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Using the diagrammatic calculus for Soergel bimodules, developed by Elias and Khovanov, as well
as Rasmussen’s spectral sequence, we construct an integral version of HOMFLY-PT and sl(n)-link
homology.

1. Introduction

During the past half-decade, categorification and, in particular, that of topological invariants
has flourished into a subject of its own right. It has been a study finding connections
and ramifications over a vast spectrum of mathematics, including areas such as low-
dimensional topology, representation theory, and algebraic geometry. Following the original
work of Khovanov on the categorification of the Jones polynomial in [1], came a
slew of link homology theories lifting other quantum invariants. With a construction
that utilized matrix factorizations, a tool previously developed in an algebra-geometric
context, Khovanov and Rozansky produced the sl(n) and HOMFLY-PT link homology
theories. Albeit computationally intensive, it was clear from the onset that thick interlacing
structure was hidden within. The most insightful and influential work in uncovering these
innerconnections was that of Rasmussen in [2], where he constructed a spectral sequence
from the HOMFLY-PT to the sl(n)-link homology. This was a major step in deconstructing
the web of how these theories come together, yet many structural questions remained and
still remain unanswered, waiting for a new approach. Close to the time of the original work,
Khovanov produced an equivalent categorification of the HOMFLY-PT polynomial in [3],
but this time using Hochschild homology of Soergel bimodules and Rouquier complexes of
[4]. The latter proved to be more computation-friendly and was used by Webster to calculate
many examples in [5].
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In the meantime, a new flavor of categorification came into light. With the work of
Khovanov and Lauda on the categorification of quantum groups in [6], a diagrammatic
calculus originating in the study of 2 categories arrived into the foreground. This graphical
approach proved quite fruitful and was soon used by Elias and Khovanov to rewrite the work
of Soergel in [7], and en suite by Elias and the author to repackage Rouquier’s complexes and
to prove that they are functorial over braid cobordisms [8] (not just projectively functorial
as was known before). We note the closely related independent construction of Chuang
and Rouquier in [9, 10]. An immediate advantage to the diagrammatic construction was a
comparative ease of calculation.

As there has yet to be seen an integral version of either HOMFLY-PT or sl(n)-link
homology, with the original Khovanov homology being defined over Z and torsion playing
an interesting role, a natural question arose as to whether this graphical calculus could
be used to define these. The definition of such integral theories is precisely the purpose
of this paper. The one immediate disadvantage to the graphical approach is that at the
present moment there does not exist a diagrammatic calculus for the Hochschild homology
of Soergel bimodules. Hence, to define integral HOMFLY-PT homology, our paper takes a
rather roundabout way, jumping between matrix factorizations and diagrammatic Rouquier
complexes whenever one is deemed more advantageous than the other. For the sl(n) version
of the story, we add the Rasmussen spectral sequence into the mix and essentially repeat his
construction in our context.

When choosing what to define in full and what to leave out, we assume the reader’s
familiarity with [8]. The organization of the paper is the following: in Section 2, we give a
brief account of the necessary tools (matrix factorizations, Soergel bimodules, Hochschild
homology, Rouquier complexes, and corresponding diagrammatics)—the emphasis here is
brevity and we refer the reader to more original sources for particulars and details; in Sections
3 and 4, we describe the integral HOMFLY-PT complex and prove the Reidemeister moves,
utilizing all of the background in Section 2; Section 5 is devoted to the Rasmussen spectral
sequence and integral sl(n)-link homology. We conclude it with some remarks and questions.

Throughout the paper, we will refer to a positive crossing as the one labelled D+ and
negative crossing as the one labelled D− in Figure 1. For resolutions of a crossing, we will
refer to Do and Ds of Figure 1 as the “oriented” and “singular” resolutions, respectively. We
will use the following conventions for the HOMLFY-PT polynomial:

aP(D−) − a−1P(D+) =
(
q − q−1

)
P(Do), (1.1)

with P of the unknot being 1. Substituting a = qn we arrive at the quantum sl(n)-link
polynomial.

2. The Toolkit

We will require some knowledge of matrix factorizations, Soergel bimodules, and Rouquier
complexes, as well as the corresponding diagrammatic calculus of Elias and Khovanov [7].
In this section the reader will find a brief survery of the necessary tools, and for more details
we refer him to the following papers: matrix factorizations [2, 11], Soergel bimodules and
Rouquier complexes and diagrammatics [3, 4, 7, 8], and Hochschild homology [3, 12].
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Figure 1: Crossings and resolutions (note: these are braid diagrams).

2.1. Matrix Factorizations

Definition 2.1. Let R be a Noetherian commutative ring, w ∈ R, and C∗, ∗ ∈ Z, a free graded
R-module. A Z-graded matrix factorization with potential w ∈ R consists of C∗ and a pair of
differentials d± : C∗ → C∗±1, such that (d+ + d−)

2 = wIdC∗ .

A morphism of two matrix factorizations C∗ and D∗ is a homomorphism of graded
R-modules f : C∗ → D∗ that commutes with both d+ and d−. The tensor product C∗ ⊗ D∗
is taken as the regular tensor product of complexes, and is itself a matrix factorization with
diffentials d+ and d−. A useful and easy exercise is the following.

Lemma 2.2. Given two matrix factorizations C∗ and D∗ with potenials wc and wd, respectively, the
tensor product C∗ ⊗D∗ is a matrix factorization with potential wc +wd.

Remark 2.3. Following Rasmussen [2], we work with Z-graded, rather than Z/2Z-graded,
matrix factorizations as in [11]. The Z-grading implies that (d+ + d−)

2 = wIdC∗ is equivalent
to

d2
+ = d2

− = 0,

d+d− + d−d+ = wIdC∗ .
(2.1)

In the case that w = 0, we acquire a new Z/2Z-graded chain complex structure with
differential d+ + d−.

Suppressing the underlying ring R and potential w, we will denote the category of
graded matrix factorizations by mf .

We also need the notion of complexes of matrix factorizations. If we visualize a
collection of matrix factorizations as sitting horizontally in the plane at each integer level,
with differentials d+ and d− running right and left, respectively, we can think of morphisms
{dv} between these as running in the vertical direction. All together, we have that

d± : Ci,j −→ Ci±1,j , dv : Ci,j −→ Ci,j+1, (2.2)

where we think of i as the horizontal grading and j as the vertical grading, and will denote
these as grh and grv, respectively.
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In addition we will be taking tensor products of complexes of matrix factorizations (in
the obvious way) and, just to add to the confusion, we will also have homotopies of these
complexes as well homotopies of matrix factorizations themselves. These notions will land
us in different categories for which we now give some notation.

(i) hmf will denote the homotopy category of matrix factorizations.

(ii) KOM(mf) will denote the category of complexes of matrix factorizations.

(iii) KOMh(mf) will denote homotopy category of complexes of matrix factorizations.

(iv) KOMh(hmf) will denote the obvious conglomerate.

2.2. Diagrammatics of Soergel Bimodules

The category of Soergel bimodules SC1 is a monoidal category generated by objects Bi, where
i ∈ I is a finite indexing set, which satisfy

Bi ⊗ Bi ∼= Bi{1} ⊕ Bi{−1},

Bi ⊗ Bj ∼= Bj ⊗ Bi, for distant i, j,

Bi ⊗ Bj ⊗ Bi ⊕ Bj ∼= Bj ⊗ Bi ⊗ Bj ⊕ Bi, for adjacent i, j.

(2.3)

These objects Bi are graded and the notation {j} refers a grading shift of +j. Technically
speaking this should be called the category of Bott-Samuelson bimodules and the “real”
category of Soergel bimodules is obtained as described at the end of this section. A key feature
of this category is that the Grothendieck group of SC(I) is isomorphic to the Hecke algebra
H of type A∞ over the ring Z[t, t−1]. We refer the reader to [7, 8] for defenitions and relvant
details.

More concretely, the Soergel bimodule Bi = R
⊗

RiR{−1}, where R = Z[x1 −
x2, . . . , xn−1 − xn] with degxi = 2, {m} denotes the grading shift by m, and Ri is the
subring of invariants corresponding to the permutation (i, i + 1) under the natural action
of Sn on the variables. There is some flexibility as to the exact description of R, but we
work with the most convenient for the constructions below (note that our grading shift
of −1 in the definition of Bi is absent from the contruction of [3]). We have that B∅ =
R itself, and Bi = Bi1

⊗
RBi2
⊗

R · · ·
⊗

RBid , where i is denotes the sequence {i1, i2, . . . , id},
that is,

Bi =

(
R
⊗
Ri1

R{−1}
)
⊗
(
R
⊗
Ri2

R{−1}
)
⊗ · · · ⊗

(
R
⊗
Rid

R{−1}
)

= R
⊗
Ri1

R ⊗ R
⊗
Ri2

R ⊗ · · · ⊗ R
⊗
Rid

R{−d}

= R
⊗
Ri1

⊗ R
⊗
Ri2

R
⊗
Ri3

· · ·R
⊗
Rid

R{−d}.

(2.4)
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One useful feature of this categorification is that it is easy to calculate the dimension

of Hom spaces in each degree. Let HOM(M,N) def=
⊕

m∈Z Hom(M,N{m}) be the graded
vector space (actually an R-bimodule) generated by homogeneous morphisms of all degrees.
Then HOM(Bi, Bj) is a free left R-module, and its graded rank over R is given by a natural
bilinear form (bi, bj) defined on the Hecke algebra H. For more information on this
categorification and related topics we refer the reader to [7, 13].

The graphical counterpart, which we will also refer to as SC1 was given a
diagrammatic presentation by generators and relations, allowing morphisms to be viewed
as isotopy classes of certain graphs.

An object in SC1 is given by a sequence of indices i, which is visualized as d points on
the real line R, labelled or “colored” by the indices in order from left to right. Sometimes these
objects are also called Bi. Morphisms are given by pictures embedded in the strip R × [0, 1]
(modulo certain relations), constructed by gluing the following generators horizontally and
vertically:

For instance, if “blue” corresponds to the index i and “red” to j, then the lower right
generator is a morphism from jij to iji. The generating pictures above may exist in various
colors, although there are some restrictions based on adjacency conditions.

We can view a morphism as an embedding of a planar graph, satisfying the following
properties:

(1) edges of the graph are colored by indices from 1 to n;

(2) edges may run into the boundary R × {0, 1}, yielding two sequences of colored
points on R, the top boundary i, and the bottom boundary j. In this case, the graph
is viewed as a morphism from j to i;

(3) only four types of vertices exist in this graph: univalent vertices or “dots,” trivalent
vertices with all three adjoining edges of the same color, 4-valent vertices whose
adjoining edges alternate in colors between distant i and j, and 6-valent vertices
whose adjoining edges alternate between adjacent i and j.

The degree of a graph is +1 for each dot and −1 for each trivalent vertex. 4-valent and
6-valent vertices are of degree 0. The term graph henceforth refers to such a graph embedding.

By convention, we color the edges with different colors, but do not specify
which colors match up with which i ∈ I. This is legitimate, as only the various
adjacency relations between colors are relevant for any relations or calculations. We will
specify adjacency for all pictures, although one can generally deduce it from the fact
that 6-valent vertices only join adjacent colors, and 4-valent vertices join only distant
colors.

In addition to the bimodules Bi above, we will require the use of the bimodule
R
⊗

Ri,i+1R{−3}, where Ri,i+1 is the ring of invariants under the transpositions (i, i + 1) and
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(i+1, i+2), and will use a black squiggly line, as in (2.7) below, to represent it. This bimodule
comes into play in the isomorphisms:

Bi ⊗ Bi+1 ⊗ Bi ∼= Bi ⊕
(
R
⊗
Ri,i+1

R{−3}
)
,

Bi+1 ⊗ Bi ⊗ Bi+1
∼= Bi+1 ⊕

(
R
⊗
Ri,i+1

R{−3}
)
,

(2.5)

which we will use in the proof of Reidemeister move III. As usual in a diagrammatic category,
composition of morphisms is given by vertical concatenation, and the monoidal structure is
given by horizontal concatenation.

We then allow Z-linear sums of graphs, and apply relations to obtain our categorySC1.
The relations come in three flavors: one color, two distant colors, two adjacent and one distant,
and three mutually distant colors. We do not list all of them here, just the consequences
necessary for the calculations at hand, and refer the reader to [7, 11] for a complete picture.
Our graphs are invariant under isotopy and in addition, we have the following isomorphisms
or “decompositions”:

{−1}

{1}[i + 1]

[i]

−

(2.6)

The vertical juxtapositions of diagrams corresponds to direct sums of morphisms and
[i] corresponds to the morphism induced by multiplication by the polynomial xi. Note that
this relation is precisely that of 1 described diagrammatically.

−

(2.7)

Here, we have the graphical counterpart of 4 and 5.

Remark 2.4. Primarily we will work in another category denoted SC2, the category formally
containing all direct sums and grading shifts of objects in SC1, but whose morphisms are
forced to be degree 0. In addition, we let SC be the Karoubi envelope, or idempotent
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completion, of the category SC2. Recall that the Karoubi envelope of a category C has as
objects pairs (B, e) where B is an object in C and e an idempotent endomorphism of B. This
object acts as though it were the “image” of this projection e, and in an additive category
behaves like a direct summand. For more information on Karoubi envelopes, see Wikipedia.
It is really here that the object R

⊗
Ri,i+1R{−3} of 4 and 5 resides. In practice all our calculations

will be done in SC2, but since SC2 includes fully faithfully into SC they will be valid there as
well.

The important fact here is that there is a functor from SC to the category of R-
bimodules, sending a line colored i to Bi and each generator to an appropriate bimodule map.
The functor gives an equivalence of categories between this diagrammatic category and the
subcategory SC1 of R-bimodules mentioned in the previous section, so the use of the same
name is legitimate.

Our diagrammatic category has many wonderful properties, such as the self-
adjointness of Bi, which permits us to “twist” morphisms around and view any morphism as
one from or to the empty diagram. This allows for a very hands-on, explicit, understanding
of hompaces between objects in SC1, which was key in proving functoriality in [8].

2.3. Hochschild (Co)Homology

Let A be a k-algebra and M an A-bimodule, or equivalently a left A ⊗ Aop-module or a
right Aop ⊗ A-module. The definitions of the Hochschild (co)homology groups HH∗(A,M)
(HH∗(A,M)) are the following:

HH∗(A,M) := TorA⊗A
op

∗ (M,A), HH∗(A,M) := Ext∗A⊗Aop(A,M). (2.8)

To compute them we take a projective resolution of theA-bimoduleA, with the natural
left and right action, by projective A-bimodules

· · · −→ P2 −→ P1 −→ P0 −→ 0 (2.9)

and tensor this with M over A ⊗Aop to get

· · · −→ P2

⊗
A⊗Aop

M −→ P1

⊗
A⊗Aop

M −→ P0

⊗
A⊗Aop

M −→ 0. (2.10)

The homology of this complex is isomorphic to HH∗(A,M).

Example 2.5. For any bimodule M, we have

HH0(A,M) ∼=
M

[A,M]
, HH0(A,M) ∼=MA, (2.11)

where [A,M] is the subspace of M generated by all elements of the form am−ma, a ∈ A and
m ∈M, and MA = {m ∈M | am = ma for all a ∈ A}. We leave this as an exercise or refer the
reader to [12].
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For the polynomial algebra A = k[x1, . . . , xn], with k commutative, we can use the
Koszul resolution of A by free A ⊗ A-modules, which is the tensor product of the following
complexes:

0 −→ A ⊗A xi⊗1−1⊗xi−−−−−−−−→ A ⊗A −→ 0, (2.12)

for 1 ≥ i ≥ n. This resolution has length n, and its total space is naturally isomorphic to the
exterior algebra on n generators tensored withA⊗A. Hence, we have that the complex which
computes Hochschild homology of a bimodule M over A is made up of 2n copies of M, with
the differentials coming from multiplication by xi ⊗ 1 − 1 ⊗ xi. In other words

0 −→ Cn(M) −→ · · · −→ C1(M) −→ C0(M) −→ 0, (2.13)

with

Cj(M) =
⊕

I⊂{1,...,n},|I|=j
M
⊗

Z

Z[I], (2.14)

where Z[I] is the rank 1 free abelian group generated by the symbol [I] (i.e., it is there to
keep track where exactly we are in the complex). Here, the differential takes the form

d(m ⊗ [I]) =
∑
i∈I
± (xim −mxi) ⊗ [I \ {i}], (2.15)

and the sign is taken as negative if I contains an odd number of elements less than i.

Remark 2.6. For the polynomial algebra, the Hochschild homology and cohomology are
isomorphic,

HHi(A,M) ∼= HHn−i(A,M), (2.16)

for any bimodule M. This comes from self-duality of the Koszul resolution for such algebras.
Hence, we will be free to use either homology or cohomology groups in the constructions
below.

For us, taking Hochschild homology will come into play when looking at closed
braid diagrams. To a given resolution of a braid diagram we will assign a Soergel bimodule;
“closing off” this diagram will correspond to taking Hochschild homology of the associated
bimodule. More details are below in Section 3.2.

3. The Integral HOMFLY-PT Complex

3.1. The Matrix Factorization Construction

As stated above we will work with Z-graded, rather than Z/2Z-graded, matrix factorizations
and follow closely the conventions laid out in [2]. We begin by first assigning the appropriate
complex to a single crossing and then extend this to general braids.
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Gradings

Our complex will be triply graded, coming from the internal or “quantum” grading of the
underlying ring, the homological grading of the matrix factorizations, and finally an overall
homological grading of the entire complex. It will be convenient to visualize our complexes
in the plane with the latter two homological gradings lying in the horizontal and vertical
directions, respectively. We will denoted these gradings by (i, j, k) = (q, 2grh, 2grv) and their
shifts by curly brackets, that is, {a, b, c} will indicate a shift in the quantum grading by a,
in the horizontal grading by b, and in the vertical grading by c. Note that following the
conventions in [2], we have doubled the latter two gradings, as illustrated in Figure 2.

Definition 3.1 (edge ring). Given a diagram D with vertices labelled by x1, . . . , xn, define the
edge ring of D as R(D) := Z[x1, . . . , xn]/〈rel(vi)〉, where i runs over all internal vertices, or
marks, with the defining relations being xi − xj for type I and xk + xl − xi − xj for type II
vertices (see Figure 2).

Consider the two types of crossings D+ and D−, as in Figure 1, with outgoing edges
labeled by k, l, and incoming edges labelled by i, j. Let

Rc :=
Z
[
xi, xj , xk, xl

]
(
xk + xl − xi − xj

) ∼= Z
[
xi, xj , xk

]
(3.1)

be the underlying ring associated to a crossing. The complex for the positive crossing D+ is
given by the following diagram:

Rc{0,−2, 0}
(xk−xi)

Rc{0, 0, 0}

Rc{2,−2,−2}
−(xk−xi)(xk−xj )

(xj−xk)

Rc{0, 0,−2}

1 (3.2)

The complex for the negative crossing D+ is given by the following diagram:

Rc{0,−2, 2}
−(xk−xi)(xk−xj )

Rc{−2, 0, 2}

Rc{0,−2, 0}
(xk−xi)

1

Rc{0, 0, 0}

(xj−xk) (3.3)
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Remark 3.2. The horizontal and vertical differentials d+ and dv are homogeneous of degrees
(2, 2, 0) and (0, 0, 2), respectively. For those more familiar with [11] and hoping to reconcile
the differences, note that in Rc multiplication by xkxl − xixj = −(xk − xi)(xk − xj), so up to
some grading shifts we are working with the same underlying complex as in the original
construction, but over Z, not Q.

To write down the complex for a general braid we tensor the above for every crossing,
keeping track of markings, replace the underlying ring with a copy of the edge ring R(D)
and replace dv with (−1)idv to make it anticommute with dh (here i is the degree if dv). More
precisely, given a diagram D of a braid let

C(D) :=
⊗

crossings

(
C(Dc)

⊗
Rc

R(D)

)
. (3.4)

Definition 3.3 (HOMFLY-PT homology). Given a braid diagram D of a link L we define its
HOMFLY-PT homology to be the group

H(L) := H(H(C(D), d+), d∗v){−w + b,w + b − 1, w − b + 1}, (3.5)

where w and b are the writhe and the number of strands of D, respectively.

Remark 3.4. In [2], this is what Rasmussen calls the “middle HOMFLY homology.” The
relation between this link homology theory and the HOMFLY-PT polynomial is that for any
link L ⊂ S3

∑
i,j,k

(−1)(k−j)/2ajqi dimHi,j,k(L) =
−P(L)
q − q−1

. (3.6)

The Reduced Complex

There is a natural subcomplex C(D) ⊂ C(D) defined as follows: let R(D) ⊂ R(D) to be
the subring generated by xi − xj where i, j run over all edges of D and let C(D) be the
subcomplex gotten by replacing in C(D) each copy of R(D) by one of R(D). A quick glance
at the complexes C(D+) and C(D−) will reassure the reader that this is indeed a subcomplex,
as the coefficients of both dv and d+ lie in R(D). We will refer to C(D) as the reduced complex
for D.

(i) If i is an edge of D we can also define the complex C(D, i) := C(D)/(xi). It is not
hard to see that C(D, i) ∼= C(D) and is, hence, independent of the choice of edge i.
See [2, Section 2.8] for a discussion as well as [11].

Below we will work primarily with the reduced complex C(D), and will stick with the
grading conventions of [2], which are different than that of [11].
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Definition 3.5 (reduced homology). Given a braid diagram D of a link Lwe define its reduced
HOMFLY-PT homology to be the group

H(L) := H
(
H
(
C(D), d+

)
, d∗v

)
{−w + b − 1, w + b − 1, w − b + 1}, (3.7)

where w and b are the writhe and the number of strands of D, respectively.

Remark 3.6. For any link L ⊂ S3, we have

∑
i,j,k

(−1)(k−j)/2ajqi dimH
i,j,k

(L) = P(L). (3.8)

We can look at the complex C(D) in two essential ways: either as the tensor product, over
appropriate rings, of C(D+) and C(D−) for every crossing in our diagram D (as described
above), or as a tensor product of corresponding complexes over all resolutions of the diagram.
Although this is really just a matter of point of view, the latter approach is what we find
in the original construction of Khovanov and Rozansky, as well as in the Soergel bimodule
construction to be described below. To clarify this approach, consider the oriented Do and
singular Ds resolution of a crossing as in Figure 1. Assign to Do the complex

0 −→ Rc
(xk−xi)−−−−−−→ Rc −→ 0 (3.9)

and to Ds the complex

0 −→ Rc

−(xk−xi)(xk−xj )−−−−−−−−−−−−−→ Rc −→ 0. (3.10)

Then, we have

C(D+) : 0 −→ C(Ds) −→ C(Do) −→ 0,

C(D−) : 0 −→ C(Do) −→ C(Ds) −→ 0,
(3.11)

where the maps are given by dv as defined above. (For simplicity we leave out the internal
grading shifts.) Let a resolution of a link diagram D be a resolution of each crossing in either
of the two ways above, and let the complex assigned to each resolution be the tensor product
of the corresponding complexes for each resolved crossing. Then, modulo grading shifts, our
total complex can be viewed as

C(D) =
⊕

resolutions

C(Dres), (3.12)

whereDres is the diagram of a given resolution. This closely mimics the “state-sum model” for
the Jones polynomial, due to Kauffman [14], or the MOY calculus of [15] for other quantum
polynomials.
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Figure 3: A braid diagram.

3.2. The Soergel Bimodule Construction

We now turn to the Soergel bimodule construction for the HOMFLY-PT homology found in
[3]. Recall from Section 2.2 that the Soergel bimodule Bi = R

⊗
RiR{−1} where R = Z[x1 −

x2, . . . , xn−1 − xn] is the ring generated by consecutive differences in variables x1, . . . , xn (n
is the number of strands in the braid diagram), and Ri ⊂ R is the subring of S2-invariants
corresponding to the permutation action xi ↔ xi+1. Furthermore define the map Bi → R by
1 ⊗ 1 �→ 1, and the map R → Bi by 1 �→ (xi − xi+1) ⊗ 1 + 1 ⊗ (xi − xi+1). We resolve a crossing in
position [i, i+1] in the either of two ways, as in Figure 1, assigningR to the oriented resolution
and Bi to the singular resolution. For a positive crossing, we have the following complex:

C(D+) : 0 −→ R{2} −→ Bi{1} −→ 0, (3.13)

and for a negative crossing the complex

C(D−) : 0 −→ Bi{−1} −→ R{−2} −→ 0. (3.14)

We place Bi in homological grading 0 and increase/decrease by 1, that is, in the complex for
D+, R{2} is in homological grading −1. Note, this grading convention differs from [3], and is
the convention used in [8]. The complexes above are known as Rouquier complexes, due to
Rouquier who studied braid group actions with relation to the category of Soergel bimodules;
for more information we refer the reader to [3, 4, 8].

Given a braid diagram D we tensor the above complexes for each crossing, arriving
at a total complex of length k, where k is the number of crossings of D, or equivalently the
length of the corresponding braid word (Figure 3). Each entry in the complex can be thought
of as a resolution of the diagram consisting of the tensor product of the appropriate Soergel
bimodules. For example, to the graph in Section 3.2, we assign the bimodule B1⊗B2⊗B1. That
is, modulo grading shifts, we can view our total complex as

C(D) =
⊕

resolutions

C(Dres). (3.15)
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To proceed, we take Hochschild homology HH(C(Dres)) for each resolution of D and arrive
at the complex

HH(C(D)) =
⊕

resolutions

HH(C(Dres)), (3.16)

with the induced differentials. Finally, taking homology of HH(C(D)) with respect to these
differentials gives us our link homology.

Definition 3.7 (reduced homology). Given a braid diagram D of a link Lwe define its reduced
HOMFLY-PT homology to be the group

H(HH(C(D))). (3.17)

Of course, now that, we have defined reduced HOMFLY-PT homology in two different
ways, it would be nice to reconcile the fact that they are indeed the same.

Claim 1. Up to grading shifts the two definitions of reduced HOMFLY-PT homology agree,
that is, H(H(C(D), d+), d∗v) ∼= H(HH(C(D))) for a diagram D of a link L.

Proof. The proof in [3] works without any changes for matrix factorizations and Soergel
bimodules over Z. We sketch it here for completeness and the fact that we will be referring
to some of its details a bit later. Letus first look at the matrix factorization C(Ds) (unreduced
version) associated to a singular resolution Ds. Now C(Ds) can be thought of as a Koszul
complex of the sequence (xk + xl − xi − xj , xkxl − xixj) in the polynomial ring Z[xi, xj , xk, xl]
(donot forget that in Rc multiplication by xkxl − xixj = −(xk − xi)(xk − xj)). This sequence
is regular so the complex has cohomology only in the right-most degree. The cohomology is
the quotient ring

Z
[
xi, xj , xk, xl

]
(
xi + xj − xk − xl, xkxl − xixj

) . (3.18)

This is naturally isomorphic to the Soergel bimodule B′i (notice that this is the “unreduced”
Soergel bimodule) over the polynomial ring R′ = Z[xi, xj]. The left and right action of R′ on
B′i corresponds to multiplication by xi, xj and xk, xl, respectively. Quotienting out by xk +xl −
xi − xj and xkxl − xixj agrees with the definition of B′i as the tensor product R′

⊗
R′i
R′ over the

subalgebra R′i of symmetric polynomials in xi, xj .
Now letus consider a general resolution Dres. The matrix factorization for Dres is, once

again, just a Koszul complex corresponding to a sequence of two types of elements. The first
ones are as above, that is, they are of the form xk + xl − xi − xj and xkxl − xixj and come
from the singular resolutions Ds, and the remaining are of the form xi − xj that come from
“closing off” our braid diagram D, which in turn means equating the corresponding marks
at the top and bottom the diagram. Now it is pretty easy to see that the polynomials of the
first type, coming from the Dss form a regular sequence and we can quotient out by them
immediately, just like above. The quotient ring we get is naturally isomorphic to the Soergel
bimodule B′(Dres) associated to the resolution Dres. At this point all, we have left is to deal
with the remaining elements of the form xi−xj coming from closing offD; to be more concrete,
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the Koszul complex we started with for Dres is quasi-isomorphic to the Koszul complex of the
ring B′(Dres) corresponding to these remaining elements. This in turn precisely computes the
Hochschild homology of B′(Dres).

Finally if we downsize from B′i to Bi and from C(Dres) to C(Dres) we get the required
isomorphism. For more details we refer the reader to [3].

Gradings et al.

We come to the usual rigmarole of grading conventions, which seems to be evepresent in
link homology. Perhaps when using the Rouquier complexes above we could have picked
conventions that more closely matched those of Section 3.1. However, we chose not to for a
couple of reasons: first there would inevitably be some grading conversion to be done either
way due to the inherent difference in the nature of the constructions, and second we use
Rouquier complexes to aid us in just a few results (namely the proof of Reidemeister moves
II and III), and leave them shortly after attaining these; hence, it is convenient for us, as well
as for the reader familiar with the Soergel bimodule construction of [3] and the diagrammatic
construction of [7], to adhere to the conventions of the former and the subsequent results in
[8]. For completeness, we descibe the conversion rules. Recall that in the matrix factorization
construction of Section 3.1 we denoted the gradings as (i, j, k) = (q, 2grh, 2grv).

(i) To get the cohomological grading in the Soergel construction take (j − k)/2 from
Section 3.1.

(ii) The Hochschild grading here matches the “horizontal” or j grading of Section 3.1.

(iii) To get the “quantum” grading i of Section 3.1 of an element x, take Hochschild
grading of x minus deg(x), that is, deg(x) = j(x) − i(x).

3.2.1. Diagrammatic Rouquier Complexes

We now restate the last section in the diagrammatic language of [8] as outlined above in
Section 2.2. The main advantage of doing this is the inherent ability of the graphical calculus
developed by Elias and Khovanov in [7] to hide and, hence simplify, the complexity of the
calculations at hand. Recall that we work in the integral version of Soergel category SC2 as
defined in Section 2.3 of [8], which allows for constructions over Z without adjoining inverses
(see Section 5.2 in [8] for a discussion of these facts). Recall, that an object of SC2 is given by
a sequence of indices i, visualized as d points on the real line and morhisms are given by
pictures or graphs embedded in the strip R × [0, 1]. We think of the indices as “colors,” and
depict them accordingly. The Soergel bimodule Bi is represented by a vertical line of “color”
i (i.e., by the identity morphism from Bi to itself) and the maps we find in the Rouquier
complexes above, Section 3.2, are given by those referred to as “start dot” and “end-dot.”
More precisely, the complexes C(D−) and C(D+) become as illustrated in Figure 4.

For completeness and ease we remind the reader of the diagrammatic calculus rubric
used to contruct Rouquier complexes for a given braid diagram.

3.2.2. Conventions

We use a colored circle to indicate the empty graph, but maintain the color for reasons of
sanity. It is immediately clear that in the complex associated to a tensor product of d Rouquier
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:

: 0

0

{2}

{−1}

−1 0

{1} 0

0

{−2}
1

0

Figure 4: Diagrammatic Rouquier complex for right and left crossings.

complexes, each summand will be a sequence of k lines where 0 ≤ k ≤ d (interspersed with
colored circles, but these represent the empty graph so could be ignored). Each differential
from one summand to another will be a “dot” map, with an appropriate sign.

(1) The dot would be a map of degree 1 if Bi had not been shifted accordingly. In SC2,
all maps must be homogeneous, so we could have deduced the degree shift in Bi
from the degree of the differential. Because of this, it is not useful to keep track of
various degree shifts of objects in a complex. Hence at times we will draw all the
objects without degree shifts, and all differentials will therefore be maps of graded
degree 1 (as well as homological degree 1). It follows from this that homotopies will
have degree −1, in order to be degree 0 when the shifts are put back in. One could
put in the degree shifts later, noting that B∅ always occurs as a summand in a tensor
product exactly once, with degree shift 0.

(2) We will use blue for the index associated to the leftmost crossing in the braid, then
red and dotted orange for other crossings, from left to right. The adjacency of these
various colors is determined from the braid.

(3) We read tensor products in a braid diagram from bottom to top. That is, in the
following diagram, we take the complex for the blue crossing, and tensor by the
complex for the red crossing. Then we translate this into pictures by saying that
tensors go from left to right. In other words, in the complex associated to this braid,
blue always appears to the left of red.

(4) One can deduce the sign of a differential between two summands using the Liebnitz
rule, d(ab) = d(a)b + (−1)|a|ad(b). In particular, since a line always occurs in the
basic complex in homological dimension ±1, the sign on a particular differential is
exactly given by the parity of lines appearing to the left of the map. For example,

−

−

−

−



16 International Journal of Mathematics and Mathematical Sciences

(5) When putting an order on the summands in the tensored complex, we use
the following standardized order. Draw the picture for the object of smallest
homological degree, which we draw with lines and circles. In the next homological
degree, the first summand has the first color switched (from line to circle, or
circle to line), the second has the second color switched, and so forth. In the next
homological degree, two colors will be switched, and we use the lexicographic
order: 1st and 2nd, then 1st and 3rd, then 1st and 4th,. . . then 2nd and 3rd, and
so forth. This pattern continues.

4. Checking the Reidemeister Moves

We will use the matrix factorization construction of Section 3.1 to check Reidemeister move
I, as it is not very difficult to verify even over Z that this goes through, and the diagrammatic
calculus of Section 3.2.1 for the remaining moves. There are two main reasons for the
interplay: first, checking Reidemeister II and III over Z using the matix factorization approach
is rather computationally intensive (it was already quite so over Q in [11] with all the
algebraic advantages of working over a field at hand); second, at this moment there does
not exist a full diagrammatic description of Hochschild homology of Soergel bimodules,
which prevents us from using a pictorial calculus to compute link homology from closed
braid diagrams. Of course, for Reidemeister II and III we could have used the computations
of [8], where we prove the stronger result that Rouquier complexes are functorial over braid
cobordisms. Instead, the proofs we exhibit below use essentially the same strategy as the
original paper [11], but are so much simpler and more concise that they underline well the
usefulness of the diagrammatic calculus for computations.

A small lemma from linear algebra, which Bar-Natan refers to as “Gaussian
Elimination for Complexes” in [16], will be very helpful to us.

Lemma 4.1. If φ : B → D is an isomorphism (in some additive category C), then the four-term
complex segment below

· · · [A]

⎛
⎝α
β

⎞
⎠

−−−−−→
[
B
C

]
⎛
⎝φ δ
γ ε

⎞
⎠

−−−−−−−−−→
[
D
E

] (μ ν
)

−−−−−−−→ [F] · · ·
(4.1)
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is isomorphic to the (direct sum) complex segment

· · · [A]

⎛
⎝0
β

⎞
⎠

−−−−−→
[
B
C

]
⎛
⎝φ 0

0 ε − γφ−1δ

⎞
⎠

−−−−−−−−−−−−−−−−−−→
[
D
E

] (0 ν
)

−−−−−−→ [F] · · · .
(4.2)

Both of these complexes are homotopy equivalent to the (simpler) complex segment

· · · [A]
(β)
−−−→ [C]

(ε−γφ−1δ)
−−−−−−−−−→ [E]

(ν)−−→ [F] · · · . (4.3)

Here the capital letters are arbitrary columns of objects in C and all Greek letters are arbitrary matrices
representing morphisms (all the matrices are block matrices); φ : B → D is an isomorphism, that is,
it is invertible.

4.1. Reidemeister I

Proof. The complex C(DIa) for the left-hand side braid in Reidemester Ia, see Figure 5, has the
form

Z[x1, x2]{0,−2, 0} 0
Z[x1, x2]{0, 0, 0}

Z[x1, x2]{2,−2,−2} 0

(x2−x1)

Z[x1, x2]{0, 0,−2}

1 (4.4)

Up to homotopy, the right-hand side of the complex dissapears and only the top left
corner survives after quotienting out by the relation x2−x1. Note that the overall degree shifts
of the total complex make sure that the left-over entry sits in the correct trigrading.

Similarly, the complex C(DIb) for the left-hand side braid in Reidemester Ib, has the
form

Z[x1, x2]{0,−2, 2} 0
Z[x1, x2]{−2, 0, 2}

Z[x1, x2]{0,−2, 0} 0

1

Z[x1, x2]{0, 0, 0}

(x2−x1) (4.5)

The left-hand side is annihilated and the upper-right corner remains modulo the
relation x2 − x1.

4.2. Reidemeister II

Proof. Consider the braid diagrams for Reidemeister type IIa in Figure 5. Recall the
decomposition Bi ⊗ Bi ∼= Bi{−1} ⊕ Bi{1} in SC2 and its pictorial counterpart 6. The complex
we are interested in is, as illustrated in Figure 6.
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Ia Ib

IIa IIb

III

Figure 5: The Reidemeister moves.

{1} {−1}

{−1}

{1}

[i + 1]

[i]

−

−

Figure 6: Reidemeister IIa complex with decomposition 6.

Inserting the decomposed Bi ⊗ Bi and the corresponding maps, we find two
isomorphisms staring at us; we pick the left most one and mark it for removal, (see Figure 7).

After changing basis and removing the acyclic complex, as in Lemma 4.1, we arrive at
the complex below with two more entries marked for removal, (see Figure 8.)

With the marked acyclic subcomplex removed, we arrive at our desired result, the
complex assigned to the no crossing braid of two strands as in Figure 5. The computation for
Reidemeister IIb is virtually identical.

4.3. Reidemeister III

Proof. Luckily, we only have to check one version of Reidemeister move III, but as the reader
will see below even that is pretty easy and not much harder than that of Reidemeister II above.
We follow closely the structure of the proof in [11], utilizing the bimodule R

⊗
Ri,i+1R{−3} and
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{1} {−1}

{−1}

{1}

[i + 1]
[i]

[i] [i + 1]−
−

−

−

−
−

Figure 7: Reidemeister IIa complex, removing one of the acyclic subcomplexes.

{−1}

{−1}

Figure 8: Reidemeister IIa complex, removing a second acyclic subcomplex.

decomposition 7 to reduce the complex for one of the RIII braids to that which is invariant
under the move or, equivalently in our case, invariant under color flip. We start with the braid
on the left-hand side of III in Figure 5; the corresponding complex, with decomposition 6 and
7 given by dashed/yellow arrows, is, (as illustrated in Figure 9).

We insert the decomposed bimodules and the appropriate maps; then we change bases
as in Lemma 4.1 (the higher matrix of the two is before base-change, and the lower is after),
(see Figure 10.)

We strike out the acyclic subcomplex and mark another one for removal; yet again we
change bases (the lower matrix is the one after base change), (see Figure 11.)

Now we are almost done; if we can prove that the maps

are invariant under color change, we would arrive at a complex that is invariant under
Reidemeister move III. To do this we must stop for a second, go back to the source and
examine the original, algebraic, definitions of the morphisms in [7]; upon doing so we are
relieved to see that the maps we are interested in are actually equal to zero (they are defined
by sending 1 ⊗ 1 �→ 1 ⊗ 1 ⊗ 1 ⊗ 1 �→ 1 ⊗ 1 ⊗ 1 �→ 0). In all, we have arrived, (see Figure 12).

Repeating the calculation for the braid on the right-hand side of RIII, Figure 5, amounts
to the above calculation with the colors switched—a quick glance will convince the reader
that the end result is the same complex rotated about the x-axis.
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{−3} −

{−3}

{−3}
−

−

{−4}

{−4}

{−4}

−

−

−

{−5}

{−3}

{−5}

{−5}

{−5}

{−6}

[i + 1]

[i]

Figure 9: Reidemeister III complex with decompositions 6 and 7.

{−3}

{−4}

{−5}

{−3}

{−4}

{−5}

{−5}

{−5}

{−6}

−+0

0 0

0 00

0 0

0

0 − −

−

−

[i + 1]

[i]

[i + 1]

[i + 1][i + 1]

Figure 10: Reidemeister III complex, with an acyclic subcomplex marked for removal.

4.4. Observations

Having seen this interplay between the different constructions, perhaps it is a good moment
to highlight exactly what categories we do need to work in so as to arrive at a genuine link
invariant, or a braid invariant at that. Let us start with the latter: we can take the category of
complexes of Soergel bimodulesKOM(SC) (either the diagrammatic or “original” version)
and construct Rouquier complexes; if we mod out by homotopies and work inKOMh(SC),
we arrive at something that is not only an invariant of braids but of braid cobordisms
as well (over Z or Q if we wish). Now if we repeat the construction in the category of
complexes of graded matrix factorizationsKOM(mf), we have some choices of homotopies
to quotient out by. First, we can quotient out by the homotopies in the category of graded
matrix factorizations and work inKOM(hmf) and second, we can quotient in the category
of the complexes and work in KOMh(mf), or we can do both and work in KOMh(hmf).
It is immediate that working in KOMh(mf) is necessary, but one could hope that it is also
sufficient. A close look at the argument of Claim 1, where the two constructions are proven
equivalent, shows that if we start with the Koszul complex associated to the resolution of
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{−3}

{−3}

−

−

−

+ 0

−0

+ 0

{−3}

{−4}

{−4}
− 0

+ − {−5}

{−5}

{−6}

[i + 1] [i + 1]

Figure 11: Reidemeister III complex, with another acyclic subcomplex marked for removal.

{−3}
{−4}

{−4}
−

− {−5}

{−5}
{−6}

Figure 12: Reidemeister III complex—the end result, after removal of all acyclic subcomplexes.

a braid Dres the polynomial relations coming from the singular vertices in Dres form a regular
sequence and, hence, the homology of this complex is the quotient of the edge ring R(Dres) by
these relations and is supported in the right-most degree. It is this quotient that is isomorphic
to the corresponding Soergel bimodule, that is, the Koszul complex is quasi-isomorphic, as
a bimodule, to B′(Dres). Hence, we really do need to work in KOMh(hmf), to have a braid
invariant or an invariant of braid cobordisms, or a link invariant.

Anyone, who has suffered throught the proofs of, say, Reidemeister III in [11] would
probably find the above a relief. Of course, much of the ease in computation using this
pictorial language is founded upon the intimate understanding and knowledge of hom
spaces between objects in SC, which is something that is only available to us due to the labors
of Elias and Khovanov in [7]. With that said, it would not be suprising if this diagrammatic
calculus would aid other calculations of link homology in the future.

All in all, we have arrived at an integral version of HOMFLY-PT link homology;
combining with the results of [8], we have the following.

Theorem 4.2. Given a link L ⊂ S3, the groupsH(L) andH(L) are invariants of L and when tensored
with Q are isomorphic to the unreduced and reduced versions, respectively, of the Khovanov-Rozansky
HOMFLY-PT link homology. Moreover, these integral homology theories give rise to functors from the
category of braid cobordisms to the category of complexes of graded R-bimodules.
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5. Rasmussen’s Spectral Sequence and Integral sl(n)-Link Homology

It is time for us to look more closely at Rasmussen’s spectral sequence from HOMFLY-PT to
sl(n)-link homology. For this we need an extra “horizontal” differential d− in our complex,
and here is the first time we encounter matrix factorizations with a nonzero potential; as
before, to a link diagram D we will associate the tensor product of complexes of matrix
factorizations with potential for each crossing. These will be complexes over the ring

Rc =
Z
[
xi, xj , xk, xl

]
(
xk + xl − xi − xj

) ∼= Z
[
xi, xj , xk

]
, (5.1)

with total potential

Wp

[
xi, xj , xk, xl

]
= p(xk) + p(xl) − p(xi) − p

(
xj
)
,

= p(xk) + p
(
xi + xj − xk

)
− p(xi) − p

(
xj
)
,

(5.2)

where the p(x) ∈ Z[x]. We do not specify the potential p(x) at the moment as the spectral
sequence works for any choice; later on when looking at sl(n)-link homology we will set
p(x) = xn+1.

To define d−, let pi = Wp/(xk − xi) and pij = −Wp/(xk − xi)(xk − xj) (recall that in Rc,
(xk − xi)(xk − xj) = xixj − xkxl, and note that substituting either xk = xi or xk = xj into Wp

makes it vanish, so pij is indeed a polynomial in Rc).
To the positive crossing D+, we assign the following complex:

Rc{0,−2, 0}
(xk−xi)

Rc{0, 0, 0}
pi

Rc{2,−2,−2}
−(xk−xi)(xk−xj )

(xj−xk)

Rc{0, 0,−2}
pij

1 (5.3)

To the negative crossing D−, we assign the following complex:

Rc{0,−2, 2}
−(xk−xi)(xk−xj )

Rc{−2, 0, 2}
pij

Rc{0,−2, 0}
(xk−xi)

1

Rc{0, 0, 0}
pi

(xj−xk) (5.4)

The total complex for a link L with diagram D will be defined analagously to the one
above, that is,

Cp(D) :=
⊗

crossings

(
C(Dc)

⊗
Rc

R(D)

)
, (5.5)

as will be the reduced Hp(L, i) and unreduced Hp(L) versions of link homology.
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The main result of [2] is the following.

Theorem 5.1 (Rasmussen [2]). Suppose L ⊂ S3 is a link, and let i be a marked component of L. For
each p(x) ∈ Q[x], there is a spectral sequence Ek(p) with E1(p) ∼= H(L) and E∞(p) ∼= Hp(L, i). For
all k > 0, the isomorphism type of Ek(p) is an invariant of the pair (L, i).

In particular setting p(x) = xn+1 one would arrive at a spectral sequence from
the HOMFLY-PT to the sl(n)-link homology. Rasmussen’s result pertains to rational link
homology with matrix factorizations defined over the ring Q[x1, . . . , xn] and potentials
polynomials in Q[x]. We will essentially repeat his construction in our setting and, for the
benefit of those familiar with the results of [2], will stay as close as possible to the notation
and conventions therein. This will be a rather condensed version of the story and we refer the
reader to the original paper for more details.

We will work primarily with reduced link homology (although all the results follow
through for both versions) and with closed link diagrams, where all three differentials dv, d+,
and d− anticommute. We have some choices as to the order of running the differentials, so let
us define

H
+
(D, i) = H

(
C(D, i), d+

)
. (5.6)

Here, H
+
(D, i) inherits a pair of anticommuting differentials d∗− and d∗v, where d∗−

lowers grh by 1 while preserving grv and d∗v raises grv by 1 while preserving grh. Hence,
(H

+
p(D, i), d

∗
v, d

∗
−) defines a double complex with total differential dv− := d∗v + d

∗
−.

Definition 5.2. Let Ek(p) be the spectral sequence induced by the horizontal filtration on the
complex (H

+
p(D, i), dv−).

After shifting the triple grading of Ek(p) by {−w+b−1,w+b−1,w−b+1} it is immediate
that the first page of the spectral sequence is isomorphic to H(L, i) (the part of the differential
d∗v+d

∗
− which preserves horizontal grading on E0(p) = H

+
(D, i){−w+b−1, w+b−1, w−b+1}

is precisely d∗v, that is, d0(p) = d∗v and

E1
(
p
)
= H

(
H

+
(D, i), d∗v

)
{−w + b − 1, w + b − 1, w − b + 1} ∼= H(L, i), (5.7)

where D is a diagram for L. It also follows that dk(p) is homogenous of degree −k with
respect to grh and degree 1 − k with respect to grv, and in the case that p(x) = xn+1 it is also
homogeneous of degree 2nk with respect to the q-grading.

Claim 2. Suppose L ⊂ S3 is a link, and let i be a marked component of L. For each p(x) ∈ Z[x],
the spectral sequence Ek(p) has E1(p) ∼= H(L, i) and E∞(p) ∼= Hp(L, i). For all k > 0, the
isomorphism type of Ek(p) is an invariant of the pair (L, i).

Proof. We argue as in [2, Section 5.4]. Suppose that, we have two closed diagrams Dj and D′j
that are related by the jth Reidemeister move, and suppose that there is a morphism

σj : H
+
p

(
Dj, i

)
−→ H

+
p

(
D′j , i

)
(5.8)
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in the category KOM(mf) that extends to a homotopy equivalence in the category
of modules over the edge ring R. Then σj induces a morphism of spectral sequences
(σj)k : Ek(Dj, i, p) → Ek(D′j , i, p) which is an isomorphism for k > 0. See [2] for
more details and discussion. Hence, in practice, we have to exhibit morphisms and
prove invariance for the first page of the spectral sequence, that is, for the HOMLFY-
PT homology, which is basically already done. However, we ought to be a bit careful, of
course, as here we are working with H

+
p(D, i) and not with the complex C(D, i) defined in

Section 4.
Reidemeister I is done, as in this case d+ = 0 and, hence, the complex H

+
p(D, i) =

Cp(D, i) and the same argument as the one in Section 4.1 works here.
For Reidemesiter II and III, we have to observe that for a closed diagram, we have

morphisms σj : Cp(Dj, i) → Cp(D′j , i) for j = II, III, which are homotopy equivalences of
complexes (these can be extrapolated from Section 4 above, or from [8], where all chain maps
are exhibited concretely). Therefore we get induced maps (σj)k on the spectral sequence with
the property that (σj)1 = σj∗ is an isomorphism.

To get the last part of the claim, that is, that the reduced homology depends only on
the link component and not on the edge therein we refer the reader to [2], as the arguments
from there are valid verbatum.

Setting p(x) = xn+1, we get that the differentials dk(p) preserve q + 2ngrh and,
hence, the graded Euler characteristic of H(H

+
p(D, i), dv−) with respect to this quantity

is the same as that of E1(xn+1). Tensoring with Q, to get rid of torsion elements, and
computing we see that the Euler characteristic of the E∞(xn+1) is the quantum sl(n)-
link polynomial PL(qn, q) of L. See [2, Section 5.1] for details. We have arrived at the
following.

Theorem 5.3. The E∞(xn+1) of the spectral sequence defined in 11 is an invariant of L and categorifies
the quantum sl(n)-link polynomial PL(qn, q).

Remark 5.4. Well, we have a categorification over Z of the quantum sl(n)-link poly-
nomial, but what homology theory exactly are we dealing with? Is it isomorphic
to H(H(H(Cxn+1(D, i), d+), d∗−), d

∗
v) or to H(H(Cxn+1(D, i), d+ + d−), d∗v) and are these two

isomorphic here? The answer is not immediate. In [2], Rasmussen bases the corresponding
results on a lemma that utilizes the Kunneth formula, which is much more manageable in this
context when looked at over Q. Of course, for certain classes of knots things are easier. For
example, if we take the class of knots that are KR-thin, then the spectral sequence converges
at the E1 term, as this statement only depends on the degrees of the differentials, and we
have that E∞(xn+1) ∼= H(H(Cxn+1(D, i), d+), d∗v). However, that is a bit of a “red herring” as
stated.
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