From this consideration we conclude [9] the following.

Proposition 4.3. Let F € M,(cz) be a Siegel modular form. Then the following properties are
equivalent.

Arithmetic

Let A(n,r,m) denote the Fourier coefficients of F then

Amrmy= 3 dk’1A<Z—T, g, 1). (4.4)
d|(n,r,m)
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Lifting

Let (Df be the first Fourier-Jacobi coefficient of F. Then all other Fourier-Jacobi coefficients
satisfy the identity

®f = OF |11V (4.5)

LetF € S,(cz) be a Hecke eigenform. Then F is a Saito-Kurokawa lift if and only if the spinor L-
function Z(F, s) of degree 4 has a pole (see Evdokimov [15]). Similar results are also obtained
by Oda [16].

4.2. The Diagonal of W, and the Proof of Theorem 1.3

Let (f;) be the normalized Hecke eigenbasis of M. With this notation, we introduce the
diagonal space

MP = {Za]- fi®ofie MY™ } (4.6)
]

and the corresponding cuspidal subspace SP. Now we are ready to distinguish the Maass

Spezialschar in the vector spaces Wi and W, . This leads to Theorem 1.3 stated in the
introduction. Before we give a proof we note the following.

Remark 4.4. (i) Theorem 1.3 describes a link between Siegel modular forms and elliptic Hecke
eigenforms.

(ii) Let F € M%) and let (f;) be a Hecke eigenbasis of Sy4. Then F € M,E/[aass if and only
if

%204P = agEyy ® Eoy + zxfl ® f1 + )ffz ® fz; (4.7)

here ap,a,y € C.

Proof. We first show that if F is in the Maass Spezialschar then 9y, F is an element of the
diagonal space. Let v € Ny and let ®f be the first Fourier-Jacobi coefficient of F. Then we
have

(D2 VD)), 7) = 3 (DL (@1 V) ) (D)7 +8)
1=0

Here we applied the Fourier-Jacobi expansion of the differential operator 9y, acting on
Siegel modular forms. Then we used the formula (4.3) to interchange the operators %i’;v
and V] to get -

(DraF) (7, 7) = Y (205,0) |sz§’ : (4.9)
1=0
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disay -
Now let ( f]kJrA) : be a normalized Hecke eigenbasis of Sk.y. Let 1 < ji, jo < dis2v. Then we

have

]

(GuF) o £57) = (k(004,0). £} 12, amw

which leads to the desired result

k+2v

(D), 20 ) =0, for ji#jo. (4.11)

It remains to look at the Eisenstein part if » = 0. Since the space of Eisenstein series has
the basis Ej and is orthogonal to the functions given in (4.10), we have proven that the
Spezialschar property of F implies that DxF € W?.

Now let us assume that F ¢ Mi/[aass. Then we show that D F ¢ Wi. Since the map

(Drg ® Du) : M — M7 @ S, (4.12)

is an isomorphism, we can assume that (9 ® i) (F) projected on MP @ SP, is identically
zero. Altering F by an element of the Maass Spezialschar does not change the property we

have to prove. If Dy oF ¢ ME or D F ¢ SkD+2, we are done; otherwise we can assume that

(Pro ® Dr2) (F) =0. (4.13)

Then we have the order F = 2vy > 4 and k > 20, since F ¢ MkMaass. Let

F<: ;> = ixgv() (1, 7)z% (4.14)

Y=V

be the Taylor expansion of F with X;}O(T,;L:) € Ski2v, Not identically zero. Let @y € S%)
be the Siegel cusp form of weight 10 and degree 2. It has the properties that xg)w = 0 and
xg)w (1,7) = cA(T) A(T) with ¢ #0. Since order F = 2v,, we also have

O |IF. (4.15)
This means that there exists a G € Si_10v, such that X()G is nontrivial and
F = (Dy)"G. (4.16)

Hence we have for the first nontrivial Taylor coefficient of F, the formula

Ko@) = (@ 5) ¥ (2,9,

= A(T) P AE) xS (7, 7).

(4.17)
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And the coefficient a; (T) of g is identically zero. Now let us assume for a moment that ng() €

S . Then we have

D
k+2vg

F ~ Ay k+2vp k+2vy ,
Xow (T 7) = Djafi () fi—(7), (4.18)

=1

k+2vg k+2vq icsany

and the coefficient of g is given by Zf:kf”” aif,— (7). Since (f,—),_, is a basis we have

ap = - =ag = 0. But since we assumed that order F = 2v,, we have a reductio ad
(]

absurdum. Hence we have shown that ngo ¢ Sk+ov, which proves our theorem. O
Corollary 4.5. Klingen Eisenstein series are not in the Maass Spezialschar.

Remark 4.6. Let k be a natural even number. Let F be a Siegel modular form of degree two
and weight k. Then we have

F e MY e @,,F € My ,,, Vv eN,. (4.19)

4.3. The Spezialschar

Let G*Sp,(Q) be the rational symplectic group with positive similitude y. In the sense of
Shimura, we attach to Hecke pairs the corresponding Hecke algebras

H" = (T, G Spa(Q)),
#3 = (Fnl Spn(@))

(4.20)

We also would like to mention that in the setting of elliptic modular forms the classical Hecke
operator T(p) can be normalized such that it is an element of the full Hecke algebra !, but
not of the even one H#}. Let g € G*Sp,(Q) with similitude y(g). Then we put

g=pu(g) g (4.21)

to obtain an element of Sp,(R). We further extend this to H#".

Definition 4.7. Let T € H". Then we define
bir = (T x 12n> - (12n x T). (4.22)

Here x is the standard embedding of (Sp,, Sp,) into Spa,.

Now we study the action [x><r on the space of modular forms of degree 2n for all
T € K" or T € Hj. The first thing we would like to mention is that for F € MI(CZ") the

function F|ib<r is in general not an element of M,(f") anymore. Anyway at the moment we are
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much more interested in the properties of the kernel of a certain map related to this action. In
particular, in the case n = 1 we get a new description of the Maass Spezialschar.

Definition 4.8. Let n and k be natural numbers. Let M ,((2") be the space of Siegel modular forms
of degree 2n and weight k. Then we introduce the Spezialschar corresponding to the Hecke
algebras H" and K.

spez(M,(f"’) = {F € MP"|Flpar =0, VT € e/e"},
(4.23)
Spezy (M) = {F € M |Flu<z =0, VT € 5},

Moreover, Spez(S,(czn)) and SpeZO(Sf")) are the cuspidal part of the corresponding
Spezialschar.

It is obvious that these subspaces of M,(CZ") are candidates for finding spaces of modular
forms with distinguished Fourier coefficients. Further it turns that these spaces are related
to the Maass Spezialschar and the Ikeda lift [17]. This leads to Theorem 1.1 stated in the
introduction.

4.3.1. Proof of Theorem 1.1

Proof. Let F € M,(cz). Then we have F € M} if and only if D ,F € MP,, forall v € Np.

This follows from Remark 4.6. On the other side, the property ®x,F € M? , is equivalent
to the identity

(Ru2vF) | =0, VT € K. (4.24)

This follows from the fact that the Hecke operators are self-adjoint and that the space of
elliptic modular forms has multiplicity one. To make the operator well defined, we used the
embedding H x H into the diagonal of H,. We can now interchange the differential operators
Dy 2» and the Petersson slash operator |,. This leads to

DiowF € MP, & Dy oy (Flixr) = 0. (4.25)

So finally it remains to show that if 9y 2, (F|>r) = 0 for all v € Ny then it follows F|><r = 0.
By looking at the Taylor expansion of the function F|;b<r < : ; ) with respect to z around 0, we
get with the same argument as given in the proof of Theorem 3.4 the desired result. O

5. Maass Relations Revised

We introduced two Hecke algebras # and H, related to elliptic modular forms. For the
corresponding Spezialschar Spez(M,(f)) and Spez, (M ,((2) ), we obtain the following theorem.
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Theorem 5.1. Let k be an even natural number. Then the even Spezialschar SpezO(Ml(cz)) related to

the Hecke algebra H#o which is locally generated by T (p?) is equal to the Spezialschar Spez(M,(f))
related to the Hecke algebra H which is locally generated by T (p).

Spezy (M) = Spez(M{). (5.1)

Proof. Let F € Ml(cz). We proceed as follows. In the proof of Theorem 1.1, it has been shown
that

FeSpez( M) &= (arF)|ppr =0, VT €, veN. (5.2)

Now we show that
(Dr2oF) |01 () = 0 = (BreavF) 0,2 = 0, (53)
for all v € Ny and prime numbers p. This would finish the proof since

F € Spezy (M) &= (DkauF) |01 =0, VT € Ho, v € No. (5.4)

(this can also be obtained by following the procedure of the proof of Theorem 1.1).

To verify (5.3), we show that to be an element of the kernel of the operator [,
implies already to be an element of the kernel of [>ir(,).

To see this we give a more general proof. Let ¢ € Miym and let @|x><r(p2) = 0. Let (f;)
be a normalized Hecke eigenbasis of M. Then we have

¢=Da;fi®f; (5.5)
i

Let us assume that there exists an a;, j, # 0 with ig # jo. Let us denote \; (p2) to be the eigenvalue
of f; with respect to the Hecke operator T (p?). Then we have

0 = Plbare) = Z“z’,i <)ti <P2> -\ <P2)>fi ® fj. (5.6)
Ly

From this follows that 1;,(p?) = Aj,(p?) for all prime numbers p. It is easy to see at this point
that f;, and f;, have to be cusp forms. In the setting of cusp forms, we can apply a result on
multiplicity one for SL, of D. Ramakrishnan [18, Section 4.1] and other people obtain f;, = f;,.
Since this is a contradiction we have ¢ € MP. In other words, we have ¢|><r(,) = 0. O
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