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We introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para-
Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor
and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian
manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it cannot admit an (ε)-
para Sasakian structure. We show that, for an (ε)-para Sasakian manifold, the conditions of being
symmetric, semi-symmetric, or of constant sectional curvature are all identical. It is shown that
a symmetric spacelike (resp., timelike) (ε)-para Sasakian manifold Mn is locally isometric to a
pseudohyperbolic spaceHn

ν (1) (resp., pseudosphere S
n
ν(1)). At last, it is proved that for an (ε)-para

Sasakianmanifold the conditions of being Ricci-semi-symmetric, Ricci-symmetric, and Einstein are
all identical.

1. Introduction

In 1976, an almost paracontact structure (ϕ, ξ, η) satisfying ϕ2 = I − η ⊗ ξ and η(ξ) = 1 on a
differentiable manifold was introduced by Satō [1]. The structure is an analogue of the almost
contact structure [2, 3] and is closely related to almost product structure (in contrast to almost
contact structure, which is related to almost complex structure). An almost contact manifold
is always odd dimensional but an almost paracontact manifold could be even dimensional as
well. In 1969, Takahashi [4] introduced almost contact manifolds equipped with associated
pseudo-Riemannian metrics. In particular, he studied Sasakian manifolds equipped with
an associated pseudo-Riemannian metric. These indefinite almost contact metric manifolds
and indefinite Sasakian manifolds are also known as (ε)-almost contact metric manifolds
and (ε)-Sasakian manifolds, respectively [5–7]. Also, in 1989, Matsumoto [8] replaced
the structure vector field ξ by −ξ in an almost paracontact manifold and associated
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a Lorentzian metric with the resulting structure and called it a Lorentzian almost paracontact
manifold.

An (ε)-Sasakian manifold is always odd dimensional. Recently, we have observed
that there does not exist a lightlike surface in a 3-dimensional (ε)-Sasakian manifold. On
the other hand, in a Lorentzian almost paracontact manifold given by Matsumoto, the semi-
Riemannian metric has only index 1 and the structure vector field ξ is always timelike. These
circumstances motivate us to associate a semi-Riemannian metric, not necessarily Lorentzian,
with an almost paracontact structure, and we shall call this indefinite almost paracontact
metric structure an (ε)-almost paracontact structure, where the structure vector field ξ will be
spacelike or timelike according as ε = 1 or ε = −1.

In this paper we initiate study of (ε)-almost paracontact manifolds, and in particular,
(ε)-para Sasakian manifolds. The paper is organized as follows. Section 2 contains basic
definitions and some examples of (ε)-almost paracontact manifolds. In Section 3, some
properties of normal almost paracontact structures are discussed. Section 4 contains
definitions of an (ε)-paracontact structure and an (ε)-s-paracontact structure. A typical
example of an (ε)-s-paracontact structure is also presented. In Section 5, we introduce the
notion of an (ε)-para Sasakian structure and study some of its basic properties. We find some
typical identities for curvature tensor and Ricci tensor. We prove that if a semi-Riemannian
manifold is one of flat, proper recurrent, or proper Ricci-recurrent, then it cannot admit an
(ε)-para Sasakian structure. We show that, for an (ε)-para Sasakian manifold, the conditions
of being symmetric, semi-symmetric, or of constant sectional curvature are all identical. More
specifically, it is shown that a symmetric spacelike (ε)-para Sasakian manifold Mn is locally
isometric to a pseudohyperbolic space Hn

ν (1), and a symmetric timelike (ε)-para Sasakian
manifoldMn is locally isometric to a pseudosphere Snν(1). At last, it is proved that for an (ε)-
para Sasakian manifold, the conditions of being Ricci-semi-symmetric, Ricci-symmetric, and
Einstein are all identical. Unlike 3-dimensional (ε)-Sasakianmanifold, which cannot possess a
lightlike surface, the study of lightlike surfaces of 3-dimensional (ε)-para Sasakian manifolds
will be presented in a forthcoming paper.

2. (ε)-Almost Paracontact Metric Manifolds

LetM be an almost paracontact manifold [1] equipped with an almost paracontact structure
(ϕ, ξ, η) consisting of a tensor field ϕ of type (1, 1), a vector field ξ, and a 1-form η
satisfying

ϕ2 = I − η ⊗ ξ, (2.1)

η(ξ) = 1, (2.2)

ϕξ = 0, (2.3)

η ◦ ϕ = 0. (2.4)

It is easy to show that the relation (2.1) and one of the three relations (2.2), (2.3), and (2.4)
imply the remaining two relations of (2.2), (2.3), and (2.4). On an n-dimensional almost
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paracontact manifold, one can easily obtain

ϕ3 − ϕ = 0, (2.5)

rank
(
ϕ
)
= n − 1. (2.6)

Equation (2.5) gives an f(3 ,−1)-structure [9].
Throughout the paper, by a semi-Riemannian metric [10] on a manifold M, we

understand a non-degenerate symmetric tensor field g of type (0, 2). In particular, if its
index is 1, it becomes a Lorentzian metric [11]. A sufficient condition for the existence
of a Riemannian metric on a differentiable manifold is paracompactness. The existence of
Lorentzian or other semi-Riemannianmetrics depends upon other topological properties. For
example, on a differentiable manifold, the following statements are equivalent: (1) there exits
a Lorentzian metric onM, (2) there exists a non-vanishing vector field onM, and (3) either
M is non-compact, orM is compact and has Euler number χ(M) = 0. Also, for instance, the
only compact surfaces that can be made Lorentzian surfaces are the tori and Klein bottles,
and a sphere Sn admits a Lorentzian metric if and only if n is odd ≥ 3.

Now, we give the following.

Definition 2.1. Let M be a manifold equipped with an almost paracontact structure (ϕ, ξ, η).
Let g be a semi-Riemannian metric with index(g) = ν such that

g
(
ϕX, ϕY

)
= g(X,Y ) − εη(X)η(Y ), X, Y ∈ TM, (2.7)

where ε = ±1. Then we say thatM is an (ε)-almost paracontact metric manifold equipped with
an (ε)-almost paracontact metric structure (ϕ, ξ, η, g, ε). In particular, if index(g) = 1, then an (ε)-
almost paracontact metric manifold will be called a Lorentzian almost paracontact manifold. In
particular, if the metric g is positive definite, then an (ε)-almost paracontact metric manifold
is the usual almost paracontact metric manifold [1].

Equation (2.7) is equivalent to

g
(
X,ϕY

)
= g

(
ϕX, Y

)
, (2.8)

along with

g(X, ξ) = εη(X), (2.9)

for all X,Y ∈ TM. From (2.9) it follows that

g(ξ, ξ) = ε, (2.10)
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that is, the structure vector field ξ is never lightlike. Since g is non-degenerate metric on M
and ξ is non-null, therefore the paracontact distribution

D =
{
X ∈ TM : η(X) = 0

}
(2.11)

is non-degenerate onM.

Definition 2.2. Let (M,ϕ, ξ, η, g, ε) be an (ε)-almost paracontact metric manifold (resp., a
Lorentzian almost paracontact manifold). If ε = 1, then M will be said to be a spacelike
(ε)-almost paracontact metric manifold (resp., a spacelike Lorentzian almost paracontact manifold).
Similarly, if ε = −1, then M will be said to be a timelike (ε)-almost paracontact metric manifold
(resp., a timelike Lorentzian almost paracontact manifold).

Note that a timelike Lorentzian almost paracontact structure is a Lorentzian almost
paracontact structure in the sense of Mihai and Roşca [12], Matsumoto [13], which differs in
the sign of the structure vector field of the Lorentzian almost paracontact structure given by
Matsumoto [8].

Example 2.3. LetR
3 be the 3-dimensional real number spacewith a coordinate system (x, y, z).

We define

η = dy, ξ =
∂

∂y
,

ϕ

(
∂

∂x

)
=

∂

∂z
, ϕ

(
∂

∂y

)
= 0, ϕ

(
∂

∂z

)
=

∂

∂x
,

g1 = (dx)2 − (
dy

)2 + (dz)2,

g2 = −(dx)2 + (
dy

)2 − (dz)2.

(2.12)

Then the set (ϕ, ξ, η, g1) is a timelike Lorentzian almost paracontact structure, while the set
(ϕ, ξ, η, g2) is a spacelike (ε)-almost paracontact metric structure. We note that index(g1) = 1
and index(g2) = 2.

Example 2.4. LetR
3 be the 3-dimensional real number spacewith a coordinate system (x, y, z).

We define

η = dz − ydx, ξ =
∂

∂z
,

ϕ

(
∂

∂x

)
= − ∂

∂x
− y ∂

∂z
, ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂z

)
= 0,

g1 = (dx)2 +
(
dy

)2 − η ⊗ η,

g2 = (dx)2 +
(
dy

)2 + (dz)2 − y(dx ⊗ dz + dz ⊗ dx),

g3 = −(dx)2 + (
dy

)2 + (dz)2 − y(dx ⊗ dz + dz ⊗ dx).

(2.13)
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Then, the set (ϕ, ξ, η) is an almost paracontact structure in R
3. The set (ϕ, ξ, η, g1) is a

timelike Lorentzian almost paracontact structure. Moreover, the trajectories of the timelike
structure vector ξ are geodesics. The set (ϕ, ξ, η, g2) is a spacelike Lorentzian almost
paracontact structure. The set (ϕ, ξ, η, g3) is a spacelike (ε)-almost paracontact metric
structure (ϕ, ξ, η, g3, ε)with index(g3) = 2.

Example 2.5. Let R
5 be the 5-dimensional real number space with a coordinate system

(x, y, z, t, s). Defining

η = ds − ydx − tdz, ξ =
∂

∂s
,

ϕ

(
∂

∂x

)
= − ∂

∂x
− y ∂

∂s
, ϕ

(
∂

∂y

)
= − ∂

∂y
,

ϕ

(
∂

∂z

)
= − ∂

∂z
− t ∂

∂s
, ϕ

(
∂

∂t

)
= − ∂

∂t
, ϕ

(
∂

∂s

)
= 0,

g1 = (dx)2 +
(
dy

)2 + (dz)2 + (dt)2 − η ⊗ η,
g2 = − (dx)2 − (

dy
)2 + (dz)2 + (dt)2 + (ds)2 − t(dz ⊗ ds + ds ⊗ dz)

−y(dx ⊗ ds + ds ⊗ dx),

(2.14)

the set (ϕ, ξ, η, g1) becomes a timelike Lorentzian almost paracontact structure in R
5, while

the set (ϕ, ξ, η, g2) is a spacelike (ε)-almost paracontact structure. Note that index(g2) = 3.
The Nijenhuis tensor [J, J] of a tensor field J of type (1, 1) on a manifoldM is a tensor

field of type (1, 2) defined by

[J, J](X,Y ) ≡ J2[X,Y ] + [JX, JY ] − J[JX, Y ] − J[X, JY ], (2.15)

for all X,Y ∈ TM. IfM admits a tensor field J of type (1, 1) satisfying

J2 = I, (2.16)

then it is said to be an almost product manifold equipped with an almost product structure J .
An almost product structure is integrable if its Nijenhuis tensor vanishes. For more details we
refer to [14].

Example 2.6. Let (Mn, J,G) be a semi-Riemannian almost product manifold such that

J2 = I, G(JX, JY ) = G(X,Y ). (2.17)

Consider the product manifold Mn × R. A vector field on Mn × R can be represented by
(X, f(d/dt)), where X is tangent toM, f a smooth function onMn ×R, and t the coordinates
of R. OnMn × R we define

η = dt, ξ =
d

dt
, ϕ

((
X, f

d

dt

))
= JX,

g

((
X, f

d

dt

)
,

(
Y, h

d

dt

))
= G(X,Y ) + εfh.

(2.18)
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Then (ϕ, ξ, η, g, ε) is an (ε)-almost paracontact metric structure on the product manifoldMn×
R.

Example 2.7. Let (M,ψ, ξ, η, g, ε) be an (ε)-almost contact metric manifold. If we put ϕ = ψ2,
then (M,ϕ, ξ, η, g, ε) is an (ε)-almost paracontact metric manifold.

3. Normal Almost Paracontact Manifolds

Let M be an almost paracontact manifold with almost paracontact structure (ϕ, ξ, η) and
consider the product manifold M × R, where R is the real line. A vector field on M × R

can be represented by (X, f(d/dt)), where X is tangent toM, f a smooth function onM ×R,
and t the coordinates of R. For any two vector fields (X, f(d/dt)) and (Y, h(d/dt)), it is easy
to verify the following:

[(
X, f

d

dt

)
,

(
Y, h

d

dt

)]
=
(
[X,Y ],

(
Xh − Yf) d

dt

)
. (3.1)

Definition 3.1. If the induced almost product structure J onM × R defined by

J

(
X, f

d

dt

)
≡
(
ϕX + fξ, η(X)

d

dt

)
(3.2)

is integrable, then we say that the almost paracontact structure (ϕ, ξ, η) is normal.
This definition is conformable with the definition of normality given in [15]. As

the vanishing of the Nijenhuis tensor [J, J] is a necessary and sufficient condition for the
integrability of the almost product structure J , we seek to express the conditions of normality
in terms of the Nijenhuis tensor [ϕ, ϕ] of ϕ. In view of (2.15), (3.2), (3.1), and (2.1)–(2.4) we
have

[J, J]
((

X, f
d

dt

)
,

(
Y, h

d

dt

))
=
([
ϕ, ϕ

]
(X,Y ) − 2dη(X,Y )ξ − h(£ξϕ

)
X + f

(
£ξϕ

)
Y,

{(
£ϕXη

)
Y − (

£ϕYη
)
X − h(£ξη

)
X + f

(
£ξη

)
Y
} d
dt

)
,

(3.3)

where £X denotes the Lie derivative with respect to X. Since [J, J] is skew symmetric tensor
field of type (1, 2), it suffices to compute [J, J]((X, 0), (Y, 0)) and [J, J]((X, 0), (0, (d/dt))).
Thus we have

[J, J]((X, 0), (Y, 0)) =
(
[
ϕ, ϕ

]
(X,Y ) − 2dη(X,Y )ξ,

((
£ϕXη

)
Y − (

£ϕYη
)
X
) d
dt

)
,

[J, J]
(
(X, 0),

(
0,
d

dt

))
= −

(
(
£ξϕ

)
X,

((
£ξη

)
X
) d
dt

)
.

(3.4)
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We are thus led to define four types of tensors
1
N,

2
N,

3
N, and

4
N, respectively, by (see

also [1])

1
N ≡ [

ϕ, ϕ
] − 2dη ⊗ ξ, (3.5)

2
N ≡ (

£ϕXη
)
Y − (

£ϕYη
)
X, (3.6)

3
N ≡ £ξϕ, (3.7)

4
N ≡ £ξη. (3.8)

Thus the almost paracontact structure (ϕ, ξ, η)will be normal if and only if the tensors defined
by (3.5)–(3.8) vanish identically.

Taking account of (2.1)–(2.5) and (3.5)–(3.8), it is easy to obtain the following.

Lemma 3.2. LetM be an almost paracontact manifold with an almost paracontact structure (ϕ, ξ, η).
Then

4
N (X) = 2dη(ξ, X), (3.9)

2
N (X,Y ) = 2

(
dη

(
ϕX, Y

)
+ dη

(
X,ϕY

))
, (3.10)

1
N (X, ξ) = − 3

N
(
ϕX

)
= −[ξ, X] + ϕ

[
ξ, ϕX

]
+ ξ

(
η(X)

)
ξ, (3.11)

1
N

(
ϕX, Y

)
= −ϕ[ϕ, ϕ](X,Y )− 2

N (X,Y )ξ − η(X)
3
N (Y ). (3.12)

Consequently,

2
N

(
X,ϕY

)
= 2

(
dη

(
ϕX, ϕY

)
+ dη(X,Y )

)
+ η(Y )

4
N (X), (3.13)

4
N (X) = η

(
1
N (X, ξ)

)
=

2
N

(
ξ, ϕX

)
= − η

(
3
N

(
ϕX

)
)
, (3.14)

4
N

(
ϕX

)
= − η

([
ξ, ϕX

])
= − η

(
3
N (X)

)
, (3.15)

ϕ

(
1
N (X, ξ)

)
=

3
N (X) +

4
N

(
ϕX

)
ξ, (3.16)

η

(
1
N

(
ϕX, Y

)
)

= − 2
N (X,Y ) + η(X)

4
N

(
ϕY

)
. (3.17)

From (3.14), it follows that if
2
N or

3
N vanishes then

4
N vanishes. In view of (3.14),

(3.16), and (3.17), we can state the following.
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Theorem 3.3. If, in an almost paracontact manifold M,
1
N vanishes, then

2
N,

3
N, and

4
N vanish

identically. Hence, the almost paracontact structure is normal if and only if
1
N = 0.

Some equations given in Lemma 3.2 are also in [1]. First part of Theorem 3.3 is given
as Theorem 3.4 of [1]. Now, we find a necessary and sufficient condition for the vanishing of
2
N in the following.

Proposition 3.4. The tensor
2
N vanishes if and only if

dη
(
ϕX, ϕY

)
= − dη(X,Y ). (3.18)

Proof . The necessary part follows from (3.13). Conversely, from (3.18) and (2.3), we have

0 = dη
(
ϕ2X,ϕξ

)
= − dη

(
ϕX, ξ

)
, (3.19)

which along with (2.1), when used in (3.18), yields

dη
(
X,ϕY

)
= − dη

(
ϕX, ϕ2Y

)
= − dη

(
ϕX, Y

)
, (3.20)

which in view of (3.10) proves that
2
N = 0.

From the definition of
3
N and

4
N, it follows that [1, Theorem 3.1] the tensor

3
N (resp.,

4
N)

vanishes identically if and only if ϕ (resp., η) is invariant under the transformation generated
by infinitesimal transformations ξ. Consequently, in a normal almost paracontact manifold, ϕ
and η are invariant under the transformation generated by infinitesimal transformations ξ.

The tangent sphere bundle over a Riemannian manifold has naturally an almost

paracontact structure in which
3
N = 0 and

4
N = 0 [16]. Also an almost paracontact structure

(ϕ, ξ, η) is said to be weak normal [15] if the almost product structures J1 = ϕ + η ⊗ ξ and
J2 = ϕ− η ⊗ ξ are integrable. Then an almost paracontact structure is normal if and only if it is

weak normal and
4
N= 0.

4. (ε)-s-Paracontact Metric Manifolds

The fundamental (0, 2) symmetric tensor of the (ε)-almost paracontact metric structure is
defined by

Φ(X,Y ) ≡ g(X,ϕY), (4.1)
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for all X,Y ∈ TM. Also, we get

(∇XΦ)(Y,Z) = g
((∇Xϕ

)
Y,Z

)
= (∇XΦ)(Z, Y ),

(∇XΦ)
(
ϕY, ϕZ

)
= − (∇XΦ)(Y,Z) + η(Y )(∇XΦ)(ξ, Z) + η(Z)(∇XΦ)(Y, ξ),

(4.2)

for all X,Y,Z ∈ TM.

Definition 4.1. We say that (ϕ, ξ, η, g, ε) is an (ε)-paracontact metric structure if

2Φ(X,Y ) =
(∇Xη

)
Y +

(∇Yη
)
X, X, Y ∈ TM. (4.3)

In this caseM is an (ε)-paracontact metric manifold.
The condition (4.3) is equivalent to

2Φ = ε£ξg, (4.4)

where £ is the operator of Lie differentiation. For ε = 1 and g Riemannian, M is the usual
paracontact metric manifold [17].

Definition 4.2. An (ε)-almost paracontact metric structure (ϕ, ξ, η, g, ε) is called an (ε)-s-
paracontact metric structure if

∇ξ = εϕ. (4.5)

Amanifold equipped with an (ε)-s-paracontact structure is said to be (ε)-s-paracontact metric
manifold.

Equation (4.5) is equivalent to

Φ(X,Y ) = g
(
ϕX, Y

)
= εg(∇Xξ, Y ) =

(∇Xη
)
Y, X, Y ∈ TM. (4.6)

We have the following.

Theorem 4.3. An (ε)-almost paracontact metric manifold is an (ε)-s-paracontact metric manifold if
and only if it is an (ε)-paracontact metric manifold such that the structure 1-form η is closed.

Proof. LetM be an (ε)-s-paracontact metric manifold. Then in view of (4.6) we see that η is
closed. Consequently,M is an (ε)-paracontact metric manifold.

Conversely, let us suppose that M is an (ε)-paracontact metric manifold and η is
closed. Then

Φ(X,Y ) =
1
2
{(∇Xη

)
Y +

(∇Yη
)
X
}
=
(∇Xη

)
Y, (4.7)

which implies (4.6).
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Proposition 4.4. If in an (ε)-almost paracontact metric manifold the structure 1-form η is closed,
then

∇ξξ = 0. (4.8)

Proof. First we note that g(∇Xξ, ξ) = 0 and in particular

g
(∇ξξ, ξ

)
= 0. (4.9)

If η is closed, then for any vector X orthogonal to ξ we get

0 = 2ε dη(ξ, X) = −εη([ξ, X]) = −g(ξ, [ξ, X]) = −g(ξ,∇ξX
)
= g

(∇ξξ, X
)
, (4.10)

which completes the proof.

Using techniques similar to those introduced in [18, Section 4], we give the following.

Example 4.5. Let us assume the following:

a, b, c, d ∈ {
1, . . . , p

}
, λ, μ, υ ∈ {

1, . . . , q
}
,

i, j, k ∈ {
1, . . . , p + q

}
, λ′ = p + λ, n = p + q + 1.

(4.11)

Let θ : R
p × R

q → R be a smooth function. Define a function ψ : R
n → R by

ψ
(
x1, . . . , xn

)
≡ θ

(
x1, . . . , xp+q

)
+ xn. (4.12)

Now, define a 1-form η on R
n by

ηi =
∂θ

∂xi
≡ θi , ηn = 1. (4.13)

Next, define a vector field ξ on R
n by

ξ ≡ ∂

∂xn
, (4.14)

and a (1, 1) tensor field ϕ on R
n by

ϕX ≡ Xa ∂

∂xa
−Xλ′ ∂

∂xλ′
+
(
− θaX

a + θλ′Xλ′
) ∂

∂xn
, (4.15)

for all vector fields

X = Xa ∂

∂xa
+Xλ′ ∂

∂xλ′
+Xn ∂

∂xn
. (4.16)
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Let fi : R
n → R be (p + q) smooth functions. We define a tensor field g of type (0, 2) by

g(X,Y ) ≡
(
fi − (θi)

2
)
XiY i − θiθjXiY j − θi

(
XiYn +XnY i

)
−XnYn, (4.17)

where fi : R
n → R are (p + q) smooth functions such that

fi − (θi)
2 > 0, i ∈ {

1, . . . , p + q
}
. (4.18)

Then (ϕ, ξ, η, g) is a timelike Lorentzian almost paracontact structure on R
n. Moreover, if the

(p + q) smooth functions fi : R
n → R are given by

fa = Fa
(
x1, . . . , xp+q

)
e−2x

n

+ (θa)
2, a ∈ {

1, . . . , p
}
,

fλ′ = Fλ′
(
x1, . . . , xp+q

)
e2x

n

+ (θλ′)
2, λ ∈ {

1, . . . , q
}
,

(4.19)

for some smooth functions Fi > 0, then we get a timelike Lorentzian s-paracontact manifold.

5. (ε)-Para Sasakian Manifolds

We begin with the following.

Definition 5.1. An (ε)-almost paracontact metric structure is called an (ε)-para Sasakian
structure if

(∇Xϕ
)
Y = − g

(
ϕX, ϕY

)
ξ − εη(Y )ϕ2X, X, Y ∈ TM, (5.1)

where ∇ is the Levi-Civita connection with respect to g. A manifold endowed with an (ε)-
para Sasakian structure is called an (ε)-para Sasakian manifold.

For ε = 1 and g Riemannian, M is the usual para Sasakian manifold [17, 18]. For
ε = −1, g Lorentzian, and ξ replaced by −ξ,M becomes a Lorentzian para Sasakian manifold
[8].

Example 5.2. LetR
3 be the 3-dimensional real number spacewith a coordinate system (x, y, z).

We define

η = dz, ξ =
∂

∂z
,

ϕ

(
∂

∂x

)
=

∂

∂x
, ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂z

)
= 0,

g = e2εx
3
(dx)2 + e−2εx

3(
dy

)2 + ε(dz)2.

(5.2)

Then (ϕ, ξ, η, g, ε) is an (ε)-para Sasakian structure.
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Theorem 5.3. An (ε)-para Sasakian structure (ϕ, ξ, η, g, ε) is always an (ε)- s-paracontact metric
structure, and hence an (ε)-paracontact metric structure.

Proof. LetM be an (ε)-para Sasakian manifold. Then from (5.1)we get

ϕ∇Xξ = −(∇Xϕ
)
ξ = εϕ2X, X, Y ∈ TM. (5.3)

Operating by ϕ to the above equation, we get (4.5).

The converse of the above theorem is not true. Indeed, the (ε)-s-paracontact structure
in the Example 4.5 need not be (ε)-para Sasakian.

Theorem 5.4. An (ε)-para Sasakian structure is always normal.

Proof. In an almost paracontact manifoldM, we have

1
N (X,Y ) =

(∇Xϕ
)
ϕY − (∇Yϕ

)
ϕX +

(∇ϕXϕ
)
Y − (∇ϕYϕ

)
X − η(X)∇Y ξ + η(Y )∇Xξ, (5.4)

for all vector fields X,Y inM. Now, letM be an (ε)-para Sasakian manifold. Then it is (ε)-s-

paracontact, and therefore using (5.1) and (4.5) in (5.4), we get
1
N = 0.

Problem 1. Whether a normal (ε)-paracontact structure is (ε)-para Sasakian or not, consider
the following.

Lemma 5.5. LetM be an (ε)-para Sasakian manifold. Then the curvature tensor R satisfies

R(X,Y )ξ = η(X)Y − η(Y )X, X, Y ∈ TM. (5.5)

Consequently,

R(X,Y,Z, ξ) = − η(X)g(Y,Z) + η(Y )g(X,Z), (5.6)

η(R(X,Y )Z) = − εη(X)g(Y,Z) + εη(Y )g(X,Z), (5.7)

R(ξ, X)Y = −εg(X,Y )ξ + η(Y )X, (5.8)

for all vector fields X,Y,Z inM.

Proof. Using (4.5), (5.1), and (2.1) in

R(X,Y )ξ = ∇X∇Y ξ − ∇Y∇Xξ − ∇[X,Y ]ξ, (5.9)

we obtain (5.5).

If we put

R0(X,Y )W = g(Y,W)X − g(X,W)Y, X, Y,W ∈ TM, (5.10)
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then in an (ε)-para Sasakian manifoldM (5.5) and (5.8) can be rewritten as

R(X,Y )ξ = − εR0(X,Y )ξ, (5.11)

R(ξ, X) = − εR0(ξ, X), (5.12)

respectively.

Lemma 5.6. In an (ε)-para Sasakian manifoldM, the curvature tensor satisfies

R
(
X,Y, ϕZ,W

) − R(X,Y,Z, ϕW)
= εΦ(Y,Z)g

(
ϕX, ϕW

) − εΦ(X,Z)g
(
ϕY, ϕW

)

+ εΦ(Y,W)g
(
ϕX, ϕZ

) − εΦ(X,W)g
(
ϕY, ϕZ

)

+ η(Y )η(Z)g
(
X,ϕW

) − η(X)η(Z)g
(
Y, ϕW

)

+ η(Y )η(W)g
(
X,ϕZ

) − η(X)η(W)g
(
Y, ϕZ

)
,

(5.13)

R
(
X,Y, ϕZ, ϕW

) − R(X,Y,Z,W) = εΦ(Y,Z)Φ(X,W) − εΦ(X,Z)Φ(Y,W)

+ εg
(
ϕX, ϕZ

)
g
(
ϕY, ϕW

) − εg(ϕY, ϕZ)g(ϕX, ϕW)

+ η(Z)
{
η(Y )g(X,W) − η(X)g(Y,W)

}

− η(W)
{
η(Y )g(X,Z) − η(X)g(Y,Z)

}
,

(5.14)

R
(
X,Y, ϕZ, ϕW

)
= R

(
ϕX, ϕY,Z,W

)
, (5.15)

R
(
ϕX, ϕY, ϕZ, ϕW

)
= R(X,Y,Z,W) + η(Z)

{
η(Y )g(X,W) − η(X)g(Y,W)

}

− η(W)
{
η(Y )g(X,Z) − η(X)g(Y,Z)

}
,

(5.16)

for all vector fields X,Y,Z,W inM.

Proof. Writing (5.1) equivalently as

(∇YΦ)(Z,W) = −εη(Z)g(ϕY, ϕW) − εη(W)g
(
ϕY, ϕZ

)
, Y, Z,W ∈ TM, (5.17)

and differentiating covariantly with respect to X, we get

− ε(∇X∇YΦ)(Z,W) = Φ(X,Z)g
(
ϕY, ϕW

)
+ η(Z)(∇XΦ)

(
Y, ϕW

)

+ η(Z)g
(
ϕ(∇XY ), ϕW

)
+ η(Z)(∇XΦ)

(
ϕY,W

)

+ Φ(X,W)g
(
ϕY, ϕZ

)
+ η(W)(∇XΦ)

(
Y, ϕZ

)

+ η(W)g
(
ϕ(∇XY ), ϕZ

)
+ η(W)(∇XΦ)

(
ϕY,Z

)
,

(5.18)
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for all X,Y,Z,W ∈ TM. Now using (5.18) in the Ricci identity

((∇X∇Y − ∇Y∇X − ∇[X,Y ]
)
Φ
)
(Z,W) = − Φ(R(X,Y )Z,W) −Φ(Z,R(X,Y )W), (5.19)

we obtain (5.13). Equation (5.14) follows from (5.13) and (5.6). Equation (5.15) follows from
(5.14). Finally, equation (5.16) follows from (5.14) and (5.15).

Equation (5.5) may also be obtained by (5.16). Equations (5.13)–(5.16) are generaliza-
tions of the (3.2) and (3.3) in [19]. Now, we prove the following:

Theorem 5.7. An (ε)-para Sasakian manifold cannot be flat.

Proof. LetM be a flat (ε)-para Sasakian manifold. Then from (5.6)we get

η(X)g(Y,Z) = η(Y )g(X,Z), (5.20)

from which we obtain

g
(
ϕX, ϕZ

)
= 0, (5.21)

for all X,Z ∈ TM, a contradiction.

A non-flat semi-Riemannian manifold M is said to be recurrent [20] if its Ricci tensor
R satisfies the recurrence condition

(∇WR)(X,Y,Z, V ) = α(W)R(X,Y,Z, V ), X, Y, Z, V ∈ TM, (5.22)

where α is a 1-form. If α = 0 in the above equation, then the manifold becomes symmetric in
the sense of Cartan [21]. We say thatM is proper recurrent if α/= 0.

Theorem 5.8. An (ε)-para Sasakian manifold cannot be proper recurrent.

Proof. LetM be a recurrent (ε)-para Sasakian manifold. Then from (5.22), (5.6), and (4.5)we
obtain

εR
(
X,Y,Z, ϕW

)
= g(X,Z)

{
Φ(Y,W) − α(W)η(Y )

} − g(Y,Z){Φ(X,W) − α(W)η(X)
}

(5.23)

for all X,Y,Z,W ∈ TM. Putting Y = ξ in the above equation, we get

α(W)g
(
ϕX, ϕZ

)
= 0, X,Z,W ∈ TM, (5.24)

a contradiction.
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Let n ≥ 2 and 0 ≤ ν ≤ n. Then [10, Definition 23, page 110] the following are given.

(1) The pseudosphere of radius r > 0 in Rn+1
ν is the hyperquadric

Snν(r) =
{
p ∈ Rn+1

ν :
〈
p, p

〉
= r2

}
, (5.25)

with dimension n and index ν.

(2) The pseudohyperbolic space of radius r > 0 in Rn+1
ν+1 is the hyperquadric

Hn
ν (r) =

{
p ∈ Rn+1

ν+1 :
〈
p, p

〉
= − r2

}
, (5.26)

with dimension n and index ν.

Theorem 5.9. An (ε)-para Sasakian manifold is symmetric if and only if it is of constant
curvature −ε. Consequently, a symmetric spacelike (ε)-para Sasakian manifold is locally isometric
to a pseudohyperbolic space Hn

ν (1) and a symmetric timelike (ε)-para Sasakian manifold is locally
isometric to a pseudosphere Snν(1).

Proof. Let M be a symmetric (ε)-para Sasakian manifold. Then putting α = 0 in (5.23), we
obtain

εR
(
X,Y,Z, ϕW

)
= g(X,Z)Φ(Y,W) − g(Y,Z)Φ(X,W), (5.27)

for all X,Y,Z,W ∈ TM. Writing ϕW in place ofW in the above equation and using (2.7) and
(5.6), we get

R(X,Y,Z,W) = − ε
{
g(Y,Z)g(X,W) − g(X,Z)g(Y,W)

}
, (5.28)

which shows thatM is a space of constant curvature −ε. The converse is trivial.

Corollary 5.10. If an (ε)-para Sasakian manifold is of constant curvature, then

Φ(Y,Z)Φ(X,W) −Φ(X,Z)Φ(Y,W) = − g
(
ϕY, ϕZ

)
g
(
ϕX, ϕW

)
+ g

(
ϕX, ϕZ

)
g
(
ϕY, ϕW

)

(5.29)

for all X,Y,Z,W ∈ TM.

Proof. Obviously, if an (ε)-para Sasakian manifold is of constant curvature k, then k = −ε.
Therefore, using (5.28) in (5.14), we get (5.29).

Apart from recurrent spaces, semi-symmetric spaces are another well-known and
important natural generalization of symmetric spaces. A semi-Riemannian manifold (M,g)
is a semi-symmetric space if its curvature tensor R satisfies the condition

R(X,Y ) · R = 0, (5.30)
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for all vector fields X,Y onM, where R(X,Y ) acts as a derivation on R. Symmetric spaces are
obviously semi-symmetric, but the converse need not be true. In fact, in dimension greater
than two there always exist examples of semi-symmetric spaces which are not symmetric. For
more details we refer to [22].

Given a class of semi-Riemannian manifolds, it is always interesting to know that
whether, inside that class, semisymmetry implies symmetry or not. Here, we prove the
following.

Theorem 5.11. In an (ε)-para Sasakian manifold, the condition of semi-symmetry implies the
condition of symmetry.

Proof. Let M be a symmetric (ε)-para Sasakian manifold. Let the condition of being semi-
symmetric be true, that is,

R(V,U) · R = 0, V,U ∈ TM. (5.31)

In particular, from the condition R(ξ,U) · R = 0, we get

0 = [R(ξ,U), R(X,Y )]ξ − R(R(ξ,U)X,Y )ξ − R(X,R(ξ,U)Y )ξ, (5.32)

which in view of (5.12) gives

0 = g(U,R(X,Y )ξ)ξ − η(R(X,Y )ξ)U
− g(U,X)R(ξ, Y )ξ + η(X)R(U,Y )ξ − g(U,Y )R(X, ξ)ξ
+ η(Y )R(X,U)ξ − η(U)R(X,Y )ξ + R(X,Y )U.

(5.33)

Equation (5.11) then gives

R = −εR0. (5.34)

ThereforeM is of constant curvature −ε, and hence symmetric.

In view of Theorems 5.9 and 5.11, we have the following.

Corollary 5.12. Let M be an (ε)-para Sasakian manifold. Then the following statements are
equivalent.

(i) M is symmetric.

(ii) M is of constant curvature −ε.
(iii) M is semi-symmetric.

(iv) M satisfies R(ξ,U) · R = 0.

Now, we need the following.
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Lemma 5.13. In an n-dimensional (ε)-para Sasakian manifoldM the Ricci tensor S satisfies

S
(
ϕY, ϕZ

)
= S(Y,Z) + (n − 1)η(Y )η(Z), (5.35)

for all Y,Z ∈ TM. Consequently,

S
(
ϕY,Z

)
= S

(
Y, ϕZ

)
, (5.36)

S(Y, ξ) = −(n − 1)η(Y ). (5.37)

Proof. Contracting (5.16), we get (5.35). Replacing Z by ϕZ in (5.35), we get (5.36). Putting
Z = ξ in (5.35), we get (5.37).

A semi-Riemannian manifold M is said to be Ricci-recurrent [23] if its Ricci tensor S
satisfies the condition

(∇XS)(Y,Z) = α(X)S(Y,Z), X, Y, Z ∈ TM, (5.38)

where α is a 1-form. If α = 0 in the above equation, then themanifold becomes Ricci-symmetric.
We say thatM is proper Ricci-recurrent, if α/= 0.

Theorem 5.14. An (ε)-para Sasakian manifold cannot be proper Ricci-recurrent.

Proof. Let M be an n-dimensional (ε)-para Sasakian manifold. If possible, let M be proper
Ricci-recurrent. Then

(∇XS)(Y, ξ) = α(X)S(Y, ξ) = − (n − 1)α(X)η(Y ). (5.39)

But we have

(∇XS)(Y, ξ) = (n − 1)
(∇Xη

)
Y − εS(Y, ϕX)

. (5.40)

Using (5.40) in (5.39), we get

εS
(
ϕX, Y

)
+ (n − 1)Φ(X,Y ) = (n − 1)α(X)η(Y ). (5.41)

Putting Y = ξ in the above equation, we get α(X) = 0, a contradiction.

A semi-RiemannianmanifoldM is said to beRicci-semi-symmetric [24] if its Ricci tensor
S satisfies the condition

R(X,Y ) · S = 0, (5.42)

for all vector fields X,Y onM, where R(X,Y ) acts as a derivation on S.
at last, we prove the following.
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Theorem 5.15. For an n-dimensional (ε)-para Sasakian manifoldM, the following three statements
are equivalen.

(a) M is an Einstein manifold.

(b) M is Ricci-symmetric.

(c) M is Ricci-semi-symmetric.

Proof. Obviously, the statement (a) implies each of the statements (b) and (c). Let (b) be true.
Then putting α = 0 in (5.41), we get

εS
(
ϕX, Y

)
+ (n − 1)Φ(X,Y ) = 0. (5.43)

Replacing X by ϕX in the above equation, we get

S = − ε(n − 1)g, (5.44)

which shows that the statement (a) is true. At last, let (c) be true. In particular,

(R(ξ, X) · S)(Y, ξ) = 0 (5.45)

implies that

S(R(ξ, X)Y, ξ) + S(Y,R(ξ, X)ξ) = 0, (5.46)

which in view of (5.8) and (5.37) again gives (5.44). This completes the proof.
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[17] I. Satō, “On a structure similar to almost contact structures. II,” Tensor. New Series, vol. 31, no. 2, pp.

199–205, 1977.
[18] S. Sasaki, “On paracontact Riemannian manifolds,” TRU Mathematics, vol. 16, no. 2, pp. 75–86, 1980.
[19] R. S. Mishra, “On P -Sasakian manifolds,” Progress of Mathematics, vol. 15, no. 1-2, pp. 55–67, 1981.
[20] H. S. Ruse, “Three-dimensional spaces of recurrent curvature,” Proceedings of the London Mathematical

Society. Second Series, vol. 50, pp. 438–446, 1949.
[21] E. Cartan, “Sur une classe remarquable d’espaces de Riemann,” Bulletin de la Société Mathématique de
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