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We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms
for finding a common element of the zero point of a maximal monotone operator, the set of
solutions of equilibrium problems, and the set of solution of the variational inequality operators of
an inverse stronglymonotone in a Banach space under different conditions. Moreover, applications
to complementarity problems are given. Our results modify and improve the recently announced
ones by Li and Song (2008) and many authors.

1. Introduction

Let E be a Banach space with norm ‖·‖,C a nonempty closed convex subset of E, let E∗ denote
the dual of E and < ·, · > is the pairing between E and E∗.

Consider the problem of finding

v ∈ E such that 0 ∈ T(v), (1.1)

where T is an operator from E into E∗. Such v ∈ E is called a zero point of T . When T is a
maximal monotone operator, a well-known method for solving (1.1) in a Hilbert space H is
the proximal point algorithm x1 = x ∈ H and

xn+1 = Jrnxn, n = 1, 2, 3, . . . , (1.2)
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where {rn} ⊂ (0,∞) and Jrn = (I + rnT)
−1, then Rockafellar [1] proved that the sequence {xn}

converges weakly to an element of T−1(0).
In 2000, Kamimura and Takahashi [2] proved the following strong convergence

theorem in Hilbert spaces, by the following algorithm:

xn+1 = αnx + (1 − αn)Jrnxn, n = 1, 2, 3, . . . , (1.3)

where Jr = (I + rT)−1J , then the sequence {xn} converges strongly to PT−10(x), where PT−10

is the projection from H onto T−1(0). These results were extended to more general Banach
spaces see [3, 4].

In 2004, Kohsaka and Takahashi [4] introduced the following iterative sequence for a
maximal monotone operator T in a smooth and uniformly convex Banach space: x1 = x ∈ E
and

xn+1 = J−1(αnJx + (1 − αn)J(Jrnxn)), n = 1, 2, 3, . . . , (1.4)

where J is the duality mapping from E into E∗ and Jr = (I + rT)−1J .
Recently, Li and Song [5] proved a strong convergence theorem in a Banach space, by

the following algorithm: x1 = x ∈ E and

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnxn)

)
,

xn+1 = J−1
(
αnJx1 + (1 − αn)J

(
yn

))
,

(1.5)

with the coefficient sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfying limn→∞αn = 0,∑∞
n=1 αn = ∞, limn→∞βn = 0, and limn→∞rn = ∞. Where J is the duality mapping from E into

E∗ and Jr = (I + rT)−1J . Then, they proved that the sequence {xn} converges strongly toΠCx,
where ΠC is the generalized projection from E onto C.

Let C be a nonempty closed convex subset of E, and let A be a monotone operator of C
into E∗. The variational inequality problem is to find a point x∗ ∈ C such that

〈v − x∗, Ax∗〉 ≥ 0, ∀v ∈ C. (1.6)

The set of solutions of the variational inequality problem is denoted by VI(C,A). Such a
problem is connected with the convex minimization problem, the complementarity problem,
the problem of finding a point u ∈ E satisfying 0 = Au, and so on. An operator A of C into E∗

is said to be inverse-strongly monotone if there exists a positive real number α such that

〈
x − y,Ax −Ay

〉 ≥ α
∥∥Ax −Ay

∥∥2
, (1.7)

for all x, y ∈ C. In such a case, A is said to be α-inverse-strongly monotone. If an operator A of
C into E∗ is α-inverse-strongly monotone, then A is Lipschitz continuous, that is, ‖Ax −Ay‖ ≤
(1/α)‖x − y‖ for all x, y ∈ C.
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In a Hilbert space H, Iiduka et al. [6] proved that the sequence {xn} defined by: x1 =
x ∈ C and

xn+1 = PC(xn − λnAxn), (1.8)

where PC is the metric projection ofH ontoC and {λn} is a sequence of positive real numbers,
converges weakly to some element of VI(C,A).

In 2008, Iiduka and Takahashi [7] introduced the folowing iterative scheme for finding
a solution of the variational inequality problem for an inverse-strongly monotone operatorA
in a Banach space x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn), (1.9)

for every n = 1, 2, 3, . . ., where ΠC is the generalized metric projection from E onto C, J is the
duality mapping from E into E∗ and {λn} is a sequence of positive real numbers. They proved
that the sequence {xn} generated by (1.9) converges weakly to some element of VI(C,A).

Let Θ be a bifunction of C ×C into R and ϕ : C → R a real-valued function. The mixed
equilibrium problem, denoted by MEP(Θ, ϕ), is to find x ∈ C such that

Θ
(
x, y

)
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.10)

If ϕ ≡ 0, the problem (1.10) reduces into the equilibrium problem for Θ, denoted by EP(Θ), is to
find x ∈ C such that

Θ
(
x, y

) ≥ 0, ∀y ∈ C. (1.11)

If Θ ≡ 0, the problem (1.10) reduces into the minimize problem, denoted by Argmin(ϕ), is to
find x ∈ C such that

ϕ
(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.12)

The above formulation (1.11)was shown in [8] to covermonotone inclusion problems, saddle
point problems, variational inequality problems, minimization problems, optimization
problems, variational inequality problems, vector equilibrium problems, and Nash equilibria
in noncooperative games. In addition, there are several other problems, for example, the
complementarity problem, fixed point problem, and optimization problem, which can also
be written in the form of an EP(Θ). In other words, the EP(Θ) is an unifying model for
several problems arising in physics, engineering, science, optimization, economics, and so
forth. In the last two decades, many papers have appeared in the literature on the existence
of solutions of EP(Θ); see, for example, [8–11] and references therein. Some solution methods
have been proposed to solve the EP(Θ); see, for example, [9, 11–21] and references therein.
In 2005, Combettes and Hirstoaga [12] introduced an iterative scheme of finding the best
approximation to the initial data when EP(Θ) is nonempty and they also proved a strong
convergence theorem.



4 International Journal of Mathematics and Mathematical Sciences

Recall, a mapping S : C → C is said to be nonexpansive if

∥
∥Sx − Sy

∥
∥ ≤ ∥

∥x − y
∥
∥, (1.13)

for all x, y ∈ C. We denote by F(S) the set of fixed points of S. If C is bounded closed
convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty (see [22]).
A mapping S is said to be quasi-nonexpansive if F(S)/= ∅ and ‖Sx − y‖ ≤ ‖x − y‖ for all
x ∈ C and y ∈ F(S). It is easy to see that if S is nonexpansive with F(S)/= ∅, then it is quasi-
nonexpansive. We write xn → x(xn ⇀ x, resp.) if {xn} converges (weakly, resp.) to x. Let E
be a real Banach space with norm ‖ · ‖ and let J be the normalized duality mapping from E into
2E

∗
given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, (1.14)

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗. It is well known that if E∗ is uniformly convex, then J is uniformly
continuous on bounded subsets of E.

Let C be a closed convex subset of E, and let S be a mapping from C into itself. A point
p in C is said to be an asymptotic fixed point of S [23] if C contains a sequence {xn} which
converges weakly to p such that limn→∞‖xn − Sxn‖ = 0. The set of asymptotic fixed points of
Swill be denoted by F̃(S). A mapping S from C into itself is said to be relatively nonexpansive
[24–26] if F̃(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F(S). The asymptotic
behavior of a relatively nonexpansive mapping was studied in [27, 28]. S is said to be φ-
nonexpansive, if φ(Sx, Sy) ≤ φ(x, y) for x, y ∈ C. S is said to be relatively quasi-nonexpansive
if F(S)/= ∅ and φ(p, Sx) ≤ φ(p, x) for x ∈ C and p ∈ F(S).

In 2009, Takahashi and Zembayashi [29] introduced the following shrinking projection
method of closed relatively nonexpansive mappings as follows:

x0 = x ∈ C, C0 = C,

yn = J−1(αnJ(xn) + (1 − αn)JS(xn)),

un ∈ C such that Θ
(
un, y

)
+

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ φ(z, xn)

}
,

xn+1 = ΠCn+1x,

(1.15)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies
lim infn→∞αn(1 − αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, they proved that the
sequence {xn} converges strongly to ΠF(S)∩EP(Θ)x.
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In 2009, Qin et al. [30]modified the Halpern-type iteration algorithm for closed quasi-
φ-nonexpansive mappings (or relatively quasi-nonexpansive) defined by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1(αnJ(x1) + (1 − αn)JT(xn)),

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)
}
,

xn+1 = ΠCn+1x1, ∀n ≥ 1.

(1.16)

Then, they proved that under appropriate control conditions the sequence {xn} converges
strongly to ΠF(T)x1.

Recently, Ceng et al. [31] proved the following strong convergence theorem for finding
a common element of the set of solutions for an equilibrium and the set of a zero point for a
maximal monotone operator T in a Banach space E

yn = J−1
(
αnJ(x0) + (1 − αn)

(
βnJxn +

(
1 − βn

)
JJrn(xn)

))
,

Hn =
{
z ∈ C : φ

(
z, Trnyn

) ≤ αnφ(z, x0) + (1 − αn)φ(z, xn)
}
,

Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wnx0.

(1.17)

Then, the sequence {xn} converges strongly to ΠT−10∩EP(Θ)x0, where ΠT−10∩EP(Θ) is the
generalized projection of E onto T−10 ∩ EP(Θ).

In this paper, motivated and inspired by Li and Song [5], Iiduka and Takahashi [7],
Takahashi and Zembayashi [29], Ceng et al. [31] and Qin et al. [30], we introduce the
following new hybrid proximal-point algorithms defined by x1 = x ∈ C:

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnwn)

)
,

yn = J−1(αnJ(x1) + (1 − αn)J(zn)),

un ∈ C such that Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)

}
,

xn+1 = ΠCn+1x

(1.18)
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and

un ∈ C such that Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

zn = ΠCJ
−1(Jun − λnAun),

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnzn)

)
,

xn+1 = ΠCJ
−1(αnJ(x1) + (1 − αn)J

(
yn

))
.

(1.19)

Under appropriate conditions, we will prove that the sequence {xn} generated by algorithms
(1.18) and (1.19) converges strongly to the point ΠVI(C,A)∩T−1(0)∩MEP(Θ,ϕ)x and converges
weakly to the point limn→∞ΠVI(C,A)∩T−1(0)∩MEP(Θ,ϕ)xn, respectively. The results presented in
this paper extend and improve the corresponding ones announced by Li and Song [5] and
many authors in the literature.

2. Preliminaries

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with ‖x‖ =
‖y‖ = 1 and x /=y. Let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then, the Banach space
E is said to be smooth provided

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ E. The modulus of convexity of E is the function δ : [0, 2] → [0, 1] defined by

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.2)

A Banach space E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed
real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a
constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [32, 33] for more details. Observe
that every p-uniform convex is uniformly convex. One should note that no Banach space is
p-uniform convex for 1 < p < 2. It is well known that a Hilbert space is 2-uniformly convex
and uniformly smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined

by

Jp(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1

}
, (2.3)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space,
then J = I, where I is the identity mapping. It is also known that if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E.
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We know the following (see [34]):

(1) if E is smooth, then J is single-valued,

(2) if E is strictly convex, then J is one-to-one and 〈x − y, x∗ − y∗〉 > 0 holds for all
(x, x∗), (y, y∗) ∈ J with x /=y,

(3) if E is reflexive, then J is surjective,

(4) if E is uniformly convex, then it is reflexive,

(5) if E∗ is uniformly convex, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

The duality J from a smooth Banach space E into E∗ is said to be weakly sequentially
continuous [35] if xn ⇀ x implies Jxn ⇀

∗ Jx, where ⇀∗ implies the weak∗ convergence.

Lemma 2.1 (see [36, 37]). If E be a 2-uniformly convex Banach space. Then, for all x, y ∈ E one has

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥, (2.4)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1/c in Lemma is called the 2-uniformly convex constant of E; see
[32].

Lemma 2.2 (see [36, 38]). If E a p-uniformly convex Banach space and let p be a given real number
with p ≥ 2. Then, for all x, y ∈ E,Jx ∈ Jp(x) and Jy ∈ Jp(y)

〈
x − y, Jx − Jy

〉 ≥ cp

2p−2p

∥∥x − y
∥∥p

, (2.5)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.

Lemma 2.3 (see Xu [37]). Let E be a uniformly convex Banach space. Then, for each r > 0, there
exists a strictly increasing, continuous, and convex functionK : [0,∞) → [0,∞) such thatK(0) = 0
and

∥∥λx +
(
1 − λy

)∥∥2 ≤ λ‖x‖2 + (1 − λ)
∥∥y

∥∥2 − λ(1 − λ)K
(∥∥x − y

∥∥), (2.6)

for all x, y ∈ {z ∈ E : ‖z‖ ≤ r} and λ ∈ [0, 1].

Let E be a smooth, strictly convex, and reflexive Banach space and letC be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y

∥∥2
, for x, y ∈ E. (2.7)
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Following Alber [39], the generalized projection ΠC : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x, where x
is the solution to the minimization problem

φ(x, x) = inf
y∈C

φ
(
y, x

)
(2.8)

existence and uniqueness of the operator ΠC follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J . It is obvious from the definition of function
φ that (see [39])

(∥∥y
∥
∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥
∥ + ‖x‖)2, ∀x, y ∈ E. (2.9)

If E is a Hilbert space, then φ(x, y) = ‖x − y‖2.
If E is a reflexive, strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) =

0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y. From (2.9), we
have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definition of J , one has
Jx = Jy. Therefore, we have x = y; see [34, 40] for more details.

Lemma 2.4 (see Kamimura and Takahashi [3]). Let E be a uniformly convex and smooth real
Banach space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then ‖xn − yn‖ → 0.

Lemma 2.5 (see Alber [39]). Let C be a nonempty, closed, convex subset of a smooth Banach space
E and x ∈ E. Then, x0 = ΠCx if and only if

〈
x0 − y, Jx − Jx0

〉 ≥ 0, ∀y ∈ C. (2.10)

Lemma 2.6 (see Alber [39]). Let E be a reflexive, strictly convex, and smooth Banach space, let C
be a nonempty closed convex subset of E and let x ∈ E. Then,

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
, ∀y ∈ C. (2.11)

Let E be a strictly convex, smooth, and reflexive Banach space, let J be the duality
mapping from E into E∗. Then, J−1 is also single-valued, one-to-one, and surjective, and it is
the duality mapping from E∗ into E. Define a function V : E × E∗ → R as follows (see [4]):

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2, (2.12)

for all x ∈ E, x ∈ E and x∗ ∈ E∗. Then, it is obvious that V (x, x∗) = φ(x, J−1(x∗)) and
V (x, J(y)) = φ(x, y).
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Lemma 2.7 (see Kohsaka and Takahashi [4, Lemma 3.2]). Let E be a strictly convex, smooth, and
reflexive Banach space, and let V be as in (2.12). Then,

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V

(
x, x∗ + y∗), (2.13)

for all x ∈ E and x∗, y∗ ∈ E∗.

Let E be a reflexive, strictly convex, and smooth Banach space. Let C be a closed
convex subset of E. Because φ(x, y) is strictly convex and coercive in the first variable,
we know that the minimization problem infy∈Cφ(x, y) has a unique solution. The operator
ΠCx := argminy∈Cφ(x, y) is said to be the generalized projection of x on C.

A set-valued mapping T : E → E∗ with domain D(T) = {x ∈ E : T(x)/= ∅} and range
R(T) = {x∗ ∈ E∗ : x∗ ∈ T(x), x ∈ D(T)} is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0 for all
x∗ ∈ T(x), y∗ ∈ T(y). We denote the set {s ∈ E : 0 ∈ Tx} by T−10. T is maximal monotone if
its graph G(T) is not properly contained in the graph of any other monotone operator. If T is
maximal monotone, then the solution set T−10 is closed and convex.

Let E be a reflexive, strictly convex, and smooth Banach space, it is known that T is a
maximal monotone if and only if R(J + rT) = E∗ for all r > 0.

Define the resolvent of T by Jrx = xr . In other words, Jr = (J + rT)−1J for all r > 0. Jr is
a single-valued mapping from E toD(T). Also, T−1(0) = F(Jr) for all r > 0, where F(Jr) is the
set of all fixed points of Jr . Define, for r > 0, the Yosida approximation of T by Ar = (J − JJr)/r.
We know that Arx ∈ T(Jrx) for all r > 0 and x ∈ E.

Lemma 2.8 (see Kohsaka and Takahashi [4, Lemma 3.1]). Let E be a smooth, strictly convex,
and reflexive Banach space, T ⊂ E × E∗ a maximal monotone operator with T−10/= ∅, r > 0 and
Jr = (J + rT)−1J . Then,

φ
(
x, Jry

)
+ φ

(
Jry, y

) ≤ φ
(
x, y

)
, (2.14)

for all x ∈ T−10 and y ∈ E.

Let A be an inverse-strongly monotone mapping of C into E∗ which is said to be
hemicontinuous if for all x, y ∈ C, the mapping F of [0, 1] into E∗, defined by F(t) =
A(tx + (1 − t)y), is continuous with respect to the weak∗ topology of E∗. We define by NC(v)
the normal cone for C at a point v ∈ C, that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v − y, x∗〉 ≥ 0, ∀y ∈ C

}
. (2.15)

Theorem 2.9 (see Rockafellar [1]). Let C be a nonempty, closed, convex subset of a Banach space
E and A a monotone, hemicontinuous operator of C into E∗. Let T ⊂ E × E∗ be an operator defined as
follows:

Tv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, otherwise.
(2.16)

Then, T is maximal monotone and T−10 = VI(C,A).
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Lemma 2.10 (see Tan and Xu [41]). Let {an} and {bn} be two sequence of nonnegative real numbers
satisfying the inequality

an+1 = an + bn, ∀n ≥ 0. (2.17)

If
∑∞

n=1 bn < ∞, then limn→∞an exists.

For solving the mixed equilibrium problem, let us assume that the bifunction Θ :
C × C → R and ϕ : C → R is convex and lower semicontinuous satisfies the following
conditions:

(A1) Θ(x, x) = 0 for all x ∈ C,

(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C,

lim sup
t↓0

Θ
(
tz + (1 − t)x, y

) ≤ Θ
(
x, y

)
, (2.18)

(A4) for each x ∈ C, y �→ Θ(x, y) is convex and lower semicontinuous.

Motivated by Blum and Oettli [8], Takahashi and Zembayashi [29, Lemma 2.7]
obtained the following lemmas.

Lemma 2.11 (see [29, Lemma 2.7]). Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space E, let θ be a bifunction from C × C to R satisfying (A1)–(A4), let
r > 0, and let x ∈ E. Then, there exists z ∈ C such that

Θ
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.19)

Lemma 2.12 (see Takahashi and Zembayashi [29]). LetC be a closed convex subset of a uniformly
smooth, strictly convex, and reflexive Banach space E and let Θ be a bifunction from C × C to R

satisfying (A1)–(A4). For all r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{
z ∈ C : Θ

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.20)

for all x ∈ E. Then, the followings hold:

(1) Tr is single-valued,

(2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.21)

(3) F(Tr) = EP(Θ),

(4) EP(Θ) is closed and convex.
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Lemma 2.13 (see Takahashi and Zembayashi [29]). Let C be a closed, convex subset of a smooth,
strictly convex, and reflexive Banach space E, letΘ a bifunction from C×C to R satisfying (A1)–(A4)
and let r > 0. Then, for x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.22)

Lemma 2.14. Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space
E. Let ϕ : C → R is convex and lower semicontinuous and Θ be a bifunction from C × C to R

satisfying (A1)–(A4). For r > 0 and x ∈ E, then there exists u ∈ C such that

Θ
(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉
. (2.23)

Define a mapping Kr : E → C as follows:

Kr(x) =
{
u ∈ C : Θ

(
u, y

)
+ ϕ

(
y
) − ϕ(u) +

1
r

〈
y − u, Ju − Jx

〉 ≥ 0, ∀y ∈ C

}
(2.24)

for all x ∈ E. Then, the followings hold:

(1) Kr is single-valued,

(2) Kr is firmly nonexpansive, that is, for all x, y ∈ E, 〈Krx −Kry, JKrx − JKry〉 ≤ 〈Krx −
Kry, Jx − Jy〉,

(3) F(Kr) = MEP(Θ, ϕ),

(4) MEP(Θ, ϕ) is closed and convex.

Proof. Define a bifunction F : C × C → R as follows:

F
(
u, y

)
= Θ

(
u, y

)
+ ϕ

(
y
) − ϕ(u), ∀u, y ∈ C. (2.25)

It is easily seen that F satisfies (A1)–(A4). Therefore,Kr in Lemma 2.14 can be obtained
from Lemma 2.12 immediately.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for finding a common element of the
zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and
the set of solution of the variational inequality operators of an inverse strongly monotone in
a Banach space by using the shrinking hybrid projection method.

Theorem 3.1. Let E be a 2-uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let Θ be a bifunction from C × C to R satisfying (A1)–(A4) let
ϕ : C → R be a lower semicontinuous and convex function, and let T : E → E∗ be a maximal
monotone operator. Let Jr = (J + rT)−1J for r > 0 and let A be an α-inverse-strongly monotone
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operator of C into E∗ with F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ)/= ∅ and ‖Ay‖ ≤ ‖Ay −Au‖ for all
y ∈ C and u ∈ F. Let {xn} be a sequence generated by x0 ∈ E with x1 = ΠC1x0 and C1 = C,

wn = ΠCJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnwn)

)
,

yn = J−1(αnJ(x1) + (1 − αn)J(zn)),

un ∈ C such that Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)

}
,

xn+1 = ΠCn+1x0,

(3.1)

for n ∈ N, where ΠC is the generalized projection from E onto C, J is the duality mapping on E. The
coefficient sequence {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) satisfying limn→∞αn = 0, lim supn→∞βn <
1, lim infn→∞rn > 0, and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c is the 2-uniformly
convexity constant of E. Then, the sequence {xn} converges strongly toΠFx0.

Proof. We first show that {xn} is bounded. Put vn = J−1(Jxn − λnAxn), let p ∈ F := VI(C,A) ∩
T−1(0) ∩MEP(Θ, ϕ), and let {Krn} be a sequence of mapping define as Lemma 2.14 and un =
Krnyn. By (3.1) and Lemma 2.7, the convexity of the function V in the second variable, we
have

φ
(
p,wn

)
= φ

(
p,ΠCvn

)

≤ φ
(
p, vn

)
= φ

(
p, J−1(Jxn − λnAxn)

)

≤ V
(
p, Jxn − λnAxn + λnAxn

) − 2
〈
J−1(Jxn − λnAxn) − p, λnAxn

〉

= V
(
p, Jxn

) − 2λn
〈
vn − p,Axn

〉

= φ
(
p, xn

) − 2λn
〈
xn − p,Axn

〉
+ 2〈vn − xn,−λnAxn〉.

(3.2)

Since p ∈ VI(A,C) and A is α-inverse-strongly monotone, we have

−2λn
〈
xn − p,Axn

〉
= −2λn

〈
xn − p,Axn −Ap

〉 − 2λn
〈
xn − p,Ap

〉

≤ −2αλn
∥∥Axn −Ap

∥∥2
,

(3.3)
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and by Lemma 2.1, we obtain

2〈vn − xn,−λnAxn〉 = 2
〈
J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 2
∥
∥
∥J−1(Jxn − λnAxn) − xn

∥
∥
∥‖λnAxn‖

≤ 4
c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

=
4
c2
λ2n‖Axn‖2 ≤ 4

c2
λ2n

∥
∥Axn −Ap

∥
∥2
.

(3.4)

Substituting (3.3) and (3.4) into (3.2), we get

φ
(
p,wn

) ≤ φ
(
p, xn

) − 2αλn
∥∥Axn −Ap

∥∥2 +
4
c2
λ2n

∥∥Axn −Ap
∥∥2

≤ φ
(
p, xn

)
+ 2λn

(
2
c2
λn − α

)∥∥Axn −Ap
∥∥2

≤ φ
(
p, xn

)
.

(3.5)

By Lemmas 2.7, 2.8 and (3.5), we have

φ
(
p, zn

)
= φ

(
p, J−1

(
βnJ(xn) +

(
1 − βn

)
J(Jrnwn)

))

= V
(
p, βnJ(xn) +

(
1 − βn

)
J(Jrnwn)

)

≤ βnV
(
p, J(xn)

)
+
(
1 − βn

)
V
(
p, J(Jrnwn)

)

= βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p, Jrnwn

)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)(
φ
(
p,wn

) − φ(Jrnwn,wn)
)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p,wn

)

≤ βnφ
(
p, xn

)
+
(
1 − βn

)
φ
(
p, xn

)

= φ
(
p, xn

)
.

(3.6)

It follows that

φ
(
p, yn

)
= φ

(
p, J−1(αnJ(x1) + (1 − αn)J(zn))

)

= V
(
p, αnJ(x1) + (1 − αn)J(zn)

) ≤ αnV
(
p, J(x1)

)
+ (1 − αn)V

(
p, J(zn)

)

= αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, zn

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

)
.

(3.7)
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From (3.1) and (3.7), we obtain

φ
(
p, un

)
= φ

(
p,Krnyn

) ≤ φ
(
p, yn

) ≤ φ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

)
. (3.8)

So, we have p ∈ Cn+1. This implies that F ⊂ Cn, for all n ∈ N.
From Lemma 2.5 and xn = ΠCnx0, we have

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn,〈
xn − p, Jx0 − Jxn

〉 ≥ 0, ∀p ∈ F.
(3.9)

From Lemma 2.6, one has

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ
(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
, (3.10)

for all p ∈ F ⊂ Cn and n ≥ 1. Then, the sequence {φ(xn, x0)} is bounded. Since xn = ΠCnx0

and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ∈ N. (3.11)

Therefore, {φ(xn, x0)} is nondecreasing. Hence, the limit of {φ(xn, x0)} exists. By the
construction of Cn, one has that Cm ⊂ Cn and xm = ΠCmx0 ∈ Cn for any positive integer
m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0) − φ(ΠCnx0, x0) = φ(xm, x0) − φ(xn, x0). (3.12)

Letting m,n → ∞ in (3.12), we get φ(xm, xn) → 0. It follows from Lemma 2.4, that ‖xm −
xn‖ → 0 as m,n → ∞, that is, {xn} is a Cauchy sequence. Since E is a Banach space and C is
closed and convex, we can assume that xn → u ∈ C, as n → ∞. Since

φ(xn+1, xn) = φ(xn+1,ΠCnx0) ≤ φ(xn+1, x0) − φ(ΠCnx0, x0) = φ(xn+1, x0) − φ(xn, x0), (3.13)

for all n ∈ N, we also have limn→∞φ(xn+1, xn) = 0. From Lemma 2.4, we get limn→∞‖xn+1 −
xn‖ = 0. Since xn+1 = ΠCn+1x0 ∈ Cn+1 and by definition of Cn+1, we have

φ(xn+1, un) ≤ αnφ(xn+1, x1) + (1 − αn)φ(xn+1, xn). (3.14)

Noticing the conditions limn→∞αn = 0 and limn→∞φ(xn+1, xn) = 0, we obtain

lim
n→∞

φ(xn+1, un) = 0. (3.15)

From again Lemma 2.4,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − un‖ = 0. (3.16)
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So, by the triangle inequality, we get

lim
n→∞

‖xn − un‖ = 0. (3.17)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn − Jun‖ = 0. (3.18)

On the other hand, we observe that

φ
(
p, xn

) − φ
(
p, un

)
= ‖xn‖2 − ‖un‖2 − 2

〈
p, Jxn − Jun

〉

≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2
∥∥p

∥∥‖Jxn − Jun‖.
(3.19)

It follows that

φ
(
p, xn

) − φ
(
p, un

) −→ 0, as n −→ ∞. (3.20)

From (3.1), (3.5), (3.6), (3.7), and (3.8), we have

φ
(
p, un

) ≤ φ
(
p, yn

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, zn

)

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)(
φ
(
p,wn

) − φ(Jrnwn,wn)
)]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)(
φ
(
p, xn

) − φ(Jrnwn,wn)
)]

≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − (1 − αn)
(
1 − βn

)
φ(Jrnwn,wn)

(3.21)

and then

(1 − αn)
(
1 − βn

)
φ(Jrnwn,wn) ≤ αnφ

(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − φ
(
p, un

)
. (3.22)

From conditions limn→∞αn = 0, lim supn→∞βn < 1 and (3.20), we obtain

lim
n→∞

φ(Jrnwn,wn) = 0. (3.23)

By again Lemma 2.4, we have limn→∞‖Jrnwn −wn‖ = 0.
Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖J(Jrnwn) − J(wn)‖ = 0. (3.24)
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Applying (3.5) and (3.6), we observe that

φ
(
p, un

) ≤ φ
(
p, yn

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, zn

)

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p,wn

)] ≤ αnφ
(
p, x1

)

+ (1 − αn)
[
βnφ

(
p, xn

)
+
(
1 − βn

)
[
φ
(
p, xn

) − 2λn
(
α − 2

c2
λn

)∥
∥Axn −Ap

∥
∥2
]]

≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − (1 − αn)
(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥
∥Axn −Ap

∥
∥2

(3.25)

and, hence,

2λn
(
α − 2

c2
λn

)∥∥Axn −Ap
∥∥2 ≤ 1

(1 − αn)
(
1 − βn

)
(
αnφ

(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − φ
(
p, un

))
,

(3.26)

for all n ∈ N. Since 0 < a ≤ λn ≤ b < c2α/2, limn→∞αn = 0, lim supn→∞βn < 1 and (3.20), we
have

lim
n→∞

∥∥Axn −Ap
∥∥ = 0. (3.27)

From Lemmas 2.6, 2.7, and (3.4), we get

φ(xn,wn) = φ(xn,ΠCvn) ≤ φ(xn, vn) = φ
(
xn, J

−1(Jxn − λnAxn)
)
= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn)

− 2
〈
J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2〈vn − xn,−λnAxn〉

= 2〈vn − xn,−λnAxn〉 ≤ 4λ2n
c2

∥∥Axn −Ap
∥∥2
.

(3.28)

From Lemma 2.4 and (3.27), we have

lim
n→∞

‖xn −wn‖ = 0. (3.29)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖J(xn) − J(wn)‖ = 0. (3.30)
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ u ∈ E. Since
xn −wn → 0, then we get wni ⇀ u as i → ∞.

Now,we claim that u ∈ F. First, we show that u ∈ T−10. Indeed, since lim infn→∞rn > 0,
it follows from (3.24) that

lim
n→∞

‖Arnwn‖ = lim
n→∞

1
rn
‖Jwn − J(Jrnwn)‖ = 0. (3.31)

If (z, z∗) ∈ T , then it holds from the monotonicity of T that

〈
z −wni , z

∗ −Arni
wni

〉
≥ 0, (3.32)

for all i ∈ N. Letting i → ∞, we get 〈z−u, z∗〉 ≥ 0. Then, the maximality of T implies u ∈ T−10.
Next, we show that u ∈ VI(C,A). Let B ⊂ E × E∗ be an operator as follows:

Bv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, otherwise.
(3.33)

By Theorem 2.9, B is maximal monotone and B−10 = VI(A,C). Let (v,w) ∈ G(B). Since w ∈
Bv = Av +NC(v), we get w −Av ∈ NC(v). From wn ∈ C, we have

〈v −wn,w −Av〉 ≥ 0. (3.34)

On the other hand, since wn = ΠCJ
−1(Jxn − λnAxn), then by Lemma 2.5, we have

〈v −wn, Jwn − (Jxn − λnAxn)〉 ≥ 0. (3.35)

Thus,

〈
v −wn,

Jxn − Jwn

λn
−Axn

〉
≤ 0. (3.36)
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It follows from (3.34) and (3.36) that

〈v −wn,w〉 ≥ 〈v −wn,Av〉 ≥ 〈v −wn,Av〉 +
〈
v −wn,

Jxn − Jwn

λn
−Axn

〉

= 〈v −wn,Av −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

= 〈v −wn,Av −Awn〉 + 〈v −wn,Awn −Axn〉 +
〈
v −wn,

Jxn − Jwn

λn

〉

≥ −‖v −wn‖‖wn − xn‖
α

− ‖v −wn‖‖Jxn − Jwn‖
a

≥ −M
(‖wn − xn‖

α
+
‖Jxn − Jwn‖

a

)
,

(3.37)

where M = supn≥1{‖v − wn‖}. From (3.29) and (3.30), we obtain 〈v − u,w〉 ≥ 0. By the
maximality of B, we have u ∈ B−10 and, hence, u ∈ VI(C,A).

Next, we show that u ∈ MEP(Θ, ϕ). Since un = Krnyn. From Lemmas 2.13 and 2.14, we
have

φ
(
un, yn

)
= φ

(
Krnyn, yn

) ≤ φ
(
u, yn

) − φ
(
u,Krnyn

) ≤ φ(u, xn) − φ(u, un). (3.38)

Similarly by (3.20),

lim
n→∞

φ
(
un, yn

)
= 0, (3.39)

and so

lim
n→∞

∥∥un − yn

∥∥ = 0. (3.40)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

∥∥Jun − Jyn

∥∥ = 0. (3.41)

From (3.1) and (A2), we also have

ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ Θ
(
y, un

)
, ∀y ∈ C. (3.42)

Hence,

ϕ
(
y
) − ϕ(uni) +

〈
y − uni ,

Juni − Jyni

rni

〉
≥ Θ

(
y, uni

)
, ∀y ∈ C. (3.43)
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From ‖xn − un‖ → 0, ‖xn −wn‖ → 0, we get uni ⇀ u. Since (Juni − Jyni/rni) → 0, it follows
by (A4) and the weak, lower semicontinuous of ϕ that

Θ
(
y, u

)
+ ϕ(u) − ϕ

(
y
) ≤ 0, ∀y ∈ C. (3.44)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)u. Since y ∈ C and u ∈ C, we have yt ∈ C
and hence Θ(yt, u) + ϕ(u) − ϕ(yt) ≤ 0. So, from (A1), (A4), and the convexity of ϕ, we have

0 = Θ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

) ≤ tΘ
(
yt, y

)
+ (1 − t)Θ

(
yt, u

)
+ tϕ

(
y
)
+ (1 − t)ϕ

(
y
) − ϕ

(
yt

)

≤ t
(
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

))
.

(3.45)

Dividing by t, we get Θ(yt, y) + ϕ(y) − ϕ(yt) ≥ 0. From (A3) and the weakly lower
semicontinuity of ϕ, we have Θ(u, y) + ϕ(y) − ϕ(u) ≥ 0 for all y ∈ C implies u ∈ MEP(Θ, ϕ).
Hence, u ∈ F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ).

Finally, we show that u = ΠFx. Indeed, from xn = ΠCnx and Lemma 2.5, we have

〈Jx − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. (3.46)

Since F ⊂ Cn, we also have

〈
Jx − Jxn, xn − p

〉 ≥ 0, ∀p ∈ F. (3.47)

Taking limit n → ∞, we have

〈
Jx − Ju, u − p

〉 ≥ 0, ∀p ∈ F. (3.48)

By again Lemma 2.5, we can conclude that u = ΠFx0. This completes the proof.

Corollary 3.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, let C be a
nonempty, closed, convex subset of E. Let Θ be a bifunction from C × C to R satisfying (A1)–(A4)
let ϕ : C → R be a lower semicontinuous and convex function, and let T : E → E∗ be a maximal
monotone operator. Let Jr = (J + rT)−1J for r > 0 with F := T−1(0) ∩MEP(Θ, ϕ)/= ∅. Let {xn} be a
sequence generated by x0 ∈ E with x1 = ΠC1x0 and C1 = C,

zn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnxn)

)
,

yn = J−1(αnJ(x1) + (1 − αn)J(zn)),

un ∈ C such that Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{
z ∈ Cn : φ(z, un) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)

}
,

xn+1 = ΠCn+1x0,

(3.49)
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for n ∈ N, where ΠC is the generalized projection from E onto C, J is the duality mapping on E. The
coefficient sequence {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) satisfying limn→∞αn = 0, lim supn→∞βn < 1
and lim infn→∞rn > 0. Then, the sequence {xn} converges strongly toΠFx0.

Proof. In Theorem 3.1 if A ≡ 0, then (3.1) reduced to (3.49).

4. Weak Convergence Theorem

In this section, we first prove the following strong convergence theorem by using the idea of
Plubtieng and Sriprad [42].

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weak sequentially continuous. Let T : E → E∗ be a maximal monotone operator and let
Jr = (J + rT)−1J for r > 0. Let C be a nonempty, closed, convex subset of E such that D(T) ⊂ C ⊂
J−1(

⋂
r>0 R(J + rT)), let Θ be a bifunction from C ×C to R satisfying (A1)–(A4), let ϕ : C → R be a

lower semicontinuous and convex function, and let A be an α-inverse-strongly monotone operator of
C into E∗ with F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ)/= ∅ and ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and
u ∈ F. Let {xn} be a sequence generated by x1 = x ∈ C and

un = Krnxn,

zn = ΠCJ
−1(Jun − λnAun),

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnzn)

)
,

xn+1 = ΠCJ
−1(αnJ(x1) + (1 − αn)J

(
yn

))
,

(4.1)

for n ∈ N ∪ {0}, where ΠC is the generalized projection from E onto C, J is the duality mapping
on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfying

∑∞
n=0 αn < ∞,

lim supn→∞βn < 1 lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2,
1/c is the 2-uniformly convexity constant of E. Then, the sequence {ΠFxn} converges strongly to an
element of F, which is a unique element v ∈ F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(
y, xn

)
, (4.2)

whereΠF is the generalized projection from C onto F.

Proof. Put vn = J−1(Jun − λnAun). Let p ∈ F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ), by Lemma 2.14
and nonexpansiveness of Kr , we have

φ
(
p, un

)
= φ

(
p,Krnxn

) ≤ φ
(
p, xn

)
. (4.3)
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By (4.1) and Lemma 2.7, the convexity of the function V in the second variable, we obtain

φ
(
p, zn

)
= φ

(
p,ΠCvn

) ≤ φ
(
p, vn

)
= φ

(
p, J−1(Jun − λnAun)

)

≤ V
(
p, Jun − λnAun + λnAun

) − 2
〈
J−1(Jun − λnAun) − p, λnAun

〉

= V
(
p, Jxun

) − 2λn
〈
vn − p,Aun

〉

= φ
(
p, un

) − 2λn
〈
un − p,Aun

〉
+ 2〈vn − un,−λnAun〉.

(4.4)

Since p ∈ VI(A,C) and A is α-inverse-strongly monotone, we also have

−2λn
〈
un − p,Aun

〉
= −2λn

〈
un − p,Aun −Ap

〉 − 2λn
〈
un − p,Ap

〉 ≤ −2αλn
∥
∥Aun −Ap

∥
∥2
,
(4.5)

2〈vn − un,−λnAun〉 = 2
〈
J−1(Jun − λnAun) − xn,−λnAun

〉

≤ 2
∥∥∥J−1(Jun − λnAun) − xn

∥∥∥‖λnAun‖

≤ 4
c2
‖Jun − λnAun − Jun‖‖λnAun‖ ≤ 4

c2
λ2n

∥∥Aun −Ap
∥∥2
.

(4.6)

Substituting (4.5) and (4.6) into (4.4) and (4.3), we get

φ
(
p, zn

) ≤ φ
(
p, un

) − 2αλn
∥∥Aun −Ap

∥∥2 +
4
c2
λ2n

∥∥Aun −Ap
∥∥2

≤ φ
(
p, un

) − 2λn
(
α − 2

c2
λn

)∥∥Aun −Ap
∥∥2 ≤ φ

(
p, un

) ≤ φ
(
p, xn

)
.

(4.7)

By Lemmas 2.7, 2.8, (4.7), and using the same argument in Theorem 3.1, (3.6), we obtain

φ
(
p, yn

) ≤ φ
(
p, xn

)
, (4.8)

and hence by Lemma 2.6 and (4.7), we note that

φ
(
p, xn+1

)
= φ

(
p, J−1

(
αnJ(x1) + (1 − αn)J

(
yn

)))

= V
(
p, αnJ(x1) + (1 − αn)J

(
yn

)) ≤ αnV
(
p, J(x1)

)
+ (1 − αn)V

(
p, J

(
yn

))

= αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, yn

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

)
,

(4.9)

for all n ≥ 0. So, from
∑∞

n=0 αn < ∞ and Lemma 2.10, we deduce that limn→∞φ(p, xn) exists.
This implies that {φ(p, xn)} is bounded. It implies that {xn}, {yn}, {zn}, and {Jrnzn} are
bounded. Define a function g : F → [0,∞) as follows:

g
(
p
)
= lim

n→∞
φ
(
p, xn

)
, ∀p ∈ F. (4.10)
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Then, by the same argument as in proof of [43, Theorem 3.1], we obtain g is a continuous
convex function and if ‖zn‖ → ∞, then g(zn) → ∞. Hence, by [34, Theorem 1.3.11], there
exists a point v ∈ F such that

g(v) = min
y∈F

g
(
y
)
(:= l). (4.11)

Putwn = ΠFxn for all n ≥ 0. We next prove thatwn → v as n → ∞. Suppose on the contrary
that there exists ε0 > 0 such that, for each n ∈ N, there is n′ ≥ n satisfying ‖wn′ − v‖ ≥ ε0. Since
v ∈ F, we have

φ(wn, xn) = φ(ΠFxn, xn) ≤ φ(v,ΠFxn) + φ(ΠFxn, xn) ≤ φ(v, xn), (4.12)

for all n ≥ 0. This implies that

lim sup
n→∞

φ(wn, xn) ≤ lim
n→∞

φ(v, xn) = l. (4.13)

Since (‖v‖ − ‖ΠFxn‖)2 ≤ φ(v,wn) ≤ φ(v, xn) for all n ≥ 0 and {xn} is bounded, {wn} is
bounded. By Lemma 2.3, there exists a stricly increasing, continuous, and convex function
K : [0,∞) → [0,∞) such that K(0) = 0 and

∥∥∥
wn + v

2

∥∥∥
2
≤ 1

2
‖wn‖2 + 1

2
‖v‖2 − 1

4
K(‖wn − v‖), (4.14)

for all n ≥ 0. Now, choose σ satisfying 0 < σ < (1/4)K(ε0). Hence, there exists n0 ∈ N such
that

φ(wn, xn) ≤ l + σ, φ(v, xn) ≤ l + σ, (4.15)

for all n ≥ 0. Thus, there exists k ≥ n0 satisfying the following:

φ(wk, xk) ≤ l + σ, φ(v, xk) ≤ l + σ, ‖wk − v‖ ≥ ε0. (4.16)

From (4.9), (4.14), and (4.16), we obtain

φ
(wk + v

2
, xn+k

)
≤ φ

(wk + v

2
, xk

)
=
∥∥∥
wk + v

2

∥∥∥
2
− 2

〈wk + v

2
, Jxk

〉
+ ‖xk‖2

≤ 1
2
‖wk‖2 + 1

2
‖v‖2 − 1

4
K(‖wk − v‖) − 〈wk + v, Jxk〉 + ‖xk‖2

=
1
2
φ(wk, xk) +

1
2
φ(v, xk) − 1

4
K(‖wk − v‖) ≤ l + σ − 1

4
K(ε0),

(4.17)

for all n ≥ 0. Hence,

l ≤ lim
n→∞

φ
(wk + v

2
, xn

)
= lim

n→∞
φ
(wk + v

2
, xn+k

)
≤ l + σ − 1

4
K(ε0) < l + σ − σ = l. (4.18)
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This is a contradiction. So, {wn} converges strongly to v ∈ F := VI(C,A)∩ T−1(0)∩MEP(Θ, ϕ).
Consequently, v ∈ F is the unique element of F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(
y, xn

)
. (4.19)

This completes the proof.

Now, we prove a weak convergence theorem for the algorithm (4.20) below under
different condition on data.

Theorem 4.2. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T : E → E∗ be a maximal monotone operator and
let Jr = (J + rT)−1J for r > 0. Let C be a nonempty closed convex subset of E such that D(T) ⊂ C ⊂
J−1(

⋂
r>0 R(J + rT)), let Θ be a bifunction from C ×C to R satisfying (A1)–(A4), let ϕ : C → R be a

lower semicontinuous and convex function, and let A be an α-inverse-strongly monotone operator of
C into E∗ with F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ)/= ∅ and ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and
u ∈ F. Let {xn} be a sequence generated by x1 = x ∈ C and

un = Krnxn,

zn = ΠCJ
−1(Jun − λnAun),

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnzn)

)
,

xn+1 = ΠCJ
−1(αnJ(x1) + (1 − αn)J

(
yn

))
,

(4.20)

for n ∈ N ∪ {0}, where ΠC is the generalized projection from E onto C, J is the duality mapping
on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfying

∑∞
n=0 αn < ∞,

lim supn→∞βn < 1 lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c
is the 2-uniformly convexity constant of E. Then, the sequence {xn} converges weakly to an element v
of F, where v = limn→∞ΠFxn.

Proof. By Theorem 4.1, we have {xn} is bounded and so are {zn}, {Jrnzn}.
From (4.9), we obtain

φ
(
p, xn+1

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, yn

)

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)(
φ
(
p, zn

) − φ(Jrnzn, zn)
)]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)(
φ
(
p, xn

) − φ(Jrnzn, zn)
)]

≤ αnφ
(
p, x1

)
+
(
1 − αnβn

)
φ
(
p, xn

) − (1 − αn)
(
1 − βn

)
φ(Jrnzn, zn),

(4.21)

and then

(1 − αn)
(
1 − βn

)
φ(Jrnzn, zn) ≤ αnφ

(
p, x1

)
+
(
1 − αnβn

)
φ
(
p, xn

) − φ
(
p, xn+1

)
. (4.22)
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Since limn→∞αn = 0, lim supn→∞βn < 1 and {φ(p, xn)} exists, then we have

lim
n→∞

φ(Jrnzn, zn) = 0. (4.23)

By again Lemma 2.4, we have limn→∞‖Jrnzn − zn‖ = 0. Since J is uniformly norm-to-norm
continuous on bounded sets, we obtain

lim
n→∞

‖J(Jrnzn) − J(zn)‖ = 0. (4.24)

Apply (4.7), (4.8), and (4.9), we observe that

φ
(
p, xn+1

)

≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, yn

) ≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p, zn

)]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
[
φ
(
p, un

) − 2λn
(
α − 2

c2
λn

)∥∥Aun −Ap
∥∥2
]]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
[
φ
(
p, xn

) − 2λn
(
α − 2

c2
λn

)∥∥Aun −Ap
∥∥2
]]

≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − (1 − αn)
(
1 − βn

)
2λn

(
α − 2

c2
λn

)∥∥Aun −Ap
∥∥2
,

(4.25)

and hence

2λn
(
α − 2

c2
λn

)∥∥Aun −Ap
∥∥2 ≤ 1

(1 − αn)
(
1 − βn

)
(
αnφ

(
p, x1

)
+ (1 − αn)φ

(
p, xn

) − φ
(
p, xn+1

))
,

(4.26)

for all n ∈ N. Since 0 < a ≤ λn ≤ b < c2α/2, limn→∞αn = 0 and lim supn→∞βn < 1, we have

lim
n→∞

∥∥Aun −Ap
∥∥ = 0. (4.27)

From Lemmas 2.6, 2.7, and (4.7), we get

φ(un, zn) = φ(un,ΠCvn) ≤ φ(un, vn) = φ
(
un, J

−1(Jun − λnAun)
)
= V (un, Jun − λnAun)

≤ V (un, (Jun − λnAun) + λnAun) − 2
〈
J−1(Jun − λnAun) − xn, λnAun

〉

= φ(un, un) + 2〈vn − un, λnAun〉 = 2〈vn − un, λnAun〉

≤ 4λ2n
c2

∥∥Aun −Ap
∥∥2
.

(4.28)
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From Lemma 2.4 and (4.27), we have

lim
n→∞

‖un − zn‖ = 0. (4.29)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖J(un) − J(zn)‖ = 0. (4.30)

Since {zn} is bounded, there exists a subsequence {zni} of {zn} such that zni ⇀ u ∈ C.
It follows that Jrni zni ⇀ u and uni ⇀ u ∈ C as i → ∞.

Now, we claim that u ∈ F. First, we show that u ∈ T−10. Indeed, since lim infn→∞rn > 0,
it follows that

lim
n→∞

‖Arnzn‖ = lim
n→∞

1
rn
‖Jzn − J(Jrnzn)‖ = 0. (4.31)

If (z, z∗) ∈ T , then it holds from the monotonicity of T that

〈
z − Jrni zni , z

∗ −Arni
zni

〉
≥ 0, (4.32)

for all i ∈ N. Letting i → ∞, we get 〈z−u, z∗〉 ≥ 0. Then, the maximality of T implies u ∈ T−10.
Next, we show that u ∈ VI(C,A). Let B ⊂ E × E∗ be an operator as follows:

Bv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, otherwise.
(4.33)

By Theorem 2.9, B is maximal monotone and B−10 = VI(A,C). Let (v,w) ∈ G(B). Since w ∈
Bv = Av +NC(v), we get w −Av ∈ NC(v). From zn ∈ C, we have

〈v − zn,w −Av〉 ≥ 0. (4.34)

On the other hand, since zn = ΠCJ
−1(Jun − λnAun). Then, by Lemma 2.5, we have

〈v − zn, Jwn − (Jun − λnAun)〉 ≥ 0. (4.35)

Thus,

〈
v − zn,

Jun − Jzn
λn

−Aun

〉
≤ 0. (4.36)
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It follows from (4.34) and (4.36) that

〈v − zn,w〉 ≥ 〈v − zn,Av〉 ≥ 〈v − zn,Av〉 +
〈
v − zn,

Jun − Jzn
λn

−Axn

〉

= 〈v − zn,Av −Aun〉 +
〈
v − zn,

Jun − Jzn
λn

〉

= 〈v − zn,Av −Azn〉 + 〈v − zn,Azn −Aun〉 +
〈
v − zn,

Jun − Jzn
λn

〉

≥ −‖v − zn‖‖zn − un‖
α

− ‖v − zn‖‖Jun − Jzn‖
a

≥ −M
(‖zn − un‖

α
+
‖Jun − Jzn‖

a

)
,

(4.37)

where M = supn≥1{‖v − zn‖}. From (4.29) and (4.30), we obtain 〈v − u,w〉 ≥ 0. By the
maximality of B, we have u ∈ B−10 and hence u ∈ VI(C,A).

Next, we show u ∈ MEP(f) = F(Kr). From un = Krnxn. It follows from (4.7), (4.8), and
(4.9) that

φ
(
p, xn+1

) ≤ αnφ
(
p, x1

)
+ (1 − αn)φ

(
p, yn

)

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p, zn

)]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p, un

)]

≤ αnφ
(
p, x1

)
+ (1 − αn)

[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p, xn

)]
,

(4.38)

or, equivalently,

φ
(
p, xn+1

) − αnφ
(
p, x1

) ≤ (1 − αn)
[
βnφ

(
p, xn

)
+
(
1 − βn

)
φ
(
p, un

)] ≤ (1 − αn)φ
(
p, xn

)
,
(4.39)

with limn→∞αn = 0 and lim supn→∞βn < 1, yield that limn→∞φ(p, un) = limn→∞φ(p, xn).
From Lemmas 2.13 and 2.14, for p ∈ F,

φ(un, xn) ≤ φ
(
p, xn

) − φ
(
p, un

)
. (4.40)

This implies that limn→∞φ(un, xn) = 0. Noticing Lemma 2.4, we get

‖un − xn‖ −→ 0, as n −→ ∞. (4.41)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖Jun − Jxn‖ = 0. (4.42)
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From (4.20) and (A2), we also have

ϕ
(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jxn

〉 ≥ Θ
(
y, un

)
, ∀y ∈ C. (4.43)

Hence,

ϕ
(
y
) − ϕ(uni) +

〈
y − uni ,

Juni − Jxni

rni

〉
≥ Θ

(
y, uni

)
, ∀y ∈ C. (4.44)

From ‖un − zn‖ → 0, we get uni ⇀ u. Since (Juni − Jxni/rni) → 0, it follows by (A4) and the
weakly lower semicontinuous of ϕ that

Θ
(
y, u

)
+ ϕ(u) − ϕ

(
y
) ≤ 0, ∀y ∈ C. (4.45)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)u. Since y ∈ C and u ∈ C, we have yt ∈ C
and hence Θ(yt, u) + ϕ(u) − ϕ(yt) ≤ 0. So, from (A1), (A4), and the convexity of ϕ, we have

0 = Θ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tΘ
(
yt, y

)
+ (1 − t)Θ

(
yt, u

)
+ tϕ

(
y
)
+ (1 − t)ϕ

(
y
) − ϕ

(
yt

)

≤ t
(
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

))
.

(4.46)

Dividing by t, we get Θ(yt, y) + ϕ(y) − ϕ(yt) ≥ 0. From (A3) and the weakly lower
semicontinuity of ϕ, we have Θ(u, y) + ϕ(y) − ϕ(u) ≥ 0 for all y ∈ C implies u ∈ MEP(Θ, ϕ).
Hence, u ∈ F := VI(C,A) ∩ T−1(0) ∩MEP(Θ, ϕ).

By Theorem 4.1, the {ΠFxn} converges strongly to a point v ∈ F which is a unique
element of F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(
y, xn

)
. (4.47)

By the uniform smoothness of E, we also have limn→∞‖JΠFxni − Jv‖ = 0.
Finally, we prove u = v. From Lemma 2.5 and u ∈ F, we have

〈ΠFxni − u, Jxni − JΠFxni〉 ≥ 0. (4.48)

Since J is weakly sequentially continuous, uni ⇀ u and un − xn → 0. Then,

〈v − u, Ju − Jv〉 ≥ 0. (4.49)

On the other hand, since J is monotone, we have

〈v − u, Ju − Jv〉 ≤ 0. (4.50)
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Hence,

〈v − u, Ju − Jv〉 = 0. (4.51)

Since E is strict convexity, it follows that u = v. Therefore, the sequence {xn} converges
weakly to v = limn→∞ΠFxn. This completes the proof.

5. Application to Complementarity Problems

Let C be a nonempty, closed convex cone in E and A an operator of C into E∗. We define its
polar in E∗ to be the set

K∗ =
{
y∗ ∈ E∗ :

〈
x, y∗〉 ≥ 0, ∀x ∈ C

}
. (5.1)

Then, the element u ∈ C is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (5.2)

The set of solutions of the complementarity problem is denoted by CP(K,A); see [34], for
more detial.

Theorem 5.1. Let E be a 2-uniformly convex and uniformly smooth Banach space and let K be a
nonempty closed convex subset of E. Let Θ be a bifunction from K × K to R satisfying (A1)–(A4)
let ϕ : K → R be a lower semicontinuous and convex function, and let T : E → E∗ be a maximal
monotone operator. Let Jr = (J + rT)−1J for r > 0 and let A be an α-inverse-strongly monotone
operator of K into E∗ with F := T−1(0) ∩ CP(K,A) ∩MEP(Θ, ϕ)/= ∅ and ‖Ay‖ ≤ ‖Ay −Au‖ for
all y ∈ K and u ∈ F. For an initial point x0 ∈ E with x1 = ΠC1x0 and K1 = K,

wn = ΠKJ
−1(Jxn − λnAxn),

zn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnwn)

)
,

yn = J−1(αnJ(x1) + (1 − αn)J(zn)),

un ∈ K such that Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ K,

Kn+1 =
{
z ∈ Kn : φ(z, un) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)

}
,

xn+1 = ΠKn+1x0,

(5.3)

for n ∈ N, where ΠK is the generalized projection from E onto K and J is the duality mapping
on E. The coefficient sequence {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) satisfying limn→∞αn = 0,
lim supn→∞βn < 1, lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c
is the 2-uniformly convexity constant of E. Then, the sequence {xn} converges strongly toΠFx0.

Proof. As in the proof Lemma 7.1.1 of Takahashi in [44], we have VI(C,A) = CP(K,A). So, we
obtain the desired result.
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Theorem 5.2. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T : E → E∗ be a maximal monotone operator and
let Jr = (J + rT)−1J for r > 0. Let K be a nonempty closed convex subset of E such that D(T) ⊂ K ⊂
J−1(

⋂
r>0 R(J + rT)), let Θ be a bifunction from K × K to R satisfying (A1)–(A4), let ϕ : K → R

be a proper lower semicontinuous and convex function, and let A be an α-inverse-strongly monotone
operator ofK into E∗ with F := CP(K,A)∩ T−1(0)∩MEP(Θ, ϕ)/= ∅ and ‖Ay‖ ≤ ‖Ay −Au‖ for all
y ∈ K and u ∈ F. Let {xn} be a sequence generated by x1 = x ∈ K and

un = Krnxn,

zn = ΠKJ
−1(Jun − λnAun),

yn = J−1
(
βnJ(xn) +

(
1 − βn

)
J(Jrnzn)

)
,

xn+1 = ΠKJ
−1(αnJ(x1) + (1 − αn)J

(
yn

))
,

(5.4)

for n ∈ N ∪ {0}, where ΠK is the generalized projection from E onto K, J is the duality mapping
on E. The coefficient sequence {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfying

∑∞
n=0 αn < ∞,

lim supn→∞βn < 1 lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, 1/c
is the 2-uniformly convexity constant of E. Then, the sequence {xn} converges weakly to an element v
of F, where v = limn→∞ΠFxn.

Proof. It follows by Lemma 7.1.1 of Takahashi in [44], we have VI(C,A) = CP(K,A). Hence,
Theorem 4.2, {xn} converges weakly to an element v of F, where v = limn→∞ΠFxn.
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