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It is proved that if a ring R is semiabelian, then so is the skew polynomial ring R[x;σ], where σ is
an endomorphism of R satisfying σ(e) = e for all e ∈ E(R). Some characterizations and properties
of semiabelian rings are studied.

1. Introduction

Throughout the paper, all rings are associative with identities. We always useN(R) and E(R)
to denote the set of all nilpotent elements and the set of all idempotent elements of R.

According to [1], a ring R is called semiabelian if every idempotent of R is either right
semicentral or left semicentral. Clearly, a ring R is semiabelian if and only if either eR(1 − e) =
0 or (1 − e)Re = 0 for every e ∈ E(R), so, abelian rings (i.e., every idempotent of R is central)
are semiabelian. But the converse is not true by [1, Example 2.2].

A ring R is called directly finite if ab = 1 implies ba = 1 for any a, b ∈ R. It is well
known that abelian rings are directly finite. In Theorem 2.7, we show that semiabelian rings
are directly finite.

An element e of a ring R is called a left minimal idempotent if e ∈ E(R) and Re is
a minimal left ideal of R. A ring R is called left min-abel [2] if every left minimal idempotent
element of R is left semicentral. Clearly, abelian rings are left min-abel. In Theorem 2.7, we
show that semiabelian rings are left min-abel.

A ring R is called left idempotent reflexive if for any e ∈ E(R) and a ∈ R, aRe = 0
implies eRa = 0. Theorem 2.5 shows that R is abelian if and only if R is semiabelian and left
idempotent reflexive.

In [3], Wang called an element e of a ring R an op-idempotent if e2 = −e. Clearly,
op-idempotent need not be idempotent. For example, let R = Z/3Z. Then 2 ∈ R is an op-
idempotent, while it is not an idempotent. In [4], Chen called an element e ∈ R potent in
case there exists some integer n ≥ 2 such that en = e. We write p(e) for the smallest number
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n of such. Clearly, idempotent is potent, while there exists a potent element which is not
idempotent. For example,

(
1 0
0 −1

) ∈ M2(Z) is a potent element, while it is not idempotent.
We use Eo(R) and PE(R) to denote the set of all op-idempotent elements and the set of all
potent elements of R. In Corollaries 2.2 and 2.3, we observe that every semiabelian ring can
be characterized by its op-idempotent and potent elements.

If R is a ring and σ : R → R is a ring endomorphism, let R[x;σ] denote the ring of
skew polynomials over R; that is all formal polynomials in x with coefficients from R with
multiplication defined by xr = σ(r)x. In [1], Chen showed that R is a semiabelian ring if and
only if R[x] is a semiabelian ring. In Theorem 2.13, we show that if R is a semiabelian ring
with an endomorphism σ satisfying σ(e) = e for all e ∈ E(R), then R[x;σ] is semiabelian.

2. Main Results

It is well known that an idempotent e of a ring R is left semicentral if and only if 1 − e is right
semicentral. Hence we have the following theorem.

Theorem 2.1. The following conditions are equivalent for a ring R.

(1) R is a semiabelian ring.

(2) For any e ∈ E(R), eR(1 − e) ∪ (1 − e)Re is an ideal of R.

(3) For any e ∈ E(R), eR(1 − e) ∪ (1 − e)Re = eR(1 − e) + (1 − e)Re.

Proof. (1)⇒(2) assume that e ∈ E(R). Since R is semiabelian, e is either left semicentral or
right semicentral. If e is right semicentral, then eR(1−e) = 0 and 1−e is left semicentral. Thus
R(1 − e)ReR = (1 − e)R(1 − e)ReRe = (1 − e)Re and eR(1 − e) ∪ (1 − ve)Re = (1 − e)Re =
R(1 − e)ReR is an ideal of R. Similarly, if e is left semicentral, then eR(1 − e) ∪ (1 − e)Re =
ReR(1 − e)R is also an ideal of R.

(2)⇒(3) is clear.
(3)⇒(1) assume that e ∈ E(R). If e is neither left semicentral nor right semicentral,

there exist a, b ∈ R such that (1 − e)ae /= 0 and eb(1 − e)/= 0. By (3), (1 − e)ae + eb(1 − e) ∈
(1 − e)Re ∪ eR(1 − e). If (1 − e)ae + eb(1 − e) ∈ (1 − e)Re, then eb(1 − e) = e((1 − e)ae +
eb(1 − e))(1 − e) ∈ e((1 − e)Re)(1 − e) = 0, a contradiction; if (1 − e)ae + eb(1 − e) ∈
eR(1 − e), then (1 − e)ae = 0, it is also a contradiction. Hence e is either left semicentral or
right semicentral.

Evidently, R is semiabelian if and only if either eR(1 − e) = 0 or (1 − e)Re = 0 for
every e ∈ E(R). On the other hand, an element e of R is op-idempotent if and only if −e is
idempotent. Hence, by Theorem 2.1, we have the following corollary.

Corollary 2.2. The following conditions are equivalent for a ring R.

(1) R is a semiabelian ring.

(2) For any e ∈ Eo(R), eR(1 + e) = 0 or (1 + e)Re = 0.

(3) For any e ∈ Eo(R), eR(1 + e) ∪ (1 + e)Re is an ideal of R.

(4) For any e ∈ Eo(R), eR(1 + e) ∪ (1 + e)Re = eR(1 + e) + (1 + e)Re.

Clearly, for any e ∈ PE(R), ep(e)−1 ∈ E(R), Re = Rep(e)−1, and eR = ep(e)−1R. Hence, by
Theorem 2.1, we have the following corollary.
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Corollary 2.3. The following conditions are equivalent for a ring R.

(1) R is a semiabelian ring.

(2) For any e ∈ PE(R), eR(1 − ep(e)−1) = 0 or (1 − ep(e)−1)Re = 0.

(3) For any e ∈ PE(R), eR(1 − ep(e)−1) ∪ (1 − ep(e)−1)Re is an ideal of R.

(4) For any e ∈ PE(R), eR(1 − ep(e)−1) ∪ (1 − ep(e)−1)Re = eR(1 − ep(e)−1) + (1 − ep(e)−1)Re.

Using Theorem 2.1, Corollaries 2.2 and 2.3, we have the following corollary.

Corollary 2.4. Let R be a semiabelian ring. If e ∈ E(R), g ∈ Eo(R) and h ∈ PE(R), then:

(1) if ReR = R, then e = 1,

(2) if RgR = R, then g = −1,
(3) if RhR = R, then hp(h)−1 = 1.

Call a ring R idempotent reversible if gRe = 0 implies eRg = 0 for e, g ∈ E(R). Clearly,
abelian rings are left idempotent reflexive, and left idempotent reflexive rings are idempotent
reversible. But we do not know that whether idempotent reversible rings must be left idem-
potent reflexive. It is easy to see that a ring R is left idempotent reflexive if and only if for any
a ∈ N(R), aRe = 0 implies eRa = 0. (In fact, it is only to show the sufficiency: Let a ∈ R
and e ∈ E(R) satisfy aRe = 0. If eRa = 0, then eba /= 0 for some b ∈ R. Since eba ∈ N(R)
and (eba)Re = 0, by hypothesis, eR(eba) = 0, this implies eba = ee(eba) = 0, which is
a contradiction. Hence eRa = 0, R is a left idempotent reflexive ring.)

LetD be a division ring. Then the 2-by-2 upper triangular matrix ring UT2(D) =
(
D D
0 D

)

is not idempotent reversible. In fact,
(
1 0
0 0

)
,
(
0 1
0 1

) ∈ E(UT2(D)) and
(
0 1
0 1

)(
D D
0 D

)(
1 0
0 0

)
= 0,

but
(
1 0
0 0

)(
D D
0 D

)(
0 1
0 1

)
=

(
0 D
0 0

)
/= 0. On the other hand, by [1, Example 2.2], UT2(D) is a

semiabelian ring.
We have the following theorem.

Theorem 2.5. The following conditions are equivalent for a ring R.

(1) R is an abelian ring.

(2) R is a semiabelian ring and idempotent reversible ring.

(3) R is a semiabelian ring and left idempotent reflexive ring.

(4) R is a semiabelian ring and for any a ∈ J(R), aRe = 0 implies eRa = 0.

Proof. (1)⇒(3)⇒(2)⇒(1) and (3)⇒(4) are trivial.
Now let e ∈ E(R). If R is semiabelian, then e is either right semicentral or left semi-

central. If e is right semicentral, then (1 − e)ReR(1 − e) = 0. Since R(1 − e)Re ⊆ N(R) ∩ J(R),
(4) implies (1 − e)R(1 − e)Re = 0. Hence (1 − e)Re = 0. This shows that e is central; if e is left
semicentral, then 1 − e is right semicentral. Hence 1 − e and so e is also central. Thus (4)⇒(1)
holds.

Since semiprime rings are left idempotent reflexive, we have the following corollary
by Theorem 2.5.
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Corollary 2.6. Semiprime semiabelian rings are abelian.

Theorem 2.7. Let R be a semiabelian ring and e ∈ E(R). Then,

(1) eR(1 − e)Re = (1 − e)ReR(1 − e) = 0,

(2) If a ∈ R and ae = 0, then Rera ⊆ N(R) for all r ∈ R,

(3) eR(1 − e) ⊆ J(R).

Proof. (1) Since e is right semicentral if and only if eR(1 − e) = 0 and e is left semicentral if
and only if (1 − e)Re = 0, (1) is evident by hypothesis.

(2) Since a = a(1 − e), (ReRa)2 = ReRaReRa = ReRa(1 − e)ReRa = 0 by (1). Hence
ReRa ⊆ N(R), so for any r ∈ R, Rera ⊆ N(R).

(3) Since (1 − e)e = 0, by (2), Rer(1 − e) ⊆ N(R) for all r ∈ R. This implies Rer(1 − e) ⊆
J(R) for all r ∈ R. Hence eR(1 − e) ⊆ J(R).

Theorem 2.8. Let R be a semiabelian ring. Then,

(1) R is directly finite,

(2) R is left min-abel.

Proof. (1) Assume that ab = 1. Let e = ba. Then e ∈ E(R) and eb = b. By Theorem 2.7(3),
b(1 − e) = eb(1 − e) ∈ J(R). Hence 1 − e = ab(1 − e) ∈ J(R), which implies 1 = e = ba.

(2) Let 0 /= e ∈ E(R) and Re be a minimal left ideal of R. Then (1 − e)Re /= 0 and
R(1 − e)Re = Re. Since R is a semiabelian ring, by Theorem 2.7(3), (1 − e)Re ⊆ J(R). This
implies e ∈ J(R), that is, e = 0 which is a contradiction. Hence (1 − e)Re = 0, so e is left
semicentral. Hence R is a left min-abel ring.

For a ring R, a proper left ideal P of R is prime if aRb ⊆ P implies that a ∈ P or b ∈ P .
Let Specl(R) be the set of all prime left ideals of R. In [5], it has been shown that if R is not
a left quasiduo ring, then Specl(R) is a space with the weakly Zariski topology but not with
the Zariski topology.

Let R be a ring. Then the set Maxl(R) of all maximal left ideals of R is a compact
T1-space by [6, Lemma2.1]. Recall that a topological space is said to be zero dimensional if it
has a base consisting of clopen sets. Where a clopen set in a topological space is a set which
is both open and closed.

Now, for a left ideal I of a ring R, let α(I) = {P ∈ Specl(R) | I���P} and β(I) = Specl(R)\
α(I). If I = Ra for some a ∈ R, then we write αl(a) and βl(a) for α(Ra) and β(Ra).

For any left ideal I of R, we let Ul(I) = Maxl(R) ∩ α(I), Vl(I) = Maxl(R) ∩ β(I) and let
ξ = {Ul(

∑
1≤i≤n

∑
1≤j1<j2<···<ji≤n (−1)i−1ej1ej1 · · · eji) | eji ∈ E(R), i = 1, 2, . . . , n, n ∈ Z+}.

A ring R is called left topologically boolean, or a left tb-ring [7] for short, if for every
pair of distinct maximal left ideals of R there is an idempotent in exactly one of them.

A ringR is called clean [8] if every element ofR is the sum of a unit and an idempotent.
The following theorems generalize [6, Lemmas 2.2 and 2.3].
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Lemma 2.9. Let R be a semiabelian ring and ei, e, f ∈ E(R), i = 1, 2, . . . , n. Then,

(1) ifN is a maximal left ideal of R and e /∈ N, then 1 − e ∈ N,

(2) Ul(e) ∩Ul(f) = Ul(fe),

(3) Ul(e) ∪ Ul(f) = Ul(e + f − ef) = Ul(ef),

(4) Ul(e) = Vl(1 − e),

(5)
⋂n

i=1 Ul(ei) = Ul(e1e2 · · · en),
(6)

⋃n
i=1 Ul(ei) = Ul(

∑
1≤i≤n

∑
1≤j1<j2<···<ji≤n (−1)i−1ej1ej1 . . . eji),

(7) Ul(
∑

1≤i≤n
∑

1≤j1<j2<···<ji≤n (−1)i−1ej1ej1 · · · eji) = Vl(1 −
∑

1≤i≤n
∑

1≤j1<j2<···<ji≤n
(−1)i−1ej1ej1 . . . eji).

In particular, every set in ξ is clopen.

Proof. (1) Since e /∈ N, Re + N = R. Let 1 = be + n for some b ∈ R and n ∈ N. Since
eR(1 − e)Re = 0 by Theorem 2.7(1), eR(1 − e) = eR(1 − e)n ⊆ N. Since N is a prime left ideal
and e /∈ N, 1 − e ∈ N.

(2) Let P ∈ Ul(e) ∩ Ul(f). Then e /∈ P and f /∈ P . By (1), we have 1 − e, 1 − f ∈ P .
Hence 1 − e − f + ef = (1 − e)(1 − f) ∈ P . Clearly, ef /∈ P , so P ∈ Ul(ef). This shows
Ul(e) ∩ Ul(f) ⊆ Ul(ef). Conversely, ifQ ∈ Ul(ef), then ef /∈ Q. SinceQ is a left ideal, f /∈ Q.
Hence 1 − f ∈ Q by (1). If e ∈ Q, then 1−e−f +ef = (1−e)(1−f) ∈ Q implies ef ∈ Q, which
is a contradiction. Hence e /∈ Q, so Q ∈ Ul(e) ∩ Ul(f). Therefore Ul(ef) ⊆ Ul(e) ∩ Ul(f).
Thus Ul(e) ∩ Ul(f) = Ul(ef). Similarly, we have Ul(e) ∩ Ul(f) = Ul(fe).

(3) and (4) They are also straightforward to prove.
By induction on n, we can show (5), (6) and (7).
Thus every set in ξ is clopen.

Theorem 2.10. Let R be a semiabelian clean ring. Then R is a left tb-ring.

Proof. Suppose that M and N are distinct maximal left ideals of R. Let a ∈ M \ N. Then
Ra +N = R and 1 − xa ∈ N for some x ∈ R. Clearly, xa ∈ M \N. Since R is clean, there exist
an idempotent e ∈ E(R) and a unit u in R such that xa = e + u. If e ∈ M, then u = xa − e ∈ M
from which it follows that R = M, a contradiction. Thus e /∈ M. If e /∈ N, then 1 − e ∈ N by
Lemma 2.9 (1) and hence u = (1 − e) + (xa − 1) ∈ N. It follows that N = R which is also not
possible. We thus have that e is an idempotent belonging toN only.

Theorem 2.11. Let R be a semiabelian ring. If R is a left tb-ring, then ξ forms a base for the weakly
Zariski topology onMaxl(R). In particular,Maxl(R) is a compact, zero-dimensional Hausdorff space.

Proof. Similar to the proof of [6, Proposition 2.5], we can complete the proof.

A ring R is called von Neumann regular if a ∈ aRa for all a ∈ R and R is said to be
unit-regular if for any a ∈ R, a = aua for some u ∈ U(R). A ring R is called strongly regular if
a ∈ a2R for all a ∈ R. Clearly, strongly regular⇒ unit-regular⇒von Neumann regular. Since
von Neumann regular rings are semiprime, it follows that von Neumann regular rings are
left idempotent reflexive. And it is well known that R is strongly regular if and only if R is
von Neumann regular and abelian. In view of Theorem 2.5, we have the following corollary.
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Corollary 2.12. The following conditions are equivalent for a ring R.

(1) R is strongly regular.

(2) R is unit-regular and semiabelian.

(3) R is von Neumann regular and semiabelian.

Following [9], a ring R is called left NPP if for any a ∈ N(R), Ra is projective left
R-module, and R is said to be n-regular if for any a ∈ N(R), a ∈ aRa. A ring R is said to
be reduced if a2 = 0 implies a = 0 for each a ∈ R, or equivalently, N(R) = 0. Obviously,
reduced rings are n-regular and abelian, and n-regular rings are left NPP and semiprime.
Using Theorem 2.5, the following theorem gives some new characterization of reduced rings
in terms of semiabelian rings.

Theorem 2.13. The following conditions are equivalent for a ring R.

(1) R is reduced.

(2) R is n-regular and semiabelian.

(3) R is leftNPP , semiprime, and semiabelian.

Proof. (1)⇒(2)⇒(3) are trivial.
(3)⇒(1) let a ∈ R such that a2 = 0. Since R is left NPP , l(a) = Re, e ∈ E(R). Hence

ea = 0 and a = ae because a ∈ l(a). Since R is semiabelian and aRa = (1 − e)aeR(1 − e)a ⊆
(1 − e)ReR(1 − e)a, aRa = 0 by Theorem 2.7. Since R is semiprime, a = 0, which shows that R
is reduced.

If R is a ring and σ : R → R is a ring endomorphism, let R[x;σ] denote the ring of
skew polynomials over R; that is all formal polynomials in x with coefficients from R with
multiplication defined by xr = σ(r)x. Note that if R(σ) is the (R,R)-bimodule defined by
RR(σ)=RR and m ◦ r = mσ(r), for all m ∈ R(σ) and r ∈ R, then R[x;σ]/(x2) ∼= R ∝ R(σ).

Theorem 2.14. Let R be a semiabelian ring. If σ is a ring endomorphism of R satisfying σ(e) = e for
all e ∈ E(R). Then R[x;σ] is semiabelian.

Proof. Let f(x) = e0 + e1x + · · · + enx
n ∈ E(R[x;σ]). Then

e20 = e0,

e1 = e0e1 + e1σ(e0),

e2 = e0e2 + e1σ(e1) + e2σ
2(e0),

...

en = e0en + e1σ(en−1) + e2σ
2(en−2) + · · · + en−1σn−1(e1) + enσ

n(e0).

(2.1)
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Since e0 ∈ E(R), σ(e0) = e0 by hypothesis. Hence we have the following equations:

e1 = e0e1 + e1e0,

e2 = e0e2 + e1σ(e1) + e2e0,

...

en = e0en + e1σ(en−1) + e2σ
2(en−2) + · · · + en−1σn−1(e1) + ene0.

(2.2)

If e0 is right semicentral, then e0e1 = e0e1 + e0e1e0 = e0e1 + e0e1, which implies e0e1 = 0.
Hence e1 = e1e0.

Assume that e0ei = 0 and ei = eie0 for i = 1, 2, . . . , n − 1. Then

e0en = e0en + e0ene0 = e0en + e0en, (2.3)

so

e0en = 0,

en = e1σ(en−1) + e2σ
2(en−2) + · · · + en−1σn−1(e1) + ene0

= e1e0σ(en−1) + e2e0σ
2(en−2) + · · · + en−1e0σn−1(e1) + ene0

= e1σ(e0en−1) + e2σ
2(e0en−2) + · · · + en−1σn−1(e0e1) + ene0

= ene0.

(2.4)

Hence f(x)e0 = e0 + e1σ(e0)x + · · · + enσ
n(e0)xn = e0 + e1x + · · · + enx

n = f(x) and
e0f(x) = e0.

For any g(x) = b0+b1x+ · · ·+bmxm ∈ R[x;σ], we have e0g(x)e0 =
∑

0≤i≤m e0biσ
i(e0)xi =∑

0≤i≤m e0bie0x
i =

∑
0≤i≤m e0bix

i = e0g(x). Thus f(x)g(x)f(x) = f(x)e0g(x)f(x) =
f(x)e0g(x)e0f(x) = f(x)e0g(x)e0 = f(x)e0g(x) = f(x)g(x), which implies f(x) is right
semicentral in R[x;σ]. Similarly, if e0 is left semicentral in R, then we can show that f(x) is
left semicentral in R[x;σ]. Hence R[x;σ] is a semiabelian ring.

Corollary 2.15. Let R be a semiabelian ring. If σ is a ring endomorphism of R satisfying σ(e) = e for
all e ∈ E(R). Then R[x;σ]/(x2) is semiabelian.

Proof. Since every element f(x) of R[x;σ]/(x2) can be written f(x) = a0 +a1xwith x2 = 0, by
the same proof as Theorem 2.14, we can complete the proof.

Corollary 2.16. Let R be a semiabelian ring. If σ is a ring endomorphism of R satisfying σ(e) = e for
all e ∈ E(R). Then R ∝ R(σ) is semiabelian.

Corollary 2.17. LetD be a division ring with an endomorphism σ, thenD[x;σ]/(x2) is semiabelian.

A ring R is called left MC2 [2] if for any a ∈ R and e ∈ MEl(R), aRe = 0 implies
eRa = 0. Clearly, left idempotent reflexive rings are left MC2. We do not know whether
idempotent reversible rings are left MC2. But we know that there exists a left MC2 ring
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which is not idempotent reversible. In fact, there exists a semiabelian ring R which is not
abelian (see the example above Theorem 2.5), by [1, Corollary 2.4], R[x] is a semiabelian ring
which is not abelian. Hence, by Theorem 2.5, R[x] is not idempotent reversible. But R[x] is
a left MC2 ring.

The authors in [10, Theorem4.1] showed that if R is a left MC2 ring containing an
injective maximal left ideal, then R is a left self-injective ring. And [11, Proposition 5] showed
that if R is a left idempotent reflexive ring containing an injective maximal left ideal, then R
is a left self-injective ring.

Proposition 2.18. Let R be an idempotent reversible ring. If R contains an injective maximal left
ideal, then R is a left self-injective ring.

Proof. Let M be an injective maximal left ideal of R. Then R = M ⊕N for some minimal left
idealN of R. Hence we haveM = Re andN = R(1 − e) for some e2 = e ∈ R. IfMN = 0, then
we have eR(1− e) = 0. Since R is idempotent reversible, (1− e)Re = 0. So e is central. Now let
L be any proper essential left ideal of R and f : L → N any non-zero left R-homomorphism.
Then L/U ∼= N, where U = kerf is a maximal submodule of L. Now L = U ⊕ V , where
V ∼= N = R(1− e) is a minimal left ideal of R. Since e is central, V = R(1− e). For any z ∈ L, let
z = x + y, where x ∈ U,y ∈ V . Then f(z) = f(x) + f(y) = f(y). Since y = y(1 − e) = (1 − e)y,
f(z) = f(y) = f(y(1−e)) = yf(1−e). Since x(1−e) = (1−e)x ∈ V ∩U = 0, xf(1−e) = f(x(1 −
e) = f(0) = 0. Thus f(z) = yf(1 − e) = yf(1 − e) + xf(1 − e) = (y + x)f(1 − e) = zf(1 − e).
Hence RN is injective. If MN/= 0, by the proof of [10, Proposition 5], we have that RN is
injective. Hence R = M ⊕N is left self-injective.

Recall that a ring R is left pp if every principal left ideal of R is projective. As an
application of Proposition 2.18, we have the following result.

Corollary 2.19. The following conditions are equivalent for a ring R.

(1) R is a von Neumann regular left self-injective ring with Soc(RR)/= 0.

(2) R is an idempotent reversible left pp ring containing an injective maximal left ideal.

Proof. (1)⇒(2) is trivial.
(2)⇒(1) by Proposition 2.18, R is a left self-injective ring. Hence, by [12, Theorem1.2],

R is left C2, so, R is von Neumann regular because R is left pp. Also we have Soc(RR)/= 0 since
there is an injective maximal left ideal.

By [13], a ring R is said to be left HI if R is left hereditary containing an injective
maximal left ideal. Osofsky [14] proved that left self-injective left hereditary ring is semi-
simple Artinian. We can generalize the result as follows.

Corollary 2.20. The following conditions are equivalent for a ring R.

(1) R is a semisimple Artinian ring.

(2) R is an idempotent reversible leftHI ring.

According to [8], an element x ∈ R is called exchange if there exists e ∈ E(R) such that
e ∈ xR and 1 − e ∈ (1 − x)R, and x is said to be clean if x = e + u where e ∈ E(R) and
u ∈ U(R). By [8], clean elements are exchange and the converse holds when R is an abelian
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ring. A ring R is called exchange (clean) ring if every element of R is an exchange (clean)
element.

Proposition 2.21. Let R be a semiabelian ring. If x ∈ R is an exchange element, then x is a clean
element.

Proof. Since x is an exchange element, there exists e ∈ E(R) such that e ∈ xR and 1 − e ∈
(1 − x)R. Let e = xy and 1 − e = (1 − x)z where y = ye, z = z(1 − e) ∈ R. Then (x −
(1 − e))(y − z) = xy − xz − (1 − e)y + (1 − e)z = xy + (1 − x)z − (1 − e)y − ez =
e + 1 − e − (1 − e)y − ez = 1 − (1 − e)y − ez. Since R is a semiabelian ring, e is either left
semicentral or right semicentral. If e is left semicentral, then (1 − e)y = (1 − e)ye = 0 and
(ezR)2 = ezRezR = ez(1 − e)RezR ⊆ eR(1 − e)ReR = 0 by Theorem 2.7(1). Hence ez ∈ J(R).
Similarly, if e is right semicentral, then ez = ez(1 − e) = 0 and (1 − e)y ∈ J(R). This implies
1 − (1 − e)y − ez ∈ U(R), so (x − (1 − e))(y − z) ∈ U(R). Since R is a semiabelian ring, by
Theorem 2.8, R is a directly finite ring. Hence x − (1 − e) ∈ U(R), which implies x is a clean
element.

Corollary 2.22. If R is a semiabelian exchange ring, then R is a clean ring.

Theorem 2.23. Let R be a semiabelian ring and a, b ∈ R. If ab = 0, then aE(R)b ⊆ J(R).

Proof. Let ab = 0 and e ∈ E(R). Since R is a semiabelian ring, either e is left semicentral or e is
right semicentral. If e is left semicentral, then (Raeb)2 = RabRaeb = 0. If e is right semicentral,
then (Raeb)2 = RaebRab = 0. Hence Raeb ⊆ J(R) for each e ∈ E(R), which implies aE(R)b ⊆
J(R).

Corollary 2.24. Let R be an abelian ring and a, b ∈ R. If ab = 0, then aE(R)b ⊆ J(R).

The converse of Corollary 2.24 is not true, in general.

Example 2.25. let F be a field, and R =
(
F F
0 F

)
. Evidently, E(R) =

⋃
x∈F{

(
0 0
0 0

)
,
(
1 0
0 1

)
,
(
1 x
0 0

)
,

( 0 x
0 1

)}, J(R) = (
0 F
0 0

)
. LetA =

(
a1 b1
0 c1

)
, B =

(
a2 b2
0 c2

)
∈ R andAB = 0. Then a1a2 = c1c2 = 0. Since

A
(
1 x
0 0

)
B =

( 0 a1b2+a1xc2
0 0

) ∈ J(R) and A
( 0 x
0 1

)
B =

( 0 a1xc2+b1c2
0 0

) ∈ J(R). Hence AE(R)B ⊆ J(R),
but R is not an abelian ring.

A ring R is called EIFP if a, b ∈ R, ab = 0 implies aE(R)b ⊆ J(R). Clearly,
semiabelian rings are EIFP by Theorem 2.23. But the converse of Theorem 2.23 is not true,
in general.

Example 2.26. Take the ring R in Example 2.25, and let S = R ⊕ R. Then S is EIFP, but not
semiabelian. Indeed, take e1 = E11 + E12 and e2 = E12 + E22 in R, where Eij are matrix
units. Then (e1; e2) is an idempotent. By a direct computation, (e1; e2) is neither left nor right
semicentral. Hence R ⊕ R is not semiabelian while R ⊕ R is EIFP.
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