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We study the problem of the boundedness and compactness of Tφ when φ ∈ L2(Ω) and Ω is
a planar domain. We find a necessary and sufficient condition while imposing a condition that
generalizes the notion of radial symbol on the disk. We also analyze the relationship between the
boundary behavior of the Berezin transform and the compactness of Tφ.

1. Introduction

Let Ω be a bounded multiply-connected domain in the complex plane C, whose boundary
∂Ω consists of finitely many simple closed smooth analytic curves γj (j = 1, 2, . . . , n)where γj
are positively oriented with respect to Ω and γj ∩ γi = ∅ if i /= j. We also assume that γ1 is the
boundary of the unbounded component of C\Ω. LetΩ1 be the bounded component of C\γ1,
and Ωj (j = 2, . . . , n) the unbounded component of C \ γj , respectively, so that Ω = ∩nj=1Ωj .

For dν = (1/π)dxdy, we consider the usual L2-space L2(Ω) = L2(Ω, dν). The Bergman
space L2

a(Ω, dν), consisting of all holomorphic functions which are L2-integrable, is a closed
subspace of L2(Ω, dν)with the inner product given by

〈
f, g

〉
=
∫

Ω
f(z)g(z)dν(z) (1.1)

for f, g ∈ L2(Ω, dν). The Bergman projection is the orthogonal projection

P : L2(Ω, dν) −→ L2
a(Ω, dν). (1.2)
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It is well-known that for any f ∈ L2(Ω, dν), we have

Pf(w) =
∫

Ω
f(z)KΩ(z,w)dν(z), (1.3)

where KΩ is the Bergman reproducing kernel of Ω. For ϕ ∈ L∞(Ω, dν), the Toeplitz operator
Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) is defined by Tϕ = PMϕ, whereMϕ is the standardmultiplication

operator. A simple calculation shows that

Tϕf(z) =
∫

Ω
ϕ(w)f(w)KΩ(w, z)dν(w). (1.4)

For square-integrable symbols, the Toeplitz operator is densely defined but is not necessarily
bounded; therefore, the problem of finding necessary and sufficient conditions on the
function ϕ ∈ L2(Ω, dν) for the Toeplitz operators Tϕ to be bounded or compact is a
natural one, and it has been studied by many authors. Several important results have been
established when the symbol has special geometric properties. In fact, in the context of radial
symbols on the disk, many papers have been written with quite surprising results (see [1]
of Grudsky and Vasilevski, [2] of Zorboska, and [3] of Korenblum and Zhu) showing that
operators with unbounded radial symbols can have a very rich structure. In fact, in the
case of a continuous symbol, the compactness of the Toeplitz operators depends only on the
behavior of the symbol on the boundary of the disk and this is similar to what happens in
the Hardy space case, even though in the case of Bergman space, the Toeplitz operator with
continuous radial symbol is a compact perturbation of a scalar operator and in the Hardy
space case a Toeplitz operator with radial symbol is just a scalar operator. In the case of
unbounded radial symbols, a pivotal role is played by the fact that in the Bergman space
setting, contrary to the Hardy space setting, there is an additional direction that Grudsky and
Vasileski term as inside the domain direction: symbols that are nice with respect to the circular
directionmay have very complicated behavior in the radial direction. Of course, in the context
of arbitrary planar domains, it is not possible to use the notion of radial symbol.We go around
this difficulty by making two simple observations. To start, it is necessary to notice that the
structure of the Bergman kernel suggests that there is in any planar domain an internal region
that we can neglect when we are interested in boundedness and compactness of Toeplitz
operators with square integrable symbols, therefore the inside the domain direction counts up
to a certain point. The second observation consists in exploiting the geometry of the domain
and conformal equivalence in order to partially recover the notion of radial symbol. For these
reasons, we study the problem for planar domains when the Toeplitz operator symbols have
an almost-radial behavior and, for this class, we give a necessary and sufficient condition
for boundedness and compactness. We also address the problem of the characterization of
compactness by using the Berezin transform. In fact, under a growth condition for the almost-
radial symbol, we show that the Berezin transform vanishes to the boundary if and only if
the operator is compact.

The paper is organized as follows. In Section 2, we describe the setting where wework,
give the relevant definitions, and state our main result. In Section 3, we collect results about
the Bergman kernel for a planar domain and the structure of L2

a(Ω, dν). In Section 4, we prove
the main result and study several important consequences.
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2. Preliminaries

Let Ω be the bounded multiply-connected domain given at the beginning of Section 1, that
is, Ω = ∩nj=1Ωj , where Ω1 is the bounded component of C \ γ1, and Ωj (j = 2, . . . , n) is the
unbounded component of C\ γj . We use the symbolΔ to indicate the punctured disk {z ∈ C |
0 < |z| < 1}. Let Γ be any one of the domains Ω,Δ,Ωj (j = 2, . . . , n).

We call KΓ(z,w) the reproducing kernel of Γ and we use the symbol kΓ(z,w) to
indicate the normalized reproducing kernel, that is, kΓ(z,w) = KΓ(z,w)/KΓ(w,w)1/2.

For any A ∈ B(L2
a(Γ, dν)), we define Ã, the Berezin transform of A, by

Ã(w) = 〈AkΓw, kΓw〉 =
∫

Γ
AkΓw(z)k

Γ
w(z)dν(z), (2.1)

where kΓw(·) = KΓ(·, w)KΓ(w,w)−1/2.
If ϕ ∈ L∞(Γ), then we indicate with the symbol ϕ̃ the Berezin transform of the

associated Toeplitz operator Tϕ, and we have

ϕ̃(w) =
∫

Γ
ϕ(z)

∣∣∣kΓw(z)
∣∣∣
2
dν(z). (2.2)

We remind the reader that it is well known that Ã ∈ C∞
b (Γ), and we have ‖Ã‖∞ ≤ ‖A‖B(L2(Ω)).

It is possible, in the case of bounded symbols, to give a characterization of compactness using
the Berezin transform (see [4, 5]).

We remind the reader that anyΩ bounded multiply-connected domain in the complex
plane C, whose boundary ∂Ω consists of finitely many simple closed smooth analytic curves
γj (j = 1, 2, . . . , n), is conformally equivalent to a canonical bounded multiply-connected
domain whose boundary consists of finitely many circles (see [6]). This means that it is
possible to find a conformally equivalent domainD = ∩ni=1Di whereD1 = {z ∈ C : |z| < 1} and
Dj = {z ∈ C : |z − aj | > rj} for j = 2, . . . , n. Here aj ∈ D1 and 0 < rj < 1 with |aj − ak| > rj + rk
if j /= k and 1 − |aj | > rj . Before we state the main results of this paper we need to give a few
definitions.

Definition 2.1. Let Ω = ∩ni=1Ωi be a canonical bounded multiply-connected domain. We say
that the set of n + 1 functions P = {p0, p1, . . . , pn} is a ∂-partition for Ω if

(1) for every j = 0, 1, . . . , n, pj : Ω → [0, 1] is a Lipschitz, C∞-function,

(2) for every j = 2, . . . , n, there exists an open set Wj ⊂ Ω and an εj > 0 such that
Uεj = {ζ ∈ Ω : rj < |ζ − aj | < rj + εj}, and the support of pj is contained inWj and

pj(ζ) = 1, ∀ζ ∈ Uεj , (2.3)

(3) for j = 1, there exists an open set W1 ⊂ Ω and an ε1 > 0 such that Uε1 = {ζ ∈ Ω :
1 − ε1 < |ζ| < 1} and the support of p1 is contained inW1 and

p1(ζ) = 1, ∀ζ ∈ Uε1 , (2.4)
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(4) for every j, k = 1, . . . , n, Wj ∩Wk = ∅, the set Ω \ (
⋃n
j=1Wj) is not empty and the

function

p0(ζ) = 1, ∀ζ ∈
⎛

⎝
n⋃

j=1

Wj

⎞

⎠

c

∩Ω,

p0(ζ) = 0, ∀ζ ∈ Uεk , k = 1, . . . , n,

(2.5)

(5) for any ζ ∈ Ω, the following equation:

n∑

k=0

pk(ζ) = 1 (2.6)

holds.

We need to point out two facts about the definition above: (i) that near each connected
component of the boundary there is only one function which is different from zero (note that
this implies that the function must be equal to 1), and (ii) far away from the boundary only
the function p0 is different from zero.

Definition 2.2. A function ϕ : Ω = ∩ni=1Ωi → C is said to be essentially radial if there exists a
conformally equivalent canonical bounded domainD = ∩ni=1Di, such that if the map Θ : Ω →
D is the conformal mapping from Ω onto D, then

(1) for every k = 2, . . . , n and for some εk > 0, we have

ϕ ◦Θ−1(z) = ϕ ◦Θ−1(|z − ak|), (2.7)

when z ∈ Uεk = {ζ ∈ Ω : rk < |ζ − ak| < rk + εk},
(2) for k = 1 and for some ε1 > 0, we have

ϕ ◦Θ−1(z) = ϕ ◦Θ−1(|z|), (2.8)

when z ∈ Uε1 = {ζ ∈ Ω : 1 − ε1 < |ζ| < 1}.

The reader should note that in the case where it is necessary to stress the use of
a specific conformal equivalence, we will say that the map ϕ is essentially radial via Θ :
∩n
=1Ω
 → ∩n
=1D
 .

Before we proceed, the reader should notice that the definition, in the case of the disk,
just says that, when we are near to the boundary, the values depend only on the distance from
the center of the disk, so the function is essentially radial. In the general case, to formalize the
fact that the values depend essentially on the distance from the boundary, we can simplify our
analysis if we use the fact that this type of domain is conformally equivalent to a canonical
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bounded multiply-connected domain whose boundary consists of finitely many circles. For
this type of domain the idea of essentially radial symbol is quite natural. For this reason, we
use this simple geometric intuition to give the general definition.

Before we state the main result, we stress that in what follows, when we are working
with a general multiply-connected domain and we have a conformal equivalence Θ :
∩n

=1Ω
 → ∩n


=1D
 , we always assume that the ∂-partition is given on ∩n

=1D
 and transferred

to ∩n
=1Ω
 through Θ in the natural way.
At this point, we can state the main result.

Theorem 2.3. Let ϕ ∈ L2(Ω) be an essentially radial function via Θ : ∩n

=1Ω
 → ∩n


=1D
 , if one
defines ϕj = ϕ · pj , where j = 1, . . . , n and P is a ∂-partition for Ω, then the following are equivalent:

(1) the operator

Tϕ : L2
a(Ω, dν) −→ L2

a(Ω, dν) (2.9)

is bounded (compact).

(2) for any j = 1, . . . , n the sequences γϕj = {γϕj (m)}
m∈N

are in 
∞(Z+)(c0(Z+)) where, by
definition, if j = 2, . . . , n,

γϕj (m) = rj

∫∞

rj

ϕj ◦Θ−1
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds, ∀m ∈ Z+, (2.10)

and if j = 1

γϕ1(m) =
∫1

0
ϕ1 ◦Θ−1

(
s1/2(m+1)

)
ds, ∀m ∈ Z+. (2.11)

3. The Structure of L2
a(Ω) and Some Estimates about

the Bergman Kernel

From now on, we will assume that Ω = ∩nj=1Ωj where Ω1 = {z ∈ C : |z| < 1} and Ωj = {z ∈ C :
|z − aj | > rj} for j = 2, . . . , n. Here, aj ∈ Ω1 and 0 < rj < 1 with |aj − ak| > rj + rk if j /= k and
1 − |aj | > rj . We will indicate with the symbol Δ0,1 the punctured disk Ω1 \ {0}.

With the symbols KΩj (z,w), KΩ(z,w), KΔ(z,w), we denote the Bergman kernel on
Ωj , Ω, and Δ, respectively.

In order to gain more information about the kernel of a planar domain, it is important
to remind the reader that for the the punctured disk Δ0,1 and the disk Ω1, we have Lpa(Δ0,1) =
L
p
a(Ω1), if p ≥ 2, and, for any (z,w) ∈ Δ2, KΔ(z,w) = KΩ1(z,w) (see [7, 8]). This fact has an

important and simple consequence. In fact, if we consider Δa,r = {z ∈ C : 0 < |z − a| < r} and
Oa,r = {z ∈ C : |z − a| > r}, we can conclude that

KOa,r (z,w) =
r2

(
r2 − (z − a) · (w − a)

)2 , ∀(z,w) ∈ Oa,r ×Oa,r . (3.1)
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To see this, we use the well-known fact that the reproducing kernel of the unit disk is
given by (1 − zw)−2, therefore we have

KΔ0,1(z,w) =
1

(1 − z ·w)2
, ∀(z,w) ∈ Δ0,1 ×Δ0,1. (3.2)

This implies, by conformal mapping, that the reproducing kernel of Δa,r is

KΔa,r (z,w) =
r2

(
r2 − (z − a) · (w − a)

)2 , ∀(z,w) ∈ Δa,r ×Δa,r . (3.3)

Now, we define ϕ : Δa,r → Oa,r by

ϕ(z) = (z − a)−1r2 + a, (3.4)

and we use the well-known fact that the Bergman kernels of Δa,r and ψ(Δa,r) = Oa,r are
related via

KOa,r
(
ϕ(z), ϕ(w)

)
ϕ′(z)ϕ′(w) = KΔa,r (z,w) (3.5)

to obtain that

KOa,r (z,w) =
r2

(
r2 − (z − a) · (w − a)

)2 , ∀(z,w) ∈ Oa,r ×Oa,r . (3.6)

Since Ω1 = O0,1 and, for j = 2, . . . , n, Oaj ,rj = Ωj , then the last equation implies that

KΩ1(z,w) =
1

(1 − z ·w)2
,

KΩj (z,w) =
r2j

(
r2j −

(
z − aj

) · (w − aj
))2

(3.7)

if j = 2, . . . , n.
We also note that if we define

EΩ(z,w) = KΩ(z,w) −
n∑

j=1

KΩj (z,w), (3.8)

we can prove the following.
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Lemma 3.1. (1) EΩ is conjugate symmetric about z and w. For each w ∈ Ω, EΩ(·, w) is conjugate
analytic on Ω and EΩ ∈ C∞(Ω ×Ω).

(2) There are neighborhoodsUj of ∂Ωj (j = 1, . . . , n) and a constant C > 0 such thatUj ∩Uk

is empty if j /= k and

∣
∣
∣KΩ(z,w) −KΩj (z,w)

∣
∣
∣ < C, (3.9)

for z ∈ Ω and w ∈ Uj .
(3) EΩ ∈ L∞(Ω ×Ω).

Proof. (a) Since the Bergman kernels KΩ and KΩj have these properties (see [9]), by the
definition of EΩ, we get (1).

(b) The proof is given in [7, 8].
(c) Using the fact that

KΩ1(z,w) =
1

(1 − z ·w)2
,

KΩj (z,w) =
r2j

(
r2j −

(
z − aj

) · (w − aj
))2 ,

(3.10)

for j = 2, ..., n and (1) and (2), we get (3).

We observe that we can choose Rj > rj for j = 2, . . . , n and R1 < 1 such that Gj = {z :
rj < |z − aj | < Rj} (j = 2, . . . , n) and G1 = {z : R1 < |z| < 1}, then we have Gj ⊂ Uj , where Uj

is the same as in Lemma 3.1. We also have the following.

Lemma 3.2. There are constants D > 0 and M > 0 such that

(1) for any (z,w) ∈ Gi ×Ω ∪Ω ×Gi, one has

∣∣∣KΩ(z,w)
∣∣∣ < D

∣∣∣KΩj (z,w)
∣∣∣,

∣∣∣KΩj (z,w)
∣∣∣ <

∣∣∣KΩ(z,w)
∣∣∣ +M,

(3.11)

(2) for any z ∈ Ω, one has KΩj (z, z) < KΩ(z, z).

Proof. By the explicit formula of the Bergman kernelsKΩi , there are constants Ci andMi such
that

∣∣∣KΩi(z,w)
∣∣∣ ≥ Ci, (3.12)

for (z,w) ∈ (Gi ×Ω) ∪ (Ω ×Gi) and

∣∣∣KΩi(z,w)
∣∣∣ ≤Mi (3.13)
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if (z,w) /∈ Gi ×Gi for i = 1, 2, . . . , n. From the last Lemma, it follows that

∣
∣
∣KΩ(z,w)

∣
∣
∣ ≤

∣
∣
∣KΩi(z,w)

∣
∣
∣ + C ≤

(
1 +

C

Ci

)∣
∣
∣KΩi(z,w)

∣
∣
∣,

∣
∣
∣KΩi(z,w)

∣
∣
∣ ≤

∣
∣
∣KΩ(z,w)

∣
∣
∣ +

∣
∣
∣EΩ(z,w)

∣
∣
∣ +

∑

j /= i

∣
∣
∣KΩj (z,w)

∣
∣
∣

<
∣
∣
∣KΩ(z,w)

∣
∣
∣ + ‖EΩ‖∞ +

∑

i /= j

Mj,

(3.14)

whenever (z,w) ∈ (Gi ×Ω)∪ (Ω×Gi). If we callD the biggest number among {1+C/Cj} and
we let M = ‖EΩ‖∞ +

∑n
j=1Mj , then we get the first claimed estimate. The proof of (2) can be

found in [8, 10].

It is clear from what we wrote so far that we put a strong emphasis on the fact that the
domain under analysis Ω is actually the intersection of other domains, that is, Ω = ∩nj=1Ωj .
This also suggests that we should look for a representation of the elements of L2

a(Ω) that
reflects this fact. For this reason, we give the following.

Definition 3.3. Given Ω = ∩nj=1Ωj with Ω1 = {z ∈ C : |z| < 1} and Ωj = {z ∈ C : |z − aj | > rj},
for any f ∈ L2

a(Ω), we define n + 1 functions P0f, P1f, P2f, . . . , Pnf as follows: if z ∈ Ω, then
we set, for j = 1,

P1f(z) =
1

2πi
·
∫

γ̂1

f(ζ)
ζ − zdζ, (3.15)

for j = 2, 3, . . . , n,

Pjf =
1

2πi
·
∫

γ̂j

f(ζ)
ζ − zdζ −

1
2πi

·
∫

γ̂j

f(ζ)dζ, (3.16)

and for j = 0,

P0f =
n∑

j=2

(
1

2πi
·
∫

γ̂j

f(ζ)dζ

)
1

z − aj , (3.17)

where γ̂j (j = 1, . . . , n) are the circles which center at aj (a1 = 0) and lie inGj (see Lemma 3.2),
respectively, so that z is exterior to γ̂j (j = 2, . . . , n) and interior to γ̂1.

It is important that the reader notices that the Cauchy theorem implies that our
definition is independent from how we choose γ̂1, . . . , γ̂n. Moreover, it is important to notice
that the domains of the functions P2f, . . . , Pnf are actually the sets Ω2, . . . ,Ωn. In the next
Lemma, we give more information about this representation.
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Lemma 3.4. For f ∈ L2
a(Ω), one can write it uniquely as

f(z) =
n∑

j=1

(
Pjf

)
(z) +

(
P0f

)
(z), (3.18)

with Pjf ∈ L2
a(Ωj), P0f ∈ L2

a(Ω) ∩ C∞(Ω), Pk(Pjf) = 0 if j /= k, and moreover, there exists a
constantM1 such that, for j = 0, 1, . . . , n, one has

∥
∥Pjf

∥
∥
Ω ≤ ∥∥Pjf

∥
∥
Ωj

≤M1
∥
∥f
∥
∥
Ω. (3.19)

In particular, if f ∈ L2
a(Ωi), then Pif = f and

∥∥f
∥∥
Ωi

≤M1
∥∥f
∥∥
Ω, (3.20)

for i = 1, . . . , n.

Proof. Let f be any function analytic on Ω. For any z ∈ Ω, let γi (i = 1, . . . , n) be the circles
which center at ai (a1 = 0) and lie in Gi, respectively, so that z is exterior to γi (i = 2, . . . , n)
and interior to γ1. Using Cauchy’s Formula, we can write

f(z) =
n∑

j=1

1
2πi

·
∫

γj

f(ζ)
ζ − zdζ. (3.21)

Let

fj(z) =
1

2πi
·
∫

γj

f(ζ)
ζ − zdζ. (3.22)

By Cauchy’s Formula, the value fj(z) does not depend on the choice of γj if 1 ≤ j ≤ n and
f(z) =

∑n
j fj(z). Of course, each fj is well defined for all z ∈ Ωj and analytic in Ωj . In

addition, if j /= 1, we have that fj(z) → 0 as |z| → ∞. Writing the Laurent expansion at aj of
fj , we have

f1(z) =
∞∑

k=0

α1,kz
k, (3.23)

and, for j /= 1,

fj(z) =
−∞∑

k=−1
αj,k

(
z − aj

)k
, (3.24)
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and these series converge to fj uniformly and absolutely on any compact subset of Ωj ,
respectively. We remark that the coefficients are given by the following formula:

αj,k =
1

2πi

∫

γj

f(ζ)
(
ζ − aj

)k+1dζ, (3.25)

where k ≥ 0 if j = 1 and k ≤ −1 if j /= 1 and γj ⊂ Gj , 1 ≤ j ≤ n. Moreover, if f is holomorphic in
some Ωj and f(z) → 0 as |z| → ∞ when i /= 1, then αjk = 0 for all j /= i by Cauchy’s theorem
and, therefore, fj = 0.

Now, we define P1f = f1 and

Pjf(z) =
−∞∑

k=−2
αjk

(
z − aj

)k
, (3.26)

for j = 2, 3, . . . , n and

P0f(z) =
n∑

j=2

αj,−1
(
z − aj

)−1
, (3.27)

then f(z) =
∑n

i=0 Pif(z) for all z ∈ Ω and Pk(Pjf) = 0 if 0/= k /= j /= 0 as we have proved above.
We claim that f ∈ L2

a(Ω) implies that Pif ∈ L2
a(Ωj) for j = 1, 2, . . . , n, respectively.

Indeed, since each annulus Gj is contained in Ω, f ∈ L2
a(Ω) implies that f is an element of

L2
a(Gi) for all i = 1, 2, . . . , n.

For any fixed i, note that Pjf (0/= j /= i) and P0f − αj,−1 · (z − aj)−1 are analytic on Gi ∪
(C/Ωi) and lim|z|→∞Pjf(z) = 0 for j /= 1. Expanding them as Laurent series, it follows that:

(1) if i = 1, then Pjf =
∑+∞

k=1 βjk/z
k for j /= 1,

(2) if i /= 1, then

Pjf(z) =
+∞∑

k=0

βjk(z − ai)k, (3.28)

for 0/= j /= i and

P0f(z) =
+∞∑

k=0

β0k(z − ai)k +
αi,−1
z − ai . (3.29)

It is obvious that, in any case, these series converge uniformly and absolutely on Gi.
Observing that each Gi is an annulus at ai, we have, by direct computation, that

〈
f, f

〉
Gi

≥ 〈Pif, Pif
〉
Gi

+ |αi,−1|2(lnRi − ln ri) (3.30)
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if i /= 1 and

〈
f, f

〉
G1

≥ 〈P1f, P1f
〉
G1
. (3.31)

Therefore, for any i = 1, . . . , n, there exists a constantM′ such that

∥
∥Pif

∥
∥
Gi

≤ ∥∥f∥∥Gi
≤ ∥∥f∥∥Ω, (∗)

|αi,−1| ≤M′ · ∥∥f∥∥Ω. (∗∗)

From the definition of Pjf , we derive

∥∥P1f
∥∥2
G1

=
+∞∑

0

|α1k|2
(
1 − R2k+2

1

)

k + 1
,

∥∥Pif
∥∥2
Gi

=
−∞∑

k=−2

|α|2ik
(
r2k+2i − R2k+2

i

)

k + 1
,

(3.32)

for i = 2, . . . , n. The convergence of these series is guaranteed by the conditions (∗) and (∗∗).
Since R1 < 1 and ri < Ri, it follows that Pif ∈ L2

a(Ωi) and

∥∥P1f
∥∥2
Ω1

=
+∞∑

0

|α1k|2
k + 1

,

∥∥Pif
∥∥2
Ωi

=
−∞∑

k=−2

|α1k|2r2k+2i

k + 1
,

(3.33)

for i = 2, . . . , n. Comparing the expression of ‖Pif‖Ωi with the expression of ‖Pif‖Gi , it follows
that ‖Pif‖Ωi < M · ‖Pif‖Gi for some constantM for i = 1, . . . , n. Hence, ‖Pif‖Ωi < M · ‖Pif‖Ω.
Moreover, if we defineM′′ = Max{‖(z−ai)−1‖Ω}, from the inequalities ‖Pif‖Gi ≤ ‖f‖Gi ≤ ‖f‖Ω
and |αi,−1| ≤M′ · ‖f‖Ω and the definition of P0, it follows that ‖P0f‖Ω ≤ n ·M′ ·M′′ · ‖f‖Ω.

If f ∈ L2
a(Ωi) for some i ∈ {1, 2, . . . , n}, note that lim f(z) = 0 as |z| → ∞ for i /= 1,

then f(z) = Pif(z) + αi,−1(z − ai)−1 if i /= 1 and P1f = f if i = 1. For i /= 1, since f ∈ L2
a(Ωi) ⊂

L2
a(Ω) implies that Pif ∈ L2

a(Ωi), then αi,−1 · (z − ai)−1 ∈ L2
a(Ωi). We must have αi,−1 = 0 and,

consequently, P0f = 0. Hence, in any case, f ∈ L2
a(Ωi) implies f = Pif and Pjf = 0 if i /= j, and

this remark completes our proof.

Lemma 3.5. If {fn} is a bounded sequence in L2
a(Ω) and fn → 0 weakly in L2

a(Ω), then Pjfn → 0
weakly on L2

a(Ωj) for j = 1, . . . , n and P0fn → 0 uniformly on Ω.

Proof. By the previous Lemma, we know that the linear transformations {Pj} are bounded
operators, then fn → 0 weakly in L2

a(Ω) implies that Pjfn → 0 weakly on L2
a(Ωj) for j =
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1, . . . , n. For the same reason, P0fn → 0 weakly in L2
a(Ω) and then P0fn(ζ) → 0 for any ζ ∈ Ω.

Since

P0fm =
n∑

i=2

αi,−1(m)
(ζ − ai) , (3.34)

by the estimates given in the last lemma, we have that |αi,−1(m)| < M‖fm‖Ω. The boundedness
of {‖fm‖Ω} implies that the family of continuous functions {P0fm} is uniformly bounded and
equicontinuous on Ω, then, by Arzela-Ascoli’s Theorem, we have that P0fm → 0 uniformly
on Ω.

4. Canonical Multiply-Connected Domains and
Essentially Radial Symbols

In this section, we investigate, with the help of the results established in the previous section,
necessary and sufficient conditions on the essentially radial function ϕ ∈ L2(Ω, dν) for the
Toeplitz operator Tϕ to be bounded or compact.

Before we state the next Theorem, we remind the reader that

KΩ(ζ, z) = EΩ(ζ, z) +
n∑


=1

KΩ

 (ζ, z), (4.1)

where EΩ ∈ L∞(Ω ×Ω) and, for all 
 = 1, . . . , n, we have

KΩ

 (ζ, z) = K

Ω
 (ζ, z), ∀ζ, z ∈ Ω ×Ω, (4.2)

where KΩ
 is the reproducing kernel of Ω
 . If we use the symbol KΩ
0 to indicate EΩ, we can

write

KΩ(ζ, z) =
n∑


=0

KΩ

 (ζ, z). (4.3)

We also remind the reader that if I : L2
a(Ω) → L2

a(Ω) is the identity operator, then

I =
n∑


=0

P
, (4.4)

where P
 : L2
a(Ω) → L2

a(Ω) is a bounded operator for all 
 = 0, 1, . . . , n with P
f ∈ L2
a(Ω
) if


 = 1, . . . , n and P0f ∈ C∞(Ω) and PkP
 = 0 if k /= 
 (see Lemma 3.4).
In order to make our notation a little simpler, when we use a kernel operator we will

denote it by the name of its kernel function. For example, the Bergman projection will be
denoted by the symbol KΩ.

We are now in a position to prove the following result.
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Lemma 4.1. Let ϕ ∈ L2(D) be an essentially radial function where D = ∩nj=1Dj with D1 = {z ∈ C :
|z| < 1} andDj = {z ∈ C : |z − aj | > rj} for j = 2, . . . , n. If one defines ϕj = ϕ · pj where j = 1, . . . , n
and P = {p0, p1, . . . , pn} is a ∂-partition for D, then the following are equivalent:

(1) the operator

Tϕ : L2
a(D,dν) −→ L2

a(D,dν) (4.5)

is bounded (compact);

(2) for any j = 1, . . . , n, the operators

Tϕj : L
2
a

(
Dj, dν

) −→ L2
a

(
Dj, dν

)
(4.6)

are bounded (compact).

Proof. Let {p0, p1, . . . , pn} be a partition of the unit onD = ∩nj=1Dj , which is a canonical domain.
Now, we notice that for all f ∈ L2(D) and for all w ∈ D, we have the following:

Tϕf(w) =
∫

D

ϕ(z)f(z)KD(z,w)dv(z)

=
n∑

j=0

∫

D

ϕ(z)f(z)KDj (z,w)dv(z)

=
n∑

j=0

n∑

k=0

∫

D

ϕ(z)pk(z)f(z)KDj (z,w)dv(z)

=
n∑

j=0

n∑

k=0

Tjkf(w),

(4.7)

where, by definition, we have

Tjkf(w) =
∫

D

ϕ(z)pk(z)KDj (z,w)f(z)dv(w)dv(z). (4.8)

Claim 1. The operator Tj0 is Hilbert-Schmidt for any j = 0, 1, . . . , n.

Proof. We observe that, by definition, we have

Tj0f(w) =
∫

D

ϕ(z)p0(z)KDj (z,w)f(z)dv(z), (4.9)

therefore, if we define

I1 =
∫∫

D

∣∣∣ϕ(z)p0(z)KDj (z,w)
∣∣∣
2
dv(z)dv(w), (4.10)
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we have

I1 =
∫

D

∣
∣ϕ(z)p0(z)

∣
∣2
(∫

D

∣
∣
∣KDj (z,w)

∣
∣
∣
2
dv(w)

)
dv(z)

≤
∫

D

∣
∣ϕ(z)p0(z)

∣
∣2
∣
∣
∣KDj (z, z)

∣
∣
∣dv(z)

≤
(

Max
z∈supp(p0)

∣
∣p0(z)

∣
∣2KDj (z, z)

)∫

D

∣
∣ϕj(z)

∣
∣2dv(z)

≤
(

Max
z∈supp(p0)

∣
∣p0(z)

∣
∣2KDj (z, z)

)
· ∥∥ϕ∥∥2

D,2

<∞.

(4.11)

This implies that for any t = 0, 1, . . . , n, Tt0 is Hilbert-Schmidt. Therefore, the operator

n∑

t=0

Tt0 (4.12)

is Hilbert-Schmidt, and this completes the proof of the claim.

Claim 2. The operator T0k is Hilbert-Schmidt for any k = 0, 1, . . . , n.

Proof. We observe that, by definition, we have

T0kf(w) =
∫

D

ϕ(z)pk(z)KD0(z,w)f(z)dv(z), (4.13)

therefore, if we define

I2 =
∫∫

D

∣∣∣ϕ(z)pk(z)KD0(z,w)
∣∣∣
2
dv(z)dv(w), (4.14)

we have

I2 =
∫∫

D

∣∣ϕ(z)p0(z)
∣∣2
∣∣∣KD0(z,w)

∣∣∣
2
dv(w)dv(z)

≤
(

Max
(z,w)∈D×D

∣∣∣KD0(z,w)
∣∣∣
2
)
· v(D) ·

∫

D

∣∣ϕ(z)p0(z)
∣∣2dv(z)

≤
(

Max
(z,w)∈D×D

∣∣∣KD0(z,w)
∣∣∣
2
)
· v(D) · ∥∥ϕ∥∥2

D,2

<∞.

(4.15)

This implies that for any t = 0, 1, . . . , n, T0t is Hilbert-Schmidt. Therefore, the following

n∑

t=0

T0t (4.16)
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is Hilbert-Schmidt, and this completes the proof of the claim.

Claim 3. The operator Tij is Hilbert-Schmidt if i /= j /= 0 and j, i = 1, . . . , n.

Proof. We observe that

Tjkf(w) =
∫

D

ϕ(z)pk(z)KDj (z,w)f(z)dv(w)dv(z). (4.17)

To start, we give the following:

Nji(z,w) def= ϕj(z) ·KDi(z,w). (4.18)

We will show that Fubini theorem and the properties of the ∂-partition imply that

∫∫

D

∣∣Nji(z,w)
∣∣2dv(w)dv(z) <∞. (4.19)

In fact, we have

∫∫

D

∣∣Nji(z,w)
∣∣2 =

∫

D

(∫

D

∣∣Nji(z,w)
∣∣2dv(w)

)
dv(z)

=
∫∫

D

∣∣ϕj(z)
∣∣2
∣∣∣KDi(z,w)

∣∣∣
2
dv(w)dv(z)

=
∫

D

∣∣ϕj(z)
∣∣2
(∫

D

∣∣∣KDi(z,w)
∣∣∣
2
dv(w)

)
dv(z)

=
∫

D

∣∣ϕj(z)
∣∣2KDi(z, z)dv(z)

=
∫

D

∣∣ϕ(z)
∣∣2∣∣pj(z)

∣∣2KDi(z, z)dv(z)

≤
(

Max
z∈supp(pj )

∣∣pj(z)
∣∣2KDi(z, z)

)

· ‖ϕ‖2D,2

<∞.

(4.20)

Therefore, we can write that

Tϕ = K +
n∑


=1

Tϕ

 , (4.21)

where K is a compact operator.
We also observe that Lemma 3.4 implies that Tϕ

 =

∑n
j=0 Tϕ

Pj , and we prove that the

operator Tϕ

Pj is compact if j /= 
 and j, 
 = 1, . . . , n.
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Proof. In order to simplify the notation, we define the operator Rj,
 = Tϕ

Pj = KD

 Mϕp
Pj . To

prove our statement, it is enough to prove that if we take a bounded sequence {fn} in L2(D)
such that fn → 0 weakly, then we can prove that ‖Rj,
fn‖2 → 0. We know that the continuity
of P
 implies that Pjfk → 0 weakly on H2(Dl), and {‖Pjfk‖D
} is bounded by Lemma 3.5.
Since it is a sequence of holomorphic functions, we know that {Pjfk} is uniformly bounded
on any compact subset of D
 . Therefore, the sequence {Pjfk} is a normal family of functions.
Since Pjfk(ζ) → 0 for any ζ ∈ Dj , then Pjfk converges uniformly on any compact subset of
Dj and consequently on F = supp(p
). To complete the proof, we remind the reader that if
we define the operators Q
 : L2(D) → L2(D), for 
 = 1, 2, . . . , n, in this way

Q
f(z) =
∫

D

f(ζ)
∣
∣
∣KD


 (ζ, z)
∣
∣
∣dv(ζ). (4.22)

It is possible to prove, with the help of Schur’s test (see [11] ), that Q
 is a bounded operator
(see [5]). Now, we observe that

∣∣Rj,
fk(ζ)
∣∣ ≤ Sup

{∣∣Pjfk(ζ)
∣∣ : ζ ∈ F} · ∣∣Qj

(∣∣XFϕps
∣∣)(ζ)

∣∣, (4.23)

then, by using the fact that Q
 is bounded, we have

∥∥Rj,
fk
∥∥
D
≤ Sup

{∣∣Pjfk(ζ)
∣∣ : ζ ∈ F} ·M · ∥∥ϕ1ps

∥∥
D,2 −→ 0, (4.24)

and this completes the proof of our claim. Notice also that using the same strategy, we can
prove that each Tϕ

P0 is compact.

Therefore, we have

Tϕ = K +
n∑


=1

Tϕ



= K +K1 +
n∑


=1

Tϕ

P
,

(4.25)

where K, K1 are compact operators. Since P 2
t = Pt, PtPs = 0 and if j /= 
, then Tϕ is bounded

(compact) if and only if the operators Tϕ

P
 are bounded (compact) operators.
Since P
L2

a(D) = L2
a(D
), then it follows that the operator Tϕ

P
 is bounded (compact)

if and only if Tϕ

 is bounded (compact).
We are finally, with the help of [1]’s main result, in a position to prove the main result

of this paper.

Theorem 4.2. Let ϕ ∈ L2(D) be an essentially radial function where D = ∩nj=1Dj with D1 = {z ∈
C : |z| < 1} and Dj = {z ∈ C : |z − aj | > rj} for j = 2, . . . , n. If one defines ϕj = ϕ · pj where
j = 1, . . . , n and P = {p0, p1, . . . , pn} is a ∂-partition for D then the following are equivalent:
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(1) the operator

Tϕ : L2
a(D,dν) −→ L2

a(D,dν) (4.26)

is bounded (compact).

(2) for any j = 1, . . . , n, the sequences γϕj = {γϕj (m)}
m∈N

are in 
∞(Z+)(c0(Z+)) where, by
definition, if j = 2, . . . , n

γϕj (m) = rj

∫∞

rj

ϕj
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds ∀m ∈ Z+, (4.27)

and for j = 1,

γϕ1(m) =
∫1

0
ϕ1

(
s1/2(m+1)

)
ds, ∀m ∈ Z+. (4.28)

Proof. In the previous theorem, we proved that the operator under examination is bounded
(compact) if and only if for any j = 1, . . . , n the operators

Tϕj : L
2(Dj, dν

) −→ L2
a

(
Dj, dν

)
(4.29)

are bounded (compact). If j = 2, . . . , n, we observe that if we consider the following sets
Δ0,1 = {z ∈ C : 0 < |z − a| < 1} and Δaj ,rj = {z ∈ C : 0 < |z − aj | < rj} and the following maps

Δ0,1
α−−−→ Δaj ,rj

β−−−→ Dj, (4.30)

where α(z) = aj + rjz and β(w) = (w − aj)−1r2j + aj and we use Proposition 1.1 in [8], we can
claim that

Tϕj = V
−1
β◦αTϕj◦β◦αVβ◦α, (4.31)

where Vβ◦α : L2(Δ0,1) → L2(Dj) is an isomorphism of Hilbert spaces. Therefore, Tϕj is
bounded (compact) if and only if Tϕj◦β◦α is bounded (compact). We also know that this, in
turn, is equivalent to the fact that the sequence

γϕj =
{
γϕj (m)

}

m∈N

(4.32)

is in 
∞(Z+)(c0(Z+)), where

γϕj (m) =
∫1

0
ϕj ◦ β ◦ α

(
r1/2(m+1)

)
dr, ∀m ∈ Z+. (4.33)
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To complete the proof, we observe that since ϕj is radial and β ◦ α(r) = r−1rj + aj then, after a
change of variable, we can rewrite the last integral, and therefore the formula

γϕj (m) = rj

∫∞

rj

ϕj
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds, ∀m ∈ Z+ (4.34)

must hold for any j = 2, . . . , n. The case j = 1 is immediate.

Now, we can prove the following.

Theorem 4.3. Let ϕ ∈ L2(Ω) be an essentially radial function via the conformal equivalence Θ :
Ω → D, define ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition for Ω, then the following
conditions are equivalent:

(1) the operator

Tϕ : L2
a(Ω, dν) −→ L2

a(Ω, dν) (4.35)

is bounded (compact);

(2) for any j = 1, . . . , n, the sequences γϕj = {γϕj (m)}
m∈N

are in 
∞(Z+)(c0(Z+)) where, by
definition, if j = 2, . . . , n

γϕj (m) = rj

∫∞

rj

ϕj ◦Θ−1
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds, ∀m ∈ Z+, (4.36)

and for j = 1

γϕ1(m) =
∫1

0
ϕ1 ◦Θ−1

(
s1/2(m+1)

)
ds, ∀m ∈ Z+. (4.37)

Proof. We know that Ω is a regular domain, and therefore if Θ is a conformal mapping
from Ω onto D then the Bergman kernels of Ω and Θ(Ω) = D, are related via
KD(Θ(z),Θ(w))Θ′(z)Θ′(w) = KΩ(z,w), and the operator VΘf = Θ′ · f ◦ Θ is an isometry
from L2(D) ontoL2(Ω) (see Proposition 1.1 in [8]). In particular, we have VΘP

D = PΩVΘ and
this implies that VΘTϕ = Tϕ◦Θ−1VΘ. Therefore, the operator Tϕ is bounded (compact) if and
only if the operator Tϕ◦Θ−1 : L2(D,dν) → L2

a(D,dν) is bounded (compact). In the previous
theorem we proved that the operator in exam is bounded (compact) if and only if for any
j = 1, . . . , n the operators

Tϕj◦Θ−1 : L2
a

(
Dj, dν

) −→ L2
a

(
Dj, dν

)
(4.38)

are bounded (compact). Hence, we can conclude that the operator is bounded (compact) if
and only if for any j = 1, . . . , n the sequences γϕj = {γϕj (m)}

m∈N
are in 
∞(Z+)(c0(Z+)) where,

by definition, if j = 2, . . . , n, we have

γϕj (m) = rj

∫∞

rj

ϕj ◦Θ−1
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds, ∀m ∈ Z+, (4.39)
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and for j = 1,

γϕ1(m) =
∫1

0
ϕ1 ◦Θ−1

(
s1/2(m+1)

)
ds, ∀m ∈ Z+, (4.40)

and this completes the proof.

We now introduce a set of functions that will allow us to further explore the structure
of Toeplitz operators with radial-like symbols. For j = 2, . . . , n, we define

Bϕj (s) = rj

∫s

rj

ϕj ◦Θ−1
(
r1/2j x1/2 + aj

) 1
x2
dx, (4.41)

and for j = 1, we set

Bϕ1(s) =
∫1

s

ϕ1 ◦Θ−1
(
x1/2

)
dx. (4.42)

We obtain the following useful theorem.

Theorem 4.4. Let ϕ ∈ L2(Ω) be an essentially radial function via the conformal equivalence Θ :
Ω → D. If one defines ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition for Ω, then for the
operator Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) the following hold true:

(1) if for any j = 1, . . . , n

∣∣∣Bϕj (s)
∣∣∣ = O

(
rj − s

)
as s −→ rj , (4.43)

then Tϕ is bounded;

(2) if for any j = 1, . . . , n

∣∣∣Bϕj (s)
∣∣∣ = o

(
rj − s

)
as s −→ rj , (4.44)

then Tϕ is compact.

Proof. To prove the first, we observe that our main theorem implies that the boundedness
(compactness) of the operator is equivalent to the fact that for any j = 1, . . . , n the sequences
γϕj = {γϕj (m)}

m∈N
are in 
∞(Z+)(c0(Z+))where, by definition, if j = 2, . . . , n,

γϕj (m) = rj

∫∞

rj

ϕj ◦Θ−1
(
r
(2m+1)/2(m+1)
j s1/2(m+1) + aj

) 1
s2
ds ∀m ∈ Z+, (4.45)
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and for j = 1

γϕj (m) =
∫1

0
ϕ1 ◦Θ−1

(
s1/2(m+1)

)
ds ∀m ∈ Z+, (4.46)

and, in virtue of [1]’s main result, it is true that γϕj = {γϕj (m)}
m∈N

are in 
∞(Z+) if for any
j = 1, . . . , n,

∣
∣
∣Bϕj (s)

∣
∣
∣ = O

(
rj − s

)
as s −→ rj , (4.47)

and γϕj = {γϕj (m)}
m∈N

are in c0(Z+)) if for any j = 1, . . . , n

∣
∣
∣Bϕj (s)

∣
∣
∣ = o

(
rj − s

)
as s −→ rj . (4.48)

It is also useful to observe that in the case of a positive symbol, we can prove that the
condition above is necessary and sufficient. In fact (see [1]), we have the following.

Theorem 4.5. Let ϕ ∈ L2(Ω) be an essentially radial function via the conformal equivalence Θ :
Ω → D. If we define ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition for Ω and if ϕ ≥ 0 a.e. in
Ω, then for the operator Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν), the following hold true:

(1) Tϕ is bounded if and only if

∣∣∣Bϕj (s)
∣∣∣ = O

(
rj − s

)
as s −→ rj , (4.49)

for any j = 1, . . . , n,

(2) Tϕ is compact if and only if

∣∣∣Bϕj (s)
∣∣∣ = o

(
rj − s

)
as s −→ rj , (4.50)

for any j = 1, . . . , n.

Proof. The proof is an immediate consequence of Theorem 3.5 in [1] and the theorem above.

There are a few useful observations that we can make at this point. If the Toeplitz
operator Tϕ : L2

a(Ω, dν) → L2
a(Ω, dν) has an essentially radial positive symbol ϕ ≥ 0 such

that for some 
 = 1, . . . , n, the following

lim
δ→ 0

(
inf

dist(z,∂Ω
)<δ
ϕ(z)

)
= ∞ (4.51)

holds, then the operator Tϕ is unbounded. Moreover, if Tϕ is bounded and the symbol is an
unbounded essentially radial function, then it must be true that around any ∂Ω
 , the symbol
has an oscillating behavior.
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In order to present an application, we consider a family of examples. Let us consider
the case where Ω = ∩nj=1Ωj with Ω1 = {z ∈ C : |z| < 1} and Ωj = {z ∈ C : |z − aj | > rj} for
j = 2, . . . , n. Let ϕ ∈ L2(Ω) be a function that can be written in the following way:

ϕ =
n∏


=1

ϕ(
), (4.52)

where, for any 
 = 1, 2, . . . , n, ϕ(
) is radial, that is, ϕ(
) = ϕ(
)(|z − a
 |) and satisfies

inf
|z−a
 |>r
+ε


ϕ(
)(|z − a
 |) = m
 > 0, sup
|z−a
 |>r
+ε


ϕ(
)(|z − a
 |) =M
 <∞ (4.53)

if 
 = 2, . . . , n and

inf
|z|<1−ε1

ϕ(1)(|z|) = m1 > 0, sup
|z−a
 |<1−ε1

ϕ(1)(|z|) =M1 <∞. (4.54)

if 
 = 1. As a consequence of our results, we can conclude that

(1) Tϕ is bounded if there exists a constant C1 such that for any j = 2, . . . , n,

lim sup
s→ r


∣∣∣∣∣
r


s − r


∫s

r


ϕ(
)
(
r1/2


x1/2 + a


) 1
x2
dx

∣∣∣∣∣
< C1,

lim sup
s→ 1

∣∣∣∣∣
1

1 − s
∫1

s

ϕ(
)
(
x1/2

)
dx

∣∣∣∣∣
< C1,

(4.55)

for any j = 1,

(2) Tϕ is compact if for any j = 2, . . . , n

lim
s→ r


r

s − r


∫s

r


ϕ(
)
(
r1/2


x1/2 + a


) 1
x2
dx = 0,

lim
s→ 1

1
1 − s

∫1

s

ϕ(
)
(
x1/2

)
dx = 0,

(4.56)

for j = 1.

It is also possible to show that the sufficient conditions may fail, but the operator is still
bounded or even compact. In fact, we can show that given any planar bounded multiply-
connected domain Ω, whose boundary ∂Ω consists of finitely many simple closed smooth
analytic curves, there exist unbounded functions ϕ ∈ L2(Ω) such that Tϕ is compact even
when the sufficient conditions are not satisfied. To prove this claim, we observe that for the
domain Ω there exists a conformally equivalent domain D = ∩ni=1Di where D1 = {z ∈ C :
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|z| < 1} and Dj = {z ∈ C : |z − aj | > rj} for j = 2, . . . , n where aj ∈ D1 and 0 < rj < 1 with
|aj − ak| > rj + rk if j /= k and 1 − |aj | > rj . If we denote with the symbol

Ψ : Ω −→ D (4.57)

the conformal equivalence between Ω and D, then we can define, on Ω, the map

ϕu,v =
n∏


=1

ϕu
,v
 (
), (4.58)

where, for any 
, we have

ϕu
,v
 (
)(z) = −(1 − u
)
(
1 − dist (Ψ(z), ∂D
)

2
)−u


sin
(
1 − dist (Ψ(z), ∂D
)

2
)−v


+ v

(
1 − dist (Ψ(z), ∂D
)

2
)−v
−u


cos
(
1 − dist (Ψ(z), ∂D
)

2
)−v


,

(4.59)

where b
, a
 ∈ (0,∞). It is very easy to see that if we denote with

Q
 =
{
(u
, v
) ∈ (0,∞)2 | v
 + u
 < 1, u
 < v


}
, (4.60)

then on the set of parameters Q1 × Q2 · · · × Qn, the operator Tϕa,b is bounded and compact.
In the last part of this paper, we concentrate on the relationship between compact

operators and the Berezin transform. We remind the reader that given a Toeplitz operator for
any Tφ on L2

a, we define T̃φ, the Berezin transform of Tφ, by

φ̃(w) = 〈Tφkw, kw〉 =
∫

Ω
φ(z)|kw(z)|2dν(z), (4.61)

where kw(·) = K(·, w)K(w,w)−1/2. It is quite simple to show that if an operator A ∈
B(L2

a(Γ, dν)) is compact, then Ã, the Berezin transform of A, must vanish at the boundary.
However, it is possible to show (see [12]) that there are bounded operators which are not
compact but whose Berezin transforms vanish at the boundary. In a beautiful paper, Axler
and Zheng have proved (see [4]) that if D is the disk, S =

∑m
j

∏mj

k
Tϕi,k , where ϕi,k ∈ L∞(D),

then S is compact if and only if its Berezin transform vanishes at the boundary of the disk.
Their fundamental result has been extended in several directions, in particular when Ω is a
general smoothly bounded multiply-connected planar domain [5].

So far, we have characterized the boundedness and compactness of the operator Tϕ
with the help of the sequences γϕj = {γϕj (m)}. However, we did not so far try to characterize
the compactness in terms of the Berezin transform. In the next theorem, under a certain
condition, wewill show that the Berezin transform characterization of compactness still holds
in this context.

Before we state and prove the next result, we would like to say a few words about
the intuition behind it. In the case of the disk, it is possible to show that when the operator
is radial then its Berezin transform has a very special form. In fact, if ϕ : D → C is radial
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then T̃ϕ(z) = (1 − |z|2)2∑(n + 1)〈Tϕen, en〉|z|2n. Therefore to show that the vanishing of the
Berezin Transform implies compactness is equivalent, given that Tϕ is diagonal, to show that
lim|z|→ 1(1 − |z|2)2∑(n + 1)〈Tϕen, en〉|z|2n = 0 implies limn→∞〈Tϕen, en〉 = 0. Korenblum and
Zhu realized this in the their seminal paper [3] and, along this line, more was discovered by
Zorboska (see [2]) and Grudsky and Vasilevski (see [1]). In the case of a multiply-connected
domain, it is not possible to write things so neatly; however, we can exploit our estimates near
the boundary to use similar arguments. This is the content of what we prove in the following.

Theorem 4.6. Let ϕ ∈ L2(D) be an essentially radial function where D = ∩nj=1Dj with D1 = {z ∈
C : |z| < 1} and Dj = {z ∈ C : |z − aj | > rj} for j = 2, . . . , n. If one defines ϕj = ϕ · pj where
j = 1, . . . , n and P = {p0, p1, . . . , pn} is a ∂-partition for D. Let us assume that γφj = {γφj (m)}

m∈N
is

in 
∞(Z+) and that there is a constant C2 such that for j = 2, . . . , n,

sup
τ∈[aj+rj ,∞)

∣
∣∣∣∣
ϕj(τ) −

τ − aj
τ − rj − aj

∫ τ

aj+rj
ϕj
(
y
)
(

rj
(
y − aj

)2

)

dy

∣
∣∣∣∣
< C2, (4.62)

and for j = 1

sup
τ∈[0,1]

∣∣∣∣∣
ϕ1(τ) − 1

1 − τ
∫1

τ

ϕ1(s)ds

∣∣∣∣∣
< C2, (4.63)

then the operator Tϕ : L2
a(D,dν) → L2

a(D,dν) is compact if and only if

lim
w→ ∂D

T̃ϕ(w) = 0. (4.64)

Proof. We know that the operator Tϕ : L2
a(D,dν) → L2

a(D,dν) is bounded if and only if for
any j = 1, . . . , n the operators Tϕj : L

2
a(Dj, dν) → L2

a(Dj, dν) are bounded. Since we assume
that γφj = {γφj (m)}

m∈N
is in 
∞(Z+), then we can conclude that Tϕ is bounded. As we have

done before if we fix j = 2, . . . , n, by using Δ0,1
α−→ Δaj ,rj

β−→ Dj with Δ0,1 = {z ∈ C : 0 < |z − a|
< 1} and Δaj ,rj = {z ∈ C : 0 < |z − aj | < rj}, and the maps Δ0,1

α−→ Δaj ,rj

β−→ Dj where
α(z) = aj + rjz and β(w) = (w − aj)−1r2j + aj , we can claim that Tϕj = V −1

β◦αTϕj◦β◦αVβ◦α where

Vβ◦α : L2(Δ0,1) → L2(Dj) is an isomorphism of Hilbert spaces. Therefore, Tϕj is compact if
and only if Tϕj◦β◦α is compact. We also know that this, in turn, is equivalent to the vanishing
of the Berezin transform if the function

(
ϕ ◦ β ◦ α)Ber,j(s) = ϕj ◦ β ◦ α(s) −

1
1 − s

∫1

s

ϕj ◦ β ◦ α(t)dt (4.65)
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is bounded. Since ϕj is radial and β ◦ α(t) = t−1rj + aj , then, after a change of variable under
the sign of integral, we can rewrite the last integral, and therefore we obtain the formula

(
ϕ ◦ β ◦ α)Ber,j(s) = ϕj ◦ β ◦ α(s) −

1
1 − s

∫aj+rj

(rj/s)+aj
ϕj
(
y
)
( −rj
(
y − aj

)2

)

dy

= ϕj ◦ β ◦ α(s) − 1
1 − s

∫ (rj/s)+aj

aj+rj
ϕj
(
y
)
(

rj
(
y − aj

)2

)

dy

= ϕj ◦ β ◦ α(s) − 1
1 − s

∫ (rj/s)+aj

aj+rj
ϕj
(
y
)
(

rj
(
y − aj

)2

)

dy.

(4.66)

Moreover, if we define τ = s−1rj + aj , we can write

ϕBer,j(τ) = ϕj(τ) −
τ − aj

τ − rj − aj

∫ τ

aj+rj
ϕj
(
y
)
(

rj
(
y − aj

)2

)

dy. (4.67)

Therefore, if we assume that this function is bounded, we can conclude (see [2]) that from
limw→Δ0,1 T̃ϕj◦β◦α(w) = 0, it follows that T̃ϕj◦β◦α is compact for j = 2, . . . , n. Therefore, we can
infer that T̃ϕj is compact. We also observe that

lim
w→Δ0,1

T̃ϕj◦β◦α(w) = 0 (4.68)

if and only if limw→ ∂Dj T̃ϕj (w) = 0. To prove this fact, we observe that, by definition, we have

T̃ϕj◦β◦α(z) =
〈
Tϕj◦β◦αk

Δ0,1
z , k

Δ0,1
z

〉

=
∫

Δ0,1

Tϕj◦β◦αk
Δ0,1
z (w)kΔ0,1

z (w)dw,
(4.69)

where

k
Δ0,1
z (·) = KΔ0,1

z (·, z)KΔ0,1
z (z, z)−1/2. (4.70)

Let us take (β ◦ α)−1 : Dj → Δ0,1. Since (JR(β ◦ α)−1)(w) is |((β ◦ α)−1)′(w)|2 and there exists
ζ ∈ Dj such that (β ◦ α)(z) = ζ, we obtain

T̃ϕj◦β◦α(z) =
∫

Dj

(
A

(
V(β◦α)−1k

Δ0,1

(β◦α)−1(ς)

))
k
Δ0,1

(β◦α)−1(ς)

((
β ◦ α)−1

)((
β ◦ α)−1

)′
dw, (4.71)
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where A = (V(β◦α)−1Tϕj◦β◦αV(β◦α)). Given the relationship between

k
Δ0,1

(β◦α)−1(ζ)

((
β ◦ α)−1(w)

)
(4.72)

and k
Dj

ζ
(w), we obtain

T̃ϕj◦β◦α(z) =
∫

Dj

(
Tϕj k

Dj

ζ

)
(w)k

Dj

ζ (w)dw. (4.73)

Therefore, it follows that T̃ϕj◦β◦α(z) = T̃ϕj ((β ◦ α)(z)). The case j = 1 is immediate.
Hence, we observe that from what we have proved so far, we can infer with the help

of Lemmas 3.1 and 3.2 in Section 2 that, under the stated condition, if

lim
w→ ∂D

T̃ϕ(w) = 0 (4.74)

then Tϕ is a compact operator. To complete the proof, we observe that the compactness of Tϕ :
L2
a(D,dν) → L2

a(D,dν) implies the vanishing of the Berezin transform since kw converges
weakly and uniformly to zero as w → ∂D.

Finally, we also observe that as a simple consequence, we obtain the following.

Corollary 4.7. Let ϕ ∈ L2(Ω) be an essentially radial function via the conformal equivalence Θ :
Ω → D. If one defines ϕj = ϕ · pj where j = 1, . . . , n and P is a ∂-partition forΩ. Let us assume that
γφj = {γφj (m)}

m∈N
is in 
∞(Z+) and that there is a constant C3 such that for j = 2, . . . , n,

sup
τ∈[aj+rj ,∞)

∣∣∣∣∣
ϕj ◦Θ(τ) − τ − aj

τ − rj − aj

∫ τ

aj+rj
ϕj ◦Θ(y)

(
rj

(
y − aj

)2

)

dy

∣∣∣∣∣
< C3, (4.75)

and for j = 1

sup
τ∈[0,1]

∣∣∣∣∣
ϕ1 ◦Θ(τ) − 1

1 − τ
∫1

τ

ϕ1 ◦Θ(s)ds

∣∣∣∣∣
< C3, (4.76)

then the operator Tϕ : L2
a(Ω, dν) → L2

a(Ω, dν) is compact if and only if

lim
w→ ∂Ω

T̃ϕ(w) = 0. (4.77)
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