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We consider the Fekete-Szegö problem with complex parameter μ for the class Rτ
γ (φ) of analytic

functions.

1. Introduction and Preliminaries

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and S denote the subclass
ofA that are univalent in U. A function f(z) inA is said to be in class S∗ of starlike functions
of order zero in U, if R(zf ′(z)/f(z)) > 0 for z ∈ U. Let K denote the class of all functions
f ∈ A that are convex. Further, f is convex if and only if zf ′(z) is star-like. A function f ∈ A
is said to be close-to-convex with respect to a fixed star-like function g ∈ S∗ if and only if
R(zf ′(z)/g(z)) > 0 for z ∈ U. Let C denote of all such close-to-convex functions [1].

Fekete and Szegö proved a noticeable result that the estimate

∣∣∣a3 − λa2
2

∣∣∣ � 1 + 2 exp
( −2λ
1 − λ

)
(1.2)
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holds for any normalized univalent function f(z) of the form (1.1) in the open unit disk U

and for 0 � λ � 1. This inequality is sharp for each λ (see [2]). The coefficient functional

φλ

(
f
)
= a3 − λa2

2 =
1
6

(
f ′′′(0) − 3λ

2
[
f ′′(0)

]2
)
, (1.3)

on normalized analytic functions f in the unit disk represents various geometric quantities,
for example, when λ = 1, φλ(f) = a3 − a2

2, becomes Sf(0)/6, where Sf denote the Schwarzian

derivative (f ′′′/f ′)′ −(f ′′/f ′)2/2 of locally univalent functions f in U. In literature, there exists
a large number of results about inequalities for φλ(f) corresponding to various subclasses of
S. The problem of maximising the absolute value of the functional φλ(f) is called the Fekete-
Szegö problem; see [2]. In [3], Koepf solved the Fekete-Szegö problem for close-to-convex
functions and the largest real number λ for which φλ(f) is maximised by the Koebe function
z/(1 − z)2 is λ = 1/3, and later in [4] (see also [5]), this result was generalized for functions
that are close-to-convex of order β.

Let φ(z) be an analytic function with positive real part on U with φ(0) = 1, φ′(0) > 0
which maps the unit disk U onto a star-like region with respect to 1 which is symmetric with
respect to the real axis. Let S∗(φ) be the class of functions in f ∈ S for which

zf ′(z)
f(z)

≺ φ(z) (z ∈ U), (1.4)

and C(φ) be the class of functions in f ∈ S for which

1 +
zf ′′(z)
f ′(z)

≺ φ(z) (z ∈ U), (1.5)

where ≺ denotes the subordination between analytic functions. These classes were introduced
and studied by Ma and Minda [6]. They have obtained the Fekete-Szegö inequality for the
functions in the class C(φ).

Motivated by the class Rτ
λ
(β) in paper [7], we introduce the following class.

Definition 1.1. Let 0 � γ � 1, τ ∈ C \ {0}. A function f ∈ A is in th class Rτ
γ (φ), if

1 +
1
τ

(
f ′(z) + γzf ′′(z) − 1

) ≺ φ(z) (z ∈ U), (1.6)

where φ(z) is defined the same as above.
If we set

φ(z) =
1 +Az

1 + Bz
(−1 � B < A � 1; z ∈ U), (1.7)

in (1.6), we get

Rτ
γ

(
1 +Az

1 + Bz

)
= Rτ

γ (A,B) =

{
f ∈ A :

∣∣∣∣∣
f ′(z) + γzf ′′(z) − 1

τ(A − B) − B
(
f ′(z) + γzf ′′(z) − 1

)

∣∣∣∣∣ < 1

}
, (1.8)
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which is again a new class. We list few particular cases of this class discussed in the literature

(1) Rτ
γ (1 − 2β,−1) = Rτ

γ (β) for 0 � β < 1, τ = C \ {0} was discussed recently by
Swaminathan [7].

(2) The class Rτ
γ (1 − 2β,−1) for τ = eiη cos η, where −π/2 < η < π/2 is considered in

[8] (see also [9]).

(3) The class Rτ
1(0,−1) with τ = eiη cos η was considered in [10] with reference to the

univalencey of partial sums.

(4) f ∈ R
eiη cos η
γ (1 − 2β,−1) whenever zf ′(z) ∈ Pτ

γ (β), the class considered in [11].

For geometric aspects of these classes, see the corresponding references. The class
Rτ

γ (A,B) is new as the author Swaminathan [7] has introduced class Rτ
γ (β) which is subclass

of the class Rτ
γ (A,B), in his recent paper. To prove our main result, we need the following

lemma.

Lemma 1.2 (see [12, 13]). If p(z) = 1 + c1z + c2z
2 + c3z

3 + · · · (z ∈ U) is a function with positive
real part, then for any complex number μ,

∣∣∣c2 − μc21

∣∣∣ � 2 max
{
1,
∣∣2μ − 1

∣∣}, (1.9)

and the result is sharp for the functions given by

p(z) =
1 + z2

1 − z2
, p(z) =

1 + z

1 − z
(z ∈ U). (1.10)

2. Fekete-Szegö Problem

Our main result is the following theorem.

Theorem 2.1. Let φ(z) = 1+B1z+B2z
2 +B3z

3 + · · · , where φ(z) ∈ A with φ′(0) > 0. If f(z) given
by (1.1) belongs to Rτ

γ (φ)(0 � γ � 1, τ ∈ C \ {0}, z ∈ U), then for any complex number μ

∣∣∣a3 − μa2
2

∣∣∣ � B1|τ |
3
(
1 + 2γ

) max

{
1,

∣∣∣∣∣
B2

B1
− 3τμB1

(
1 + 2γ

)

4
(
1 + γ

)2

∣∣∣∣∣

}
. (2.1)

The result is sharp.

Proof. If f(z) ∈ Rτ
γ (φ), then there exists a Schwarz function w(z) analytic in U with w(0) = 0

and |w(z)| < 1 in U such that

1 +
1
τ

(
f ′(z) + γzf ′′(z) − 1

)
= φ(w(z)) (z ∈ U). (2.2)

Define the function p1(z) by

p1(z) =
1 +w(z)
1 −w(z)

= 1 + c1z + c2z
2 + · · · . (2.3)
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Since w(z) is a Schwarz function, we see that Rp1(z) > 0 and p1(0) = 1. Define the function
p(z) by

p(z) = 1 +
1
τ

(
f ′(z) + γzf ′′(z) − 1

)
= 1 + b1z + b2z

2 + · · · . (2.4)

In view of (2.2), (2.3), (2.4), we have

p(z) = φ

(
p1(z) − 1
p1(z) + 1

)
= φ

(
c1z + c2z

2 + · · ·
2 + c1z + c2z2 + · · ·

)

= φ

(
1
2
c1z +

1
2

(
c2 −

c21
2

)
z2 + · · ·

)

= 1 + B1
1
2
c1z + B1

1
2

(
c2 −

c21
2

)
z2 + B2

1
4
c21z

2 + · · · .

(2.5)

Thus,

b1 =
1
2
B1c1; b2 =

1
2
B1

(
c2 −

c21
2

)
+
1
4
B2c

2
1. (2.6)

From (2.4), we obtain

a2 =
B1c1τ

4
(
1 + γ

) ; a3 =
τ

6
(
1 + 2γ

)
[
B1

(
c2 −

c21
2

)
+
1
2
B2c

2
1

]
. (2.7)

Therefore, we have

a3 − μa2
2 =

B1τ

6
(
1 + 2γ

)
(
c2 − νc21

)
, (2.8)

where

ν =
1
2

(
1 − B2

B1
+
3τμB1

(
1 + 2γ

)

4
(
1 + γ

)2

)
. (2.9)

Our result now is followed by an application of Lemma 1.2. Also, by the application of
Lemma 1.2 equality in (2.1) is obtained when

p1(z) =
1 + z2

1 − z2
or p1(z) =

1 + z

1 − z
(2.10)
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but

p(z) = 1 +
1
τ

(
f ′(z) + γzf ′′(z) − 1

)
= φ

(
p1(z)−1
p1(z)+1

)
. (2.11)

Putting value of p1(z) we get the desired results.

For class Rτ
γ (A,B),

φ(z) =
1 +Az

1 + Bz
= (1 +Az)(1 + Bz)−1 (z ∈ U)

= 1 + (A − B)z −
(
AB − B2

)
z2 + · · · .

(2.12)

Thus, putting B1 = A − B and B2 = −B(A − B) in Theorem 2.1, we get the following corollary.

Corollary 2.2. If f(z) given by (1.1) belongs to Rτ
γ (A,B), then

∣∣∣a3 − μa2
2

∣∣∣ � (A − B)|τ |
3
(
1 + 2γ

) max

{
1,

∣∣∣∣∣B +
3τμ(A − B)

(
1 + 2γ

)

4
(
1 + γ

)2

∣∣∣∣∣

}
. (2.13)
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[4] W. Koepf, “On the Fekete-Szegö problem for close-to-convex functions. II,”Archiv der Mathematik, vol.
49, no. 5, pp. 420–433, 1987.
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