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Inclines are additively idempotent semirings in which products are less than (or) equal to either
factor. Necessary and sufficient conditions for an element in an incline to be regular are obtained.
It is proved that every regular incline is a distributive lattice. The existence of the Moore-Penrose
inverse of an element in an incline with involution is discussed. Characterizations of the set of all
generalized inverses are presented as a generalization and development of regular elements in a
*-regular ring.

1. Introduction

The notion of inclines and their applications are described comprehensively in Cao et al. [1].
Recently, Kim and Roush have surveyed and outlined algebraic properties of inclines and
of matrices over inclines [2]. Multiplicative semigroups unlike matrices over a field are not
regular; that is, it is not always possible to solve the regularity equation axa = a. If there
exists x, x is called a g-inverse of a and the element a is said to be regular. This concept of
regularity of elements in a ring goes back to Neumann [3]. If every element in a ring is regular,
then it is called a regular ring. Regular rings are important in many branches of mathematics,
especially in matrix theory, since the regularity condition is a linear condition that solves
linear equations and takes the place of canonical decomposition.

In [4], Hartwig has studied on existence and construction of various g-inverses
associated with an element in a *-regular ring, that is, regular ring with an anti-automorphism
and developed a technique for computing g-inverses mainly by using star cancellation law.
In semirings one of the most important aspects of structure is a collection of equivalence
relations called Green's relations and the corresponding equivalence classes. In [2], it is stated
that an element is regular if and only if the equivalence ® class contains an idempotent.

In this paper, we exhibit that Green’s equivalence relations on a pair of elements in
an incline reduce to the equality of elements. This leads to the characterization of regular
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element in an incline that is, an element in an incline is regular if and only if it is idempotent
and structure of set of all g-inverses of an element in an incline with involution. In Section 2,
we present the basic definitions, notations, and required results on inclines. In Section 3, some
characterization of regular elements in an incline are obtained as a generalization of regular
elements in a *-regular ring studied by Hartwig and as a development of results available in
a Fuzzy algebra. The invariance of the product ba~c for elements a,b, ¢ in a regular incline
and a g-inverse a~ of a is discussed. For elements in a regular incline it is proved that equality
of right ideals coincides with equality of left ideals. In Section 4, equivalent conditions for
the existence of the Moore-Penrose inverse of an element in an incline with involution-T are
determined.

Green’s equivalence relation reduces to equality of elements. We conclude that the
proofs are purely based on incline property without using star cancellation law as in the
work of Hartwig [4].

2. Preliminaries
In this section, we give some definitions and notations.
Definition 2.1. An incline is a nonempty set R with binary operations addition and
multiplication denoted as +, - defined on R - R — R suchthatforallx, y,z € R
x+y=y+x, x+((y+z)=(x+y)+z
x(y+z)=xy+xz, (y+2z)x=yx+zx, (2.1)

x(yz) = (xy)z, x+x=x, X+xy=x, y+xy=y.

Definition 2.2. An incline R is said to be commutative if xy = yx forall x,y € R.

Definition 2.3. (R, <) is an incline with order relation “<” defined on R such that for x,y € R,
x <yifand only if x + y = y. If x < y, then y is said to dominate x.

Property 2.4. For x,y inanincline R, x+y >x and x+y > y.
Forx+y=(x+x)+y=x+(x+y),andx+y=x+Wy+y)=(x+y)+y
Thusx+y>xandx+y > y.

Property 2.5. For x, y in an incline R, xy < x and xy < y.
Throughout let R denote an incline with order relation <. For an element a € R, aR =
{ax/x € R} is the right ideal of a and Ra = {xa/x € R} is the left ideal of a.

Definition 2.6 (Green’s relation [5]). For any two elements a, b in a semigroup S.

(i) aL£b if there exist x, y € S such that xa = b and yb = a.
(ii) aRb if there exist x, y € S such that ax = b and by = a.

(iv) akb if aRb and aLb.

)
)
(iii) a2b if there exist w, x, y, z such that wax = b, ybz = a.
)
(v) a®©b if there exists ¢ € S such that aRc and ¢ £Zb.
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3. Regular Elements in an Incline

In this section, equivalent conditions for regularity of an element in an incline are obtained
and it is proved that a regular commutative incline is a distributive lattice. The equality of
right (left) ideals of a pair of elements in a regular incline reduces to the equality of elements.
This leads to the invariance of the product ba ¢ for all choice a™ of a and a, b, ¢ in a regular
incline. Characterization of the set of all g-inverses of an element in terms of a particular
g-inverse is determined.

Just for sake of completeness we will introduce g-inverses of an element in an incline.

Definition 3.1. a € R is said to be regular if there exists an element x € R such that axa = a.
Then x is called a generalized inverse, in short g-inverse or l-inverse of a and is denoted as
a~. Let a{1} denotes the set of all 1-inverses of a.

Definition 3.2. An element a € R is called antiregular, if there exists an element x € R such
that xax = x. Then x is called the 2-inverse of a. a{2} denotes the set of all 2-inverses of a.

Definition 3.3. For a € R if there exists x € R such that axa = a, xax = x, and ax = xa, then x is
called the Group inverse of a. The Group inverse of a is a commuting 1-2 inverse of a.
An incline R is said to be regular if every element of R is regular.

Example 3.4. The Fuzzy algebra ¥ with support [0,1] under the max. min. operation is an
incline [2]. Each element in ¥ is regular as well as idempotent [6, page 212]. Thus ¥ is a
regular incline.

Example 3.5. Let D = {a,b,c} and R = (P(D),U,N), where (0(D)) the power set of D is an
incline. Here for each element x € p(D), x> = x N x = x. Hence x is idempotent and x is
regular (refer Proposition 3.7). Thus R is a regular incline.

Lemma 3.6. Letf a € R be regular. Then a = ax = xa for all x € a{l}.

Proof. If a is regular, then by Property 2.5

a=axa<ax<a. (3.1)

Therefore ax = a.
Similarly, from a < xa < a, it follows that a = xa. Thus, a = xa = ax for all
x €a {1}. O

Proposition 3.7. For a € R, ais regular if and only if a is idempotent.
Proof. Let a € R be regular. Then by Lemma 3.6, a = ax = xa for all x € a{l}. a = axa =
(ax)a = a-a = a* Thus a is idempotent.

Converse is trivial. O

Example 3.8. Let us consider the example 7, = ([0, 1], sup(x, y), xy) of an incline given in [2].
Here xy is usual multiplication of real numbers. Hence for each x € 75, x2 < x and x, is not
idempotent. Therefore by Proposition 3.7, 7, is not a regular incline.

Proposition 3.9. If a is reqular, then a is the smallest g-inverse of a, that is, a < x for all x € a{1}.
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Proof. Let a be regular, then by Proposition 3.7, a € a{1}. By Lemma 3.6 a = ax for all x €
a{1}. Hence by Property 2.5 a < x. Thus a is the smallest g-inverse of a. O

It is well known that [7] every distributive lattice is an incline, but an incline need not
be a distributive lattice. Now we shall show that regular commutative incline is a distributive
lattice in the following.

Proposition 3.10 (see [1]). A commutative incline is a distributive lattice as (semiring) if and only
if x*> = x forall x € X.

Lemma 3.11 (see [7]). DL is a distributive lattice. (DL is the set of all idempotent elements in an
incline L.)

Proposition 3.12. Let R be a commutative incline, R is regqular < R is a distributive lattice.

Proof. Let R is commutative incline.

R is regular: & every element in R is idempotent (by Proposition 3.7),

© DR = R, where DR is the set of all idempotent elements of R,

= R = DRis distributive lattice (by [7, Lemma 2.1]).

Conversely, if R is a distributive lattice then by Proposition 111 in [1] every element of
R is idempotent, again by Proposition 3.7R is a regular incline. O

Next we shall see some characterization of regular elements in an incline.

Theorem 3.13. For a € R, the following are equivalent:

(i) ais regular,
(ii) a is idempotent,

a{1,2} = {a},

group inverse of a exists and coincides with a,

(iid
(iv

(v) a = va? for some v € a{l},

)
)
)
)
)
)

(vi) a = a®u for some u € a{l}.

In either case v, u, vau are all g-inverses of a and vau is invariant for all choice of u,v € a{l}. vau
is the smallest g-inverse of a.

Proof. (i)&(ii) This is precisely Proposition 3.7.
To prove the theorem it is enough to prove the following implications:
(i)=(ii)=(iv)=(1); ()=(v)=(ii) and (i)=(vi)=(ii).
(ii)=(iii) If a is idempotent, then a € a{l}. For any x € a{1,2} we have x = xax and
by
Lemma 3.6 we get x = (xa)x = ax = a. Therefore a{1,2} = {a}.
Thus (iii) holds.
(iii)=(iv) If a{1,2} = {a} then a is the only commuting 1-2 inverse of a.
Therefore by Definition 3.3 the Group inverse of a exists and coincides with a.
(iv)=(i) This is trivial.
(i)=(v) Let a be regular, then by Lemma 3.6, for some v € a{1},

a = (av)a = (va)a = va’. (3.2)
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Thus (v) holds.
(v)=(ii) Let a = va?® for some v € a{1}. By Property 2.5,

a:vazgvaga

= a=va=va® (3.3)

a =va* = (va)a = a°.

Therefore a is idempotent

Thus (ii) holds.

(i)=(vi)=(ii) can be proved along the same lines and hence omitted.
Now if a = va? holds then we can show that v € a{1}

a=va*<va<a. (3.4)

Therefore a = va? = va

a=a-a=va’=a, (3.5)

and ava=a’=a

Thus v € a{1}.
In a similar manner we can show u € a{1}.
Now consider, x = vau, where u, v € a{1}. It can be verified that

x =vau € a{l,2} = {a}. (3.6)

Hence, a = vau for allv,u € a{l}.
Thus vau is invariant for all choice of g-inverse of a. By Proposition 3.9, a = vau is the
smallest g-inverse of a. O

Remark 3.14. 1f a is regular, then (i) aR = a’R and (ii) Ra = Ra* automatically holds. The
converse holds for an incline with unit.

Remark 3.15. Let us illustrate the relation between various inverses associated with an
element in an incline in the following.

Let R = {0,a,b,c,d,1} be a lattice ordered by the following Hasse graph. Define -:
RxR — Rbyx-y=dforall x,y € {1,b,c,d} and 0 otherwise. Then (R,V, -) is an incline
which is not a distributive lattice.

In this incline R, the only two elements 0, d are regular which satisfies the
Theorem 3.13.

(1)d-x-d=dforeachx € {b,c,d,1}.
Hence d{1} = {b,c,d,1} and 0{1} = R.
(2) Sincede R, x-d-x=xforx=0,and x = d.



1

0

Figure 1

Hence d is antiregular
d{2} =1{0,d}.

(3) d{1} #d{2} and d{1,2} = d{1) nd[2} = d.

Theorem 3.16. Let R be a regular incline. For a, b, ¢ € R the following hold:
(i)
b=ya<b=ba<= RbC Ra,

c=ax<c=ac<cRCaR.

(ii) x is a 1-inverse of a

= (ax)2 =ax, axR=aR,

& (xa)* =xa, Rxa=Ra.

(iii) x is a 2-inverse of a

& (xa)* =xa, xaR=xR,

& (ax)* = ax, Rax=Rx.

(iv) gaR C qapR and Ra C Rqa implies pq = a”.
(v) If ¢ = ax and b = ya then ba™c is invariant under all choice of 1-inverse of a.

(vi)

gapwR = gaR and w = (qap)”,

pwq = a- &
Rga = Ra.
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(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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Proof. Whenever two symmetric results are involved we shall prove the first leaving the
second.

(i) Let b = ya, since a is regular.
ba=ba a=yaa a=ya=>0. (3.12)
Thus b = ya = ba =b.
Let ba = b then for z € Rb

z = xb for some x € R
(3.13)
= (xb)a € Ra.

Thus b = ba = Rb C Ra.

Since b is regular, by Lemma 3.6, b = xb € Rb, since Rb C Ra, b = xb = ya. Thus
RbC Ra=b=ya.

Hence (i) holds.

(ii) Let x € a{1} then by Lemma 3.6 and Proposition 3.7 we have

(ax)? = ax = (xa) = a. (3.14)

Hence, axR = aR and Rxa = Ra.

Conversely, let axR = aR and (ax)? = ax.
Then, aRk C axR = axa = a (by (i))

= x €af{l}. (3.15)

(iii) Interchange x and a in (ii) then (iii) holds.
(iv) Let gaR C gapR and Ra C Rqa

gaR C gapR = qapqa = ga (by (i)) (3.16)

Ra C Rga = aqa = a, that is, a is regular with g € a{1}.

Now,
qapqa = qa,
(aga)pga = aqa, (3.17)
apqa = a.

Therefore pg € a{1}.
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Thus (iv) holds.

(v) Let ¢ = ax and b = ya for some x,y € R
ba ¢ =y(aa a)x = yax. (3.18)

Which is independent of a~ and ba~c is invariant for all choice of a~ of a.

(vi) Let pwg = a~ = a = a(pwq)a (By Definition 3.1).
From the statement (ii), we have
Ra = Rpwqga € Rqa C Ra

= Ra = Rga. (3.19)

Therefore g € a{1} (by (ii)).
Now,
apwqa = a = qapwaqa = qa,
qaR C qapwR C gaR,
qaR = qapwR,
qapwqa = qa, (3.20)
(aga)pwqga = aqa,
a(pwg)a=a,

= pwq € a{l}.

Thus (vi) holds. O

Corollary 3.17. For a, b in a regular incline one has the following:

Ra=Rb& aR=bR&a=b. (3.21)

Proof. Since Ra = Rb, Ra C Rb, and Rb C Ra.
By Theorem 3.16(i) we have

RaCRb=a=ab=a<b (by Property 2.5)
(3.22)
RbCRa=b=ba=b<a (byProperty2.5).

Therefore a = b. In a similar manner we can show aR = bR = a = b.
On the other hand a = b automatically implies Ra = Rb and aR = bR. O
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Remark 3.18. We note that Corollary 3.17 fails for regular matrices over an incline.
Let us consider B = (1 1> and A = (1 0) = PB,where P = (0 1)_
10 11

10
Since P2 = I,, PA = B. Here A and B are regular.
By Proposition 2.4 in [8, page 297], R(A) € R(B) and R(B) C R(A).
Hence R(A) = R(B) but A #B.

It is well known that [9, page 26] if a™ is a particular g-inverse of a in a ring with unit,
then the general solution of the equation axa = a is given by a~ + h — a”ahaa™, where h is
arbitrary. Here we shall generalize this for incline.

Theorem 3.19. Let a € R and a~ be any particular 1-inverse of a then ag," {1} = {a~ +
h/h is arbitrary element in R} is the set of all g-inverses of a dominating a~. Furthermore, a{l} =
Uag {1}, union over all g-inverses of a.

Proof. Let o denote the set {a~ + h/h is arbitrary element in R}. Suppose that x is arbitrary
element of a,~{1} then x > a~ which implies x + k > a” + k for k € R and by Property 2.4 we
havea +k>a".

Thereforex+k >a  +k>a”

Pre- and postmultiplication by a we get

axa+aka>a(a” +k)a>aa a,

(3.23)
a+aka>a(a +k)aza
(By Definition 3.1).
By Property 2.5 aka < a, hence a + aka = a.
a>a(a +k)a>a,
(3.24)
a(a” +k)a=a.
Therefore (a” + k) € a{l}.
Thus for each x € a,~ {1} there exists an element in «/. Hence a,~ {1} C 4.
On the other hand forany y € 4,y = a~ + h > a” by Property 2.4.
From Definition 3.1 and Property 2.5, we get
aya=a(a +h)a=a+aha=a. (3.25)
Hence y € a,~ {1}, which implies 4 C a,™{1}. Therefore ¢/ = a; {1}
a{l} = set of all g-inverses of a (3.26)

= U a;” {1}, union over all g-inverses of a.
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4. Projection on an Incline with Involution-T

In this section, the existence of the Moore-Penrose inverse of an element in an incline with
involution-T is discussed as a generalization of that for elements is a *-regular ring and for
elements in a Fuzzy algebra studied by Hartwig [4], Kim and Roush [8] and Meenakshi [6],
respectively. Characterization of the set of all {1,3}, {1,4} inverses and a formula for Moore-
Penrose are obtained analogous to those of the result established for fuzzy matrices in [6, 8].

An involution-T of an incline R is an involutary anti-automorphism, that is, (@' =
a,(a+b)" =a" +b",(ab)" =bTa’,a’ = 0ifand only if a = 0 for all a,b € R.

Definition 4.1. An element a € R is said to be a projection if al = a = a?, that is a is symmetric
and idempotent.

Definition 4.2. For a in an incline R with involution-T, we say that x € R is a 3-inverse of a if
(ax)" = ax, and we say that y € Ris a 4-inverse of a if (ya)’ = ya.

Definition 4.3. An element x € R is said to be Moore-Penrose inverse of g, if x satisfies the
following: (i) axa = a, (ii) xax = x, (iii) (ax)T = ax, and (iv) (xa)T = xa, denoted as a'.

In [2] it is stated that for an element a in an incline with involution-T, a' exists if and
only if acZaa’a. Here we derive equivalent condition for the existence of a' in terms of the
weaker relation a£aa’a.

First we shall show that Green’s equivalence relation on an incline R reduces to
equality of elements in R.

Lemma 4.4. For a,b € R the following hold:
(i)alb= a=>b, (ii)aRb=a=">b.
Conwverse holds for elements in a regular incline or incline with unit.

Proof. (i) If a£b then by Definition 2.6 there exist x,y € R such that xa = b and yb = a. By
Property 2.5 wehavexa=b=b<aandyb=a=a <b.

Therefore, a£lb = a =b.

(ii) This can be proved in a similar manner and hence omitted.

The converse holds for a regular incline. For, if a, b are regular, then by Lemma 3.6 a =
b=yb=byand b =a = xa = ax for some x,y € a{l}. Hence a = b = a£b and aRb. aLb and
aRb trivially hold for incline with unit. O

Theorem 4.5. Let R be an incline with involution-T. For a € R the following are equivalent:

(i) a is a projection,
(ii) a has 1-3 inverse,
(iii) a has 1-4 inverse,
(iv) a' exists and equals a,
Tax = aT has a solution in R,
(vi) xaa” = a” has a solution in R,
(vii) a is regular and a’ € a{1},
(viii) aLaa"a,

)
)
)

)
(v)a
)

)

)

)

(ix) aRaa’a,
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Proof. (i)&(ii) Let abe a projection, by Definition 4.1 a is symmetric idempotent. a is regular
follows from Proposition 3.7. Thus a has 1-inverse x (say) and by Lemma 3.6 a =
ax = xa. Since a is symmetric, a = a’. Therefore x is a 1-3 inverse of a.
Thus a has 1-3 inverses. Coverersly if a has 1-3 inverses, then again by Lemma 3.6
there exists x € R, such that a = ax = xa and ax = (ax)T. Hence a is symmetric idempotent.
Thus (i) holds.

(i)&(iii) This can be proved along the same lines as that of (i) (iii), hence omitted.

(i)e(iv) This equivalence can be proved directly by verifying that a satisfy the four
equations in Definition 4.3.

(ii)&(v) Let a has 1-3 inverses, x (say) then

a'ax =a"(ax) = a’ (ax)T = a’xTa" = (axa)T = a”,

(4.1)

alax=a’,

(by Definition 4.2).

Conversely, if a’ax = a’, then a’ < a’a < a’ = a’ = a’a and therefore a = a’a and a
is symmetric. Hence the given condition a” ax = a” reduces to a x = a’

Now, axa = (ax)a = a’a = a and ax = a” = a = (ax)"x € a{1,3}. Thus a has 1-3
inverses.

(iii)&(vi) This can be proved in the same manner and hence omitted.

(vii)&(i) ais regular and a’ € a1}

T

& aisregularand a =aa'a

T

& aisidempotent and a = a’a = aa’ (by Proposition 3.7 and Lemma 3.6)

& ais symmetric and idempotent

& ais a projection.
(vii)e(viii)e(ix) follow from Lemma 4.4. O

Remark 4.6. 1t is well known that [4] for an element a in a *-regular ring if a' exists then
at = a"a a®. We observe that for an element a in an incline with involution-T if a is
regular, then by Lemma 3.6 it follows that a{1,3} = a{1,4}. If a exists it is unique and given
by af = a!¥a a1,

Remark 4.7. Let us consider the incline R in Remark 3.15 under the identity involution-T on
R. Here each element in R is symmetric and the 3-inverse of the element d is R and 4-inverse
also the same.

Hence 0, d are the only projections in R

df=d=d{1,2)#d{1,3) =d{1,4} = d{1} = {b,c,d,1},
(4.2)
b-d-c=d=dl Vbced(l4).
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Theorem 4.8. Let R be an incline with involution-T. For any element a € R and x € af{1,3}
given, then ag{1,3} = {x + h/h is arbitrary element in R} is the set of all {1,3} inverses of a
dominating x.

Proof. This can be proved along the same lines as that of Theorem 3.19 and hence omitted. [

5. Conclusion

The main results in the present paper are the generalization of the available results shown in
the reference for elements in a *-regular ring [4] and for elements in a Fuzzy algebra [8]. We
have proved the results by using Property 2.5 without using star cancellation law.

In [2] it is stated that an element is regular if and only if ® class contains an
idempotent. By Lemma 4.4 the © class {b/b®a} = {a} and by Proposition 3.1 a is regular
if and only if a is idempotent.
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