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We consider Krammer’s representation of the pure braid group on three strings: P3 →
GL(3, Z[t±1, q±1]), where t and q are indeterminates. As it was done in the case of the braid group,
B3, we specialize the indeterminates t and q to nonzero complex numbers. Then we present our
main theorem that gives us a necessary and sufficient condition that guarantees the irreducibility
of the complex specialization of Krammer’s representation of the pure braid group, P3.

1. Introduction

Let Bn be the braid group on n strings. There are a lot of linear representations of Bn.
The earliest was the Artin representation, which is an embedding Bn → Aut(Fn), the
automorphism group of a free group on n generators. Applying the free differential calculus
to elements of Aut(Fn) sometimes gives rise to linear representations of Bn and its normal
subgroup, the pure braid group denoted by Pn [1]. The Burau, Gassner, and Krammer’s
representations arise this way. In a previous paper, we considered Krammer’s representation
of the braid group on three strings and we specialized the indeterminates to nonzero
complex numbers. We then found a necessary and sufficient condition that guarantees the
irreducibility of such a representation. For more details, see [2].

In Section 2, we introduce some definitions of the pure braid group and Krammer’s
representation. In Sections 3 and 4, we present our work that leads to our main theorem,
Theorem 4.2, which gives a necessary and sufficient condition for the specialization of
Krammer’s representation of P3 to be irreducible.

2. Definitions

Definition 2.1 (see [1]). The braid group on n strings, Bn, is the abstract group with
presentation Bn = {σ1, . . . , σn−1/σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . n−2, σiσj = σjσi if |i−j| > 1}.
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The generators σ1, . . . , σn−1 are called the standard generators of Bn.

Definition 2.2. The kernel of the group homomorphism Bn → Sn is called the pure braid
group on n strands and is denoted by Pn. It consists of those braids which connect the ith
item of the left set to the ith item of the right set, for all i. The generators of Pn are Ai,j ,
1 ≤ i < j ≤ n, where Ai,j = σj−1σj−2 · · ·σi+1σ

2
i σ

−1
i+1 · · ·σ−1

j−2σ
−1
j−1.

Let us recall the Lawrence-Krammer representation of braid groups. This is a
representation of Bn in GL(m,Z[t±1, q±1]) = Aut(V0), where m = n(n − 1)/2 and V0

is the free module of rank m over Z[t±1, q±1]. The representation is denoted by K(q, t).
For simplicity we write K instead of K(q, t). What distinguishes this representation
from others is that Krammer’s representation defined on the braid group, Bn, is a
faithful representation for all n ≥ 3 [3]. The question of whether or not a specific
linear representation of an abstract group is irreducible has always been a significant
question to answer, especially those representations of the braid group and its normal
subgroups. In a previous result, we determined a necessary and sufficient condition for the
specialization of Krammer’s representation of B3 to be irreducible [2]. In our current work,
we apply Krammer’s representation on the normal subgroup of B3, namely, the pure braid
group, P3. Having done some computations, we succeed in establishing a necessary and
sufficient condition for the complex specialization of Krammer’s representation of P3 to be
irreducible.

Definition 2.3 (see [3]). With respect to {xi,j}1≤i<j≤n, the free basis of V0, the image of each
Artin generator under Krammer’s representation is written as

K(σk)
(
xi,j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tq2xk,k+1, i = k, j = k + 1;

(
1 − q

)
xi,k + qxi,k+1, j = k, i < k;

xi,k + tqk−i+1
(
q − 1

)
xk,k+1, j = k + 1, i < k;

tq
(
q − 1

)
xk,k+1 + qxk+1,j , i = k, k + 1 < j;

xk,j +
(
1 − q

)
xk+1,j , i = k + 1, k + 1 < j;

xi,j , i < j < k or k + 1 < i < j;

xi,j + tqk−i
(
q − 1

)2
xk,k+1, i < k < k + 1 < j.

(2.1)

Using the Magnus representation of subgroups of the automorphisms group of free
group with n(n − 1)/2 generators, we determine Krammer’s representation K(q, t) : P3 →
GL(3, Z[t±1, q±1]). Here Z[t±1, q±1] is the ring of Laurent polynomials on two variables. The
images of the generators under Krammer’s representation are given by
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K(A1,2) =

⎛

⎜
⎜
⎝

t2q4 0 0

t2q3
(
q − 1

)
q q

(
1 − q

)

tq
(
q − 1

)
1 − q 1 − q + q2

⎞

⎟
⎟
⎠,

K(A2,3) =

⎛

⎜
⎜
⎝

1 − q + q2 q
(
1 − q

)
tq3

(
q − 1

)

1 − q q t2q4
(
q − 1

)

0 0 t2q4

⎞

⎟
⎟
⎠,

K(A1,3) =

⎛

⎜
⎜
⎜
⎜
⎝

q q
(
q − 1

) 1 − q − tq
(
q − 1

)2

t

−tq(q − 1
)2

tq
[
tq2

(
q2 − q + 1

) − (
q − 1

)3]
m

tq
(
1 − q

)
tq
(
q − 1

)(
1 − q + tq2

)
n

⎞

⎟
⎟
⎟
⎟
⎠

,

(2.2)

where

m = −1 + q
[
2 − 2q + q2 + t

(
q − 1

)4 + q2
(
1 − q

)(
1 + q

(
q − 1

))
t2
]
,

n = 1 + q
(
q − 1

)[
1 + t

(
q − 1

)(−1 + q − tq2
)]

.

(2.3)

Specializing t and q to non zero complex numbers, we consider the complex linear
representation K(q, t) : P3 → GL(3, C). We show that the only non zero invariant subspace
under the action of specialization of Krammer’s representation of P3 coincides with the
vectorspace C3. Here, we regard M3(C) as acting from the left on column vectors so that
eigenvectors and invariant subspaces lie in C3.

3. Sufficient Condition for Irreducibility

In this section, we find a sufficient condition for the irreducibility of Krammer’s representa-
tion of the pure braid group on three strings P3.

Theorem 3.1. For (q, t) ∈ (C∗)2, Krammer’s representation K(q, t) : P3 → GL(3, C) is irreducible
if t2q3 /= 1, tq3 /= 1, t /= − 1, q /= 1, tq /= 1, and tq2 /= − 1.

Proof. For simplicity, we write K(α) instead of K(q, t)(α), where α ∈ P3. Suppose, to get
contradiction, that K(q, t) : P3 → GL(3, C) is reducible; then there exists a proper nonzero
invariant subspace S, where the dimension of S is either 1 or 2. We will show that a
contradiction is obtained in each of these cases.

Assume that dimension of S is 1:

The subspace S has to be one of the following subspaces: 〈e1〉, 〈e2〉, 〈e3〉, 〈e1+ue2〉, 〈e2+ue3〉,
〈e1 + ue3〉, 〈e1 + ue2 + ve3〉, where u, v are non zero complex numbers.

Case 1 (S = 〈e1〉). Since e1 ∈ S, it follows that A1,2(e1) ∈ S which implies that t2q3(q − 1) = 0,
a contradiction.
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Case 2 (S = 〈e2〉). Since e2 ∈ S, it follows that A1,2(e2) ∈ S which implies that 1 − q = 0, a
contradiction.

Case 3 (S = 〈e3〉). Since e3 ∈ S, it follows that A1,2(e3) ∈ S which implies that q(1 − q) = 0, a
contradiction.

Case 4 (S = 〈e1 +ue2〉, u /= 0). Since e1 +ue2 ∈ S, it follows thatA1,2(e1 +ue2) ∈ S. This implies
that

⎛

⎜
⎜
⎝

t2q4

t2q3
(
q − 1

)
+ qu

tq
(
q − 1

)
+
(
1 − q

)
u

⎞

⎟
⎟
⎠ = m

⎛

⎜
⎜
⎝

1

u

0

⎞

⎟
⎟
⎠, (3.1)

wherem is a complex number. Solving this system of equations implies that (tq−1)(tq2 +1) =
0, which is a contradiction to the hypothesis.

Case 5 (S = 〈e2 +ue3〉, u /= 0). Since e2 +ue3 ∈ S, it follows thatA2,3(e2 +ue3) ∈ S. This implies
that

⎛

⎜⎜
⎝

q
(
1 − q

)
+ tq3

(
q − 1

)
u

q + t2q4
(
q − 1

)
u

t2q4u

⎞

⎟⎟
⎠ = m

⎛

⎜⎜
⎝

0

1

u

⎞

⎟⎟
⎠, (3.2)

where m is a complex number. By solving this system of equations, we get that (tq − 1)(tq2 +
1) = 0, which is a contradiction.

Case 6 (S = 〈e1+ue3〉, u /= 0). Since e1+ue3 ∈ S, it follows thatA1,2(e1+ue3) ∈ S. This implies
that

⎛

⎜⎜
⎝

t2q4

t2q3
(
q − 1

)
+ q

(
1 − q

)
u

tq
(
q − 1

)
+
(
1 − q + q2

)
u

⎞

⎟⎟
⎠ = m

⎛

⎜⎜
⎝

1

0

u

⎞

⎟⎟
⎠, (3.3)

where m is a complex number. By solving this system of equations, we get that (tq − 1)(tq2 +
1)(tq2 + q − 1) = 0.

By our hypothesis, (tq−1)(tq2+1)/= 0. This implies that tq2+q−1 = 0. That is, tq2 = 1−q.
Also, we have that A2,3(e1 + ue3) ∈ S. This implies that

⎛

⎜⎜
⎝

1 − q + q2 + tq3
(
q − 1

)
u

1 − q + t2q4
(
q − 1

)
u

t2q4u

⎞

⎟⎟
⎠ = n

⎛

⎜⎜
⎝

1

0

u

⎞

⎟⎟
⎠, (3.4)
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where n is a complex number. By solving this system of equations, we get that t2q3 = −1. This
means that

t2q3 = tq
(
tq2

)
= tq

(
1 − q

)
= tq − tq2 = tq − 1 + q. (3.5)

This implies that q(t + 1) = 0, which contradicts the hypothesis.

Case 7 (S = 〈e1+ue2+ve3〉, u, v /= 0). Since e1+ue2+ve3 ∈ S, it follows thatA1,2(e1+ue2+ve3) ∈
S. This implies that

⎛

⎜
⎜
⎝

t2q4

t2q3
(
q − 1

)
+ qu + q

(
1 − q

)
v

tq
(
q − 1

)
+
(
1 − q

)
u +

(
1 − q + q2

)
v

⎞

⎟
⎟
⎠ = m

⎛

⎜
⎜
⎝

1

u

v

⎞

⎟
⎟
⎠, (3.6)

where m is a complex number. Since A2,3(e1 + ue2 + ve3) ∈ S, it follows that

⎛

⎜⎜
⎝

1 − q + q2 + q
(
1 − q

)
u + tq3

(
q − 1

)
v

1 − q + qu + t2q4
(
q − 1

)
v

t2q4v

⎞

⎟⎟
⎠ = n

⎛

⎜⎜
⎝

1

u

v

⎞

⎟⎟
⎠, (3.7)

where n is a complex number. Solving these two system of equations, we get that m = n =
t2q4. Also, we have that

q
(
t2q3 − 1

)
u + q

(
q − 1

)
v = t2q3

(
q − 1

)
, (3.8)

(
q − 1

)
u +

(
t2q4 − q2 + q − 1

)
v = tq

(
q − 1

)
, (3.9)

q
(
1 − q

)
u + tq3

(
q − 1

)
v = t2q4 − q2 + q − 1, (3.10)

q
(
t2q3 − 1

)
u − t2q4

(
q − 1

)
v = 1 − q. (3.11)

Substracting (3.11) from (3.8), we get that q(1+ t2q3)v = 1+ t2q3. Here, we have 2 cases
whether or not (1 + t2q3) is zero.

If 1 + t2q3 = 0, then we rewrite (3.8), (3.9), (3.10), and (3.11) to become as follows:

2qu − q
(
q − 1

)
v = q − 1, (3.12)

(
q − 1

)
u −

(
q2 + 1

)
v = tq

(
q − 1

)
, (3.13)

q
(
1 − q

)
u + tq3

(
q − 1

)
v = −

(
q2 + 1

)
. (3.14)
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Multiplying (3.13) by q and adding it to (3.14)we get that

q
(
tq3 − tq2 − q2 − 1

)
v = tq3 − tq2 − q2 − 1. (3.15)

A simple computation shows that tq3 − tq2 − q2 − 1/= 0. Thus v = 1/q. Substituting
v = 1/q in (3.12), we get that u = (q − 1)/q. Substituting u and v in (3.14), we get that
tq2 = tq − 2. Having that t2q3 = −1 implies that t2q3 = tq(tq2) = tq(tq − 2). This implies that
(tq − 1)2 = 0 which contradicts the hypothesis.

This means that 1 + t2q3 /= 0. Then v = 1/q and u = (q − 1)/q by (3.8). Substituting u
and v in (3.9), we get that (tq − 1)(tq2 + 1) = 0, which contradicts the hypothesis.

Assume that dimension of S is 2:

Easy computations show that the subspace S cannot be in the form S = 〈ei, ej〉 or S = 〈ei +
uej , ek〉 for i /= j /= k.

It suffices to consider only the case S = 〈e1 + ue2, e1 + ve3〉, where u, v /= 0.
Since e1 + ue2 ∈ S, it follows that A1,2(e1 + ue2) ∈ S and so

⎛

⎜⎜
⎝

t2q4

t2q3
(
q − 1

)
+ qu

tq
(
q − 1

)
+
(
1 − q

)
u

⎞

⎟⎟
⎠ ∈ S. (3.16)

Also, we have that e1 + ve3 ∈ S,then A1,2(e1 + ve3) ∈ S, and so

⎛

⎜⎜
⎝

t2q4

t2q3
(
q − 1

)
+ q

(
1 − q

)
v

tq
(
q − 1

)
+
(
1 − q + q2

)
v

⎞

⎟⎟
⎠ ∈ S. (3.17)

This implies that ((q−q2)v−qu)e2+((1−q+q2)v+(q−1)u)e3 ∈ S. Note that ((q−q2)v−qu)
and ((1 − q + q2)v + (q − 1)u) cannot be both zeros. Assume then that (q − q2)v − qu/= 0.

Having that ue2−ve3 ∈ S, we get that {u((1−q+q2)v+(q−1)u)+v((q−q2)v−qu)}e3 ∈ S
and so

(
u + qv

)
(u − v)e3 ∈ S. (3.18)

If (u + qv)(u − v)/= 0, then e3 ∈ S and thus S is the whole space. Now if (u + qv)(u − v) = 0,
then we have 2 cases: u = −qv and u = v:

let u = −qv. Since

⎛

⎜⎜
⎝

0

q

1

⎞

⎟⎟
⎠ ∈ S, it follows that

⎛

⎜⎜
⎝

0

t2q3

t2q2

⎞

⎟⎟
⎠ ∈ S. (3.19)
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On the other hand, we have that

q−2A2,3

⎛

⎜
⎜
⎝

0

q

1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

(
q − 1

)(
tq − 1

)

1 + t2q2
(
q − 1

)

t2q2

⎞

⎟
⎟
⎠ ∈ S. (3.20)

Substracting (3.19) from (3.20) we get that

⎛

⎝
(q−1)(tq−1)

1−t2q2

0

⎞

⎠ ∈ S.

This means that

(
q − 1

)(
tq − 1

)
e1 +

(
1 − t2q2

)
e2 ∈ S. (3.21)

We also have that

e1 − qve2 ∈ S. (3.22)

Solving (3.21) and (3.22), we get that ((1 + tq) + q(1 − q)v)e2 ∈ S.
If (1 + tq) + q(1 − q)v /= 0, we are done. Otherwise, we have that v = (tq + 1)/q(q − 1)

and u = −qv = (tq + 1)/(1 − q). On the other hand, we have that

⎛

⎜⎜
⎝

1

u

0

⎞

⎟⎟
⎠ ∈ S then

⎛

⎜⎜
⎝

1 − q

1 + tq

0

⎞

⎟⎟
⎠ ∈ S. (3.23)

Also, we have that

A2,3

⎛

⎜⎜
⎝

1 − q

1 + tq

0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

(
1 − q

)(
1 + q2 + tq2

)

1 + q2 + tq2 − q

0

⎞

⎟⎟
⎠ ∈ S. (3.24)

Solving (3.23) and (3.24) implies that q(1 + t)(1 + tq2)e2 ∈ S and thus e2 ∈ S. Hence
S = C3.

Let u = v. Since e2 − e3 ∈ S, it follows that A2,3(e2 − e3) ∈ S. That is, we have that

⎛

⎜⎜
⎝

(
q − 1

)(−1 − tq2
)

1 − t2q3
(
q − 1

)

−t2q3

⎞

⎟⎟
⎠ ∈ S. (3.25)
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We also have that

⎛

⎜
⎜
⎝

0

t2q3

−t2q3

⎞

⎟
⎟
⎠ ∈ S. (3.26)

Substracting (3.26) from (3.25), we get that

(
q − 1

)(−1 − tq2
)
e1 +

(
1 − t2q4

)
e2 ∈ S. (3.27)

Also we have that

e1 + ve2 ∈ S. (3.28)

Solving (3.27) and (3.28), we get that {(1+ tq2)[(1− tq2)+v(q−1)]}e2 ∈ S. If [(1− tq2)+
v(q − 1)] = 0, then we get that u = v = (tq2 − 1)/(q − 1).

Now we have that e1 + ue2 ∈ S and so

⎛

⎜⎜
⎝

(
q − 1

)(
1 + q2 − tq3

)

(
tq2 − 1

)(
1 + q2 − tq3

)

0

⎞

⎟⎟
⎠ ∈ S. (3.29)

We also have that

A2,3

⎛

⎜⎜
⎝

q − 1

tq2 − 1

0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

(
q − 1

)(
1 + q2 − tq3

)

−q2 + q − 1 + tq3

0

⎞

⎟⎟
⎠ ∈ S. (3.30)

Substracting (3.30) from (3.29), we get that q(1 − tq)(tq3 − 1)e2 ∈ S and so e2 ∈ S. Thus
S = C3.

Next, we find a necessary condition that guarantees the irreducibility of the complex
specialization of Krammer’s representation of P3.

4. Necessary Condition for Irreducibility

We present the following theorem.

Theorem 4.1. For (q, t) ∈ (C∗)2, Krammer’s representation K(q, t) : P3 → GL(3, C) is reducible if
one of the following conditions is satisfied:

(1) t2q3 = 1,

(2) tq3 = 1,
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(3) t = −1,
(4) q = 1,

(5) tq = 1,

(6) tq2 = −1.

Proof. Notice that the first three conditions followed from the reducibility on B3. Under each
of the last three conditions of our hypothesis, we find a proper nonzero invariant subspace
under the action of complex specialization of Krammer’s representation of P3. Recall that
the matrices K(A1,2), K(A2,3), and K(A1,3) that will be used in the proof are those given in
Definition 2.3.

Proof of 4 (q = 1). We have that

K(A1,2) =

⎛

⎜⎜
⎝

t2 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠, K(A2,3) =

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 t2

⎞

⎟⎟
⎠,

K(A1,3) =

⎛

⎜⎜
⎝

1 0 0

0 t2 0

0 0 1

⎞

⎟⎟
⎠.

(4.1)

We take the invariant subspace as the one generated by e1 = (1, 0, 0).

Proof of 5 (tq = 1). We have that

K(A1,2) =

⎛

⎜⎜
⎝

q2 0 0

q
(
q − 1

)
q q

(
1 − q

)

q − 1 1 − q 1 − q + q2

⎞

⎟⎟
⎠,

K(A2,3) =

⎛

⎜⎜
⎝

1 − q + q2 q
(
1 − q

)
q2
(
q − 1

)

1 − q q q2
(
q − 1

)

0 0 q2

⎞

⎟⎟
⎠,

K(A1,3) =

⎛

⎜⎜
⎝

q q
(
q − 1

) (
1 − q

)
q2

−(q − 1
)2 1 + 2q

(
q − 1

) −q(q − 1
)2

1 − q q − 1 q

⎞

⎟⎟
⎠.

(4.2)

We take the invariant subspace as the one generated by m = (0, q, 1)T . More precisely,
we have that

K(A1,2)(m) = m, K(A2,3)(m) = q2m, K(A1,3)(m) = q2m. (4.3)
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Proof of 6 (tq2 = −1). We have that

K(A1,2) =

⎛

⎜
⎜
⎝

1 0 0

1 + tq q q
(
1 − q

)

−1 − tq 1 − q 1 − q + q2

⎞

⎟
⎟
⎠,

K(A2,3) =

⎛

⎜
⎜
⎝

1 − q + q2 q
(
1 − q

)
q
(
1 − q

)

1 − q q q − 1

0 0 1

⎞

⎟
⎟
⎠,

K(A1,3) =

⎛

⎜
⎜
⎝

q q
(
q − 1

)
q
(
q − 1

)

q − 2 − tq q2 − 2q + 2
(
q − 1

)2

tq + 1 q − 1 q

⎞

⎟
⎟
⎠.

(4.4)

We take the invariant subspace as the one generated bym = (−q, 1, 0)T .More precisely,
we have that

K(A1,2)(m) = m, K(A2,3)(m) = q2m, K(A1,3)(m) = m. (4.5)

Combining Theorems 3.1 and 4.1, we obtain our main theorem.

Theorem 4.2. For (q, t) ∈ (C∗)2, Krammer’s representation K(q, t) : P3 → GL(3, C) is irreducible
if and only if t2q3 /= 1, tq3 /= 1, t /= − 1, q /= 1, tq /= 1, and tq2 /= − 1.
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