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Some general theorems on differential subordinations of some functionals connected with
arithmetic and geometric means related to a sector are proved. These results unify a number of
well known results concerning inclusion relation between the classes of analytic functions built
with using arithmetic and geometric means.

1. Introduction

For r > 0 let � r = {z ∈ � : |z| < r}. Let � = � 1 .
Let the functions f and F be analytic in the unit disc � . A function f is called

subordinate to F, written f ≺ F, if F is univalent in � , f(0) = F(0) and f(� ) ⊂ F(� ).
Let D be a domain in � 2 and ψ : � 2 ⊃ D → � be an analytic function, and let p be

a function analytic in � with (p(z), zp′(z)) ∈ D, z ∈ � and h be a function analytic and
univalent in � . The function p is said to satisfy the first-order differential subordination if

ψ
(
p(z), zp′(z)

)
≺ h(z), ψ

(
p(0), 0

)
= h(0), z ∈ � . (1.1)

The general theory of the differential subordinations has been studied intensively by
many authors. A survey of this theory can by found in the monograph by Miller andMocanu
[1].
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For β ∈ (0, 2] let

hβ(z) =
(
1 + z
1 − z

)β
, z ∈ � . (1.2)

It is clear that hβ maps univalently � onto the sector of the angle βπ symmetrical with
respect to the real axis with the vertex at the origin.

In this paper we are interested in the following problem referring to (1.1) to find the
constant ck(n, γ, α, β) so that to the following relation is true:

{

p(z)

[

1 + α
zp′(z)
pk(z)

]γ
≺ hck(n,α,γ,β)(z), z ∈ �

}

=⇒ p ≺ hβ, (1.3)

with suitable assumptions on function p and constants n, α, γ, β. For selected parameters
n, γ, α, β the theorems presented here reduce to the well-known theorems proved by
various authors. Particularly, results of this type can be applied to examine inclusion relation
between subclasses of analytic functions defined with using arithmetic or geometric means
of some functionals, for example, the class of α-convex functions or γ -starlike functions.

The lemma below that slightly generalizes a lemma proved by Miller and Mocanu [2]
will be required in our investigation.

Lemma 1.1 (see [2]). Let q : � → � be a function analytic and univalent on � , injective on ∂� and
q(0) = 1. Let

p(z) = 1 +
∞∑

k=n

ckz
k, z ∈ � , (1.4)

be analytic in � , p /≡ 1. Suppose that there exists a point z0 ∈ � such that p(z0) ∈ ∂q(� ) and

p({z ∈ � : |z| < |z0|}) ⊂ q(� ). (1.5)

If ξ0 = q−1(p(z0)) and q′(ξ0) exists, then there exists an m ≥ n for which

z0p
′(z0) = mξ0q′(ξ0). (1.6)

2. Main Results

In the first theoremwhich follows directly from Theorem 2.2 [3]we prove that ck(n, α, γ, β) ≥
β. Let us start with the following definition.
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Definition 2.1 (see [3]). Let γ ∈ [0, 1] and Φ be a function analytic in domain D ⊂ � . By H(γ,
Φ) will be denoted the class of functions p analytic in � with p(0) = 1, p /≡ 1 and p(� ) ⊂ D
such that the function

Q(z) = p(z)
[
1 +

zp′(z)
p(z)

Φ(p(z))
]γ
, Q(0) = 1, z ∈ � , (2.1)

is well defined in � .

Theorem 2.2 (see [3]). Let γ ∈ [0, 1], h a convex function such that 0 ∈ h(� ) , h(0) = 1,Φ a
function analytic in a domain D ⊂ � such that h(� ) ⊂ D, and ReΦ(h(z)) > 0 for z ∈ � . If
p ∈ H(γ,Φ) and

p(z)
[
1 +

zp′(z)
p(z)

Φ
(
p(z)

)]γ
≺ h(z), z ∈ � , (2.2)

then

p ≺ h. (2.3)

Definition 2.3. Let k, n ∈ �, α ≥ 0 and γ ∈ [0, 1]. By Hk(n, α, γ) will be denoted the class of
functions p analytic in � of the form (1.4) such that the function

Q(z) = p(z)

[

1 + α
zp′(z)
pk(z)

]γ
, Q(0) = 1, z ∈ � , (2.4)

is well defined in � .

Remark 2.4. (1) Setting

Φ(w) = Φk,α(w) =
α

wk−1 , w ∈ � \ {0}, (2.5)

we see that

Hk

(
1, α, γ

)
= H

(
γ,Φk,α

)
. (2.6)

(2) For each k, n, α, γ as in Definition 2.3 the class Hk(n, α, γ) is nonempty. To see
this take

p(z) = 1 + cnzn, z ∈ � , (2.7)

for sufficiently small cn ∈ � .
(3) Clearly, for γ = 0 the class Hk(n, α, 0) contains all analytic functions p of the form

(1.4).
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(4) Let k = γ = 1. Then

Q(z) = p(z) + αzp′(z), z ∈ � . (2.8)

Therefore the class H1(n, α, 1) contains all analytic functions p of the form (1.4).
(5) Let p be analytic function in � of the form (1.4). Suppose that p(z0) = 0 for

some z0 ∈ � . Then

p(z) = (z − z0)mp1(z), z ∈ � , (2.9)

where m ≥ 1 and p1 is analytic function in � with p1(z0)/= 0 for z ∈ � . Then we have

z
p′(z)
pk(z)

= z
m(z − z0)m−1p1(z) + (z − z0)mp′1(z)

[
(z − z0)mp1(z)

]k

=
mp1(z) + (z − z0)p′1(z)
(z − z0)m(k−1)+1pk1(z)

.

(2.10)

Hence we see that for k = 1 and γ ∈ (0, 1) or for k ≥ 2 and γ ∈ (0, 1] the function

Q(z) = p(z)

[

1 + α
zp′(z)
pk(z)

]γ
, z ∈ � , (2.11)

has a pole at z0. Therefore for such k and γ we see that every p ∈ Hk(n, α, γ) is nonvanish-
ing in D.

Theorem 2.5. Let k ∈ �, α ≥ 0, γ ∈ [0, 1] and β ∈ [0, 1] be such that (k − 1)β ≤ 1. If p ∈
Hk(1, α, γ) and

p(z)

[

1 + α
zp′(z)
pk(z)

]γ
≺ hβ(z), z ∈ � , (2.12)

then

p ≺ hβ. (2.13)

Proof. The case α = 0 is evident so we assume that α > 0. For k ∈ N and α > 0 let Φ =
Φk,α be defined by (2.5). For β ∈ [0, 1] the function hβ is convex with 0 ∈ ∂h(� ). Since (k −
1)β ≤ 1, we have

ReΦ
(
hβ(z)

)
= ReΦ

((
1 + z
1 − z

)β)

= αRe

{(
1 − z
1 + z

)(k−1)β
}

> 0, z ∈ � . (2.14)

Applying Theorem 2.2 with hβ instead of h we get the assertion.
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Nowwe prove two theorems werewe improve the result of Theorem 2.5. The problem
(1.3) will be divided into two cases: k = 1 and k > 1.

First we consider the case k = 1. The theorem below was proved in [4]. To be self-
contained we include its proof.

Theorem 2.6. Fix n ∈ �, α ≥ 0 and γ ∈ [0, 1]. Let β ∈ (0, β1(n, α, γ)], where β = β1(n, α, γ) is
the solution of the equation

β + c1
(
n, α, γ, β

)
= 4 − γ, (2.15)

with

c1
(
n, α, γ, β

)
= β +

2γ
π

arctan
(
nαβ
)
. (2.16)

If p ∈ H1(n, α, γ) and

p(z)
[
1 + α

zp′(z)
p(z)

]γ
≺ hc1(n,α,γ,β)(z), z ∈ � , (2.17)

then

p ≺ hβ. (2.18)

Proof. (1) Assume that α > 0 and γ ∈ (0, 1] since the cases γ = 0 or α = 0 are evident.
Suppose, on the contrary, that p is not subordinate to hβ. Then, by the minimum

principle for harmonic mappings there exists r0 ∈ (0, 1) such that

p(� r0 ) ⊂ hβ(� ), (2.19)

and one of the following cases hold:

max
{
Arg p(z) : z ∈ � r0

}
= max

{
Arg p(z) : |z| = r0

}
= β

π

2
, (2.20)

or

min
{
Arg p(z) : z ∈ � r0

}
= min

{
Arg p(z) : |z| = r0

}
= −βπ

2
, (2.21)

or

p(z0) = 0, (2.22)

for some z0 ∈ ∂� r0 .
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(2) Assume that (2.20) holds. Then there exists z0 ∈ ∂� r0 such that

Argp(z0) = β
π

2
. (2.23)

Let ξ0 = h−1β (p(z0)). Thus

p(z0) = hβ(ξ0) =
(
1 + ξ0
1 − ξ0

)β
/= 0. (2.24)

Therefore ξ0 /= ± 1 and

1 + ξ0
1 − ξ0

= xi (2.25)

for x > 0, that is,

ξ0 =
xi − 1
xi + 1

. (2.26)

Since ξ0 /= ± 1, so h′β(ξ0) exists. Hence and by Lemma 1.1 there exists an m ≥ n for which

z0p
′(z0) = mξ0h′β(ξ0). (2.27)

(3) Consequently,

p(z0)
[
1 + α

z0p
′(z0)

p(z0)

]γ
= hβ(ξ0)

[

1 +mα
ξ0h

′
β(ξ0)

hβ(ξ0)

]β

= (xi)β
[

1 +
mαβ

(
1 + x2

)

2x
i

]γ
.

(2.28)

In view of the fact that x > 0 let us take

arg

{

1 +
mαβ

(
1 + x2

)

2x
i

}

∈
[
0,
π

2

)
. (2.29)
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Hence and from (2.28) we have

arg

{

p(z0)
[
1 + α

z0p′(z0)
p(z0)

]γ}

= arg

{

(xi)β
[

1 +
mαβ

(
1 + x2

)

2x
i

]γ}

= β
π

2
+ γ arg

{

1 +
mαβ

(
1 + x2

)

2x
i

}

= β
π

2
+ γ arctan

(
mαβ

(
1 + x2

)

2x

)

.

(2.30)

By the above and by the fact that m ≥ n we have

arg

{

p(z0)
[
1 + α

z0p′(z0)
p(z0)

]γ}

≥ βπ
2
+ γ arctan

(
nαβ
(
1 + x2

)

2x

)

≥ βπ
2
+ γ arctan

(
nαβ
)
= c1
(
n, α, γ, β

)π
2
.

(2.31)

On the other hand, (2.30) yields

arg

{

p(z0)
[
1 + α

z0p′(z0)
p(z0)

]γ}

= β
π

2
+ γ arctan

(
mαβ

(
1 + x2

)

2x
i

)

≤
(
β + γ

)π
2
. (2.32)

Finally, the above and (2.31) lead to

c1
(
n, α, γ, β

)π
2

≤ arg

{

p(z0)
[
1 + α

z0p′(z0)
p(z0)

]γ}

≤
(
β + γ

)π
2

≤ 2π − c1
(
n, α, γ, β

)π
2
, (2.33)

for all β ∈ (0, β1(n, α, γ)].
Thus we arrive at a contradiction with (2.17) so p ≺ hβ.
(4) When (2.21) holds, we see that x < 0 in (2.25). Next we finish the proof by similar

argumentations like in the above.
(5)Assume now that (2.22) holds. In view of Remark 2.4 this is possible only when k =

γ = 1.

(a) For β < 1 the boundary ∂hβ(� ) has the corner at 0 of the angle βπ < π . Since p(∂� r0 )
is an analytic curve, in view of (2.19) the case p(z0) = 0 does not hold for β < 1.

(b) Let now β ≥ 1.

Assume that p′(z0)/= 0. Since z0p′(z0) is an outer normal to the curve p(∂� r0 ) at p(z0),
by (2.19) we see that

(
3 − β

)π
2

=
3
2
π − βπ

2
≤ arg

{
z0p

′(z0)
}
≤ βπ

2
+
π

2
=
(
β + 1

)π
2
. (2.34)
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Hence taking into account that

3 − β ≤ c1
(
n, α, 1, β

)
, β + 1 ≤ 4 − c1

(
n, α, 1, β

)
,

p(z0) + αz0p′(z0) = αz0p′(z0),
(2.35)

we deduce that

c1
(
n, α, 1, β

)π
2

≤ arg
{
p(z0) + αz0p′(z0)

}
≤
(
β + γ

)π
2

≤ 2π − c1
(
n, α, 1, β

)π
2
, (2.36)

for all β ∈ (0, β1(n, α, γ)]. In this way we arrive at a contradiction with (2.17) so p ≺ hβ.
If p′(z0) = 0, then

p(z0) + αz0p′(z0) = 0 /∈ hβ(� ), (2.37)

and once again we contradict (2.17).

Special Cases

(1) The case n = 1, α = 1 was proved in [5].
(2) The case γ = 1 was proved in [6].

Corollary 2.7 (see [6]). Let n ∈ �, α ≥ 0. Let β ∈ (0, β1(n, α, 1)], where β = β1(n, α, 1) is the
solution of the equation

β + c1
(
n, α, 1, β

)
= 3, (2.38)

with

c1
(
n, α, 1, β

)
= β +

2
π

arctan
(
nαβ
)
. (2.39)

If p is analytic function in � of the form (1.4) and

p(z) + αzp′(z) ≺ hc1(n,α,1,β)(z), z ∈ � , (2.40)

then
p ≺ hβ. (2.41)

(3) The case γ = 1, α = 1 was remarked [7].

(4) The case γ = 1, α = 1, n = 1 was proved in detail in [8].

Now we consider the problem (1.3) for k ≥ 2.

Theorem 2.8. Let k ≥ 2, n ∈ �, α ≥ 0, γ ∈ [0, 1] and let β ∈ (0, 1/(k − 1)]. If p ∈
Hk(n, α, γ) and

p(z)

[

1 + α
zp′(z)
pk(z)

]γ
≺ hck(n,α,γ,β)(z), z ∈ � , (2.42)
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then

p ≺ hβ, (2.43)

where

ck
(
n, α, γ, β

)

= β +
2γ
π

× arctan

[
nαβ cos

(
(k − 1)βπ/2

)

(
1 + (k − 1)β

)(1+(k−1)β)/2(1 − (k − 1)β
)(1−(k−1)β)/2 + nαβ sin

(
(k − 1)βπ/2

)

]

.

(2.44)

Proof. (1)We repeat argumentation from Parts 1 and 2 of the proof of Theorem 2.6.
(2)We have

p(z0)

[

1 + α
z0p

′(z0)
pk(z0)

]γ
= hβ(ξ0)

⎡

⎣1 +mα
ξ0h

′
β(ξ0)

hk
β(ξ0)

⎤

⎦

β

= (xi)β
[

1 +
mαβ

(
1 + x2

)

2x
i

(xi)(k−1)β

]γ

= (xi)β
[

1 +
mαβ

(
1 + x2

)

2x1+(k−1)β
i1−(k−1)β

]γ
.

(2.45)

Since x > 0 and 1 − (k − 1)β ≥ 0, we can take

arg

{

1 +
mαβ

(
1 + x2

)

2x1+(k−1)β
i1−(k−1)β

}

∈
[
0,
π

2

)
. (2.46)

Hence

arg

{

p(z0)

[

1 + α
z0p′(z0)
pk(z0)

]γ}

= arg

{

(xi)β
[

1 +
mαβ

(
1 + x2

)

2x1+(k−1)β
i1−(k−1)β

]γ}

= β
π

2
+ γ arg

{

1 +
mαβ

(
1 + x2

)

2x1+(k−1)β
sin
(
(k − 1)βπ

2

)
+ i

mαβ
(
1 + x2

)

2x1+(k−1)β
cos
(
(k − 1)βπ

2

)}

= β
π

2
+ γ arctan

[ (
mαβ

(
1 + x2

)
/2x1+(k−1)β

)
cos
(
(k − 1)βπ/2

)

1 +
(
mαβ(1 + x2)/2x1+(k−1)β

)
sin
(
(k − 1)βπ/2

)

]

.

(2.47)
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Thus, from (2.46) and by the fact that m ≥ n we obtain

arg

{

p(z0)

[

1 + α
z0p′(z0)
pk(z0)

]γ}

≥ βπ
2
+ γ arctan

[
nαβa(x) cos

(
(k − 1)βπ/2

)

1 + nαβa(x) sin
(
(k − 1)βπ/2

)

]

, (2.48)

where

a(x) =
1 + x2

2x1+(k−1)β
, x /= 0. (2.49)

We have

a′(x) =

(
1 − (k − 1)β

)
x2 −

(
1 + (k − 1)β

)

2x2+(k−1)β
, x /= 0. (2.50)

(3) Assume now that (k − 1)β < 1. Observe that the function a attains its minimum at
the point

x0 =

√
1 + (k − 1)β
1 − (k − 1)β

. (2.51)

Moreover

a(x0) =
1

(
1 + (k − 1)β

)(1+(k−1)β)/2(1 − (k − 1)β
)(1−(k−1)β)/2 . (2.52)

Hence, and from (2.48), we have

arg

{

p(z0)

[

1 + α
z0p

′(z0)
pk(z0)

]γ}

≥ βπ
2
+ γ arctan

{
nαβa(x0) cos

(
(k − 1)βπ/2

)

1 + nαβa(x0) sin
(
(k − 1)βπ/2

)

}

= β
π

2

+ γ arctan

[
nαβ cos

(
(k − 1)βπ/2

)

(
1 + (k − 1)β

)(1+(k−1)β)/2(1 − (k − 1)β
)(1−(k−1)β)/2 + nαβ sin

(
(k − 1)βπ/2

)

]

= ck
(
n, α, γ, β

)π
2
.

(2.53)
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On the other hand, using the fact that 0 ≤ (k − 1)βπ/2 < π/2, from (2.47) we obtain

arg

{

p(z0)

[

1 + α
z0p′(z0)
pk(z0)

]γ}

= β
π

2
+ γ arctan

[ (
mαβ

(
1 + x2

)
/2x1+(k−1)β

)
cos
(
(k − 1)βπ/2

)

1 +
(
mαβ(1 + x2)/2x1+(k−1)β

)
sin
(
(k − 1)βπ/2

)

]

≤
(
β + γ

)π
2
.

(2.54)

Finally, the above and (2.53) yield

ck
(
n, α, γ, β

)π
2

≤ arg

{

p(z0)

[

1 + α
z0p′(z0)
pk(z0)

]γ}

≤
(
β + γ

)π
2

≤ 2π − ck
(
n, α, γ, β

)π
2
, (2.55)

for all β ∈ (0, 1/(k − 1)].
Thus we arrive at a contradiction with (2.17) so p ≺ hβ.
(4) For (k − 1)β = 1 we have ck(n, α, γ, β) = β.
This ends the proof of the theorem for the case x > 0.
(5) When (2.21) holds, we see that x < 0 in (2.25). Next we finish the proof by similar

argumentations like in the above.
(6) Since β ≤ 1/(k − 1) < 1, arguing as in Part 5(a) of the proof of Theorem 2.6 we see

that the case (2.22) does not hold.

Special Cases

(1) β = 1/(k − 1).

Then ck(n, α, γ, β) = β.

Corollary 2.9. Let k ≥ 2, n ∈ �, α ≥ 0 and γ ∈ [0, 1]. If p ∈ Hk(n, α, γ) and

p(z)

[

1 + α
zp′(z)
pk(z)

]γ
≺ h1/(k−1) (z) , z ∈ � , (2.56)

then

p ≺ h1/(k−1). (2.57)

(2) k = 2, β = 1.

Corollary 2.10. Let n ∈ �, α ≥ 0 and γ ∈ [0, 1]. If p ∈ H2(n, α, γ) and

Re

{

p(z)
[
1 + α

zp′(z)
p2(z)

]γ}

> 0, z ∈ � , (2.58)
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then

Re
{
p(z)

}
> 0, z ∈ � . (2.59)

(3) The case n = 1, α = 1 was proved in [9].
(4) γ = 1.

Corollary 2.11. Let k ≥ 2, n ∈ �, α ≥ 0 and β ∈ (0, 1/(k − 1)]. If p is a function analytic in
� of the form (1.4) nonvanishing in � and

p(z) + α
zp′(z)
pk−1(z)

≺ hck(n,α,1,β)(z), z ∈ � , (2.60)

then

p ≺ hβ, (2.61)

where ck(n, α, 1, β) is given by (2.44).

(5) γ = 1, k = 2.

Corollary 2.12. Let n ∈ �, α ≥ 0, and β ∈ (0, 1]. If p is a function analytic in � of the form (1.4)
nonvanishing in � and

p(z) + α
zp′(z)
p(z)

≺ hc2(n,α,1,β)(z), z ∈ � , (2.62)

where

c2
(
n, α, 1, β

)
= β +

2
π

arctan

[
nαβ cos

(
βπ/2

)

(
1 + β

)(1+β)/2(1 − β)(1−β)/2 + nαβ sin
(
βπ/2

)

]

, (2.63)

then

p ≺ hβ. (2.64)

(6) The case γ = 1, k = 2, n = 1, α = 1 was proved in [10]. The same result was
reproved in [11] and once again in [12].

(7) γ = 1, k = 2, β = 1.

Corollary 2.13. Let n ∈ �, α ≥ 0, and β ∈ (0, 1]. If p is an analytic function in � of the form
(1.4) nonvanishing in � and

Re
{
p(z) + α

zp′(z)
p(z)

}
> 0, z ∈ � , (2.65)
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then

Re
{
p(z)

}
> 0, z ∈ � . (2.66)

3. Applications

All this type results can be applied in the theory of analytic functions. Some results concern-
ing the inclusion relations between subclasses of analytic functions can be formulated.

Let A(n), n ∈N, denote the class of functions of the form

f(z) = z +
∞∑

k=n+1

akz
k, (3.1)

which is analytic in � . For short, let A = A(1). Also let S denote the class of all functions
in A which are univalent in � .

To use theorems and corollaries listed in the previous section we put instead
of the function p some functionals over the class A(n), such as p(z) = f(z)/z, p(z) =
zf ′(z)/f(z) or the others. In this way the inclusion relations between selected subclasses
of analytic functions can be obtained.

3.1. Arithmetic Means

(I) γ = 1, k = 1.

(i) p(z) = f(z)/z, z ∈ � , f ∈ A(n), n ∈N.
For n ∈ �, α ≥ 0, β ∈ (0, 1] let Rn(α, β) denote class of functions f ∈ A(n) such that

(1 − α)
f(z)
z

+ αf ′(z) ≺ hβ(z), z ∈ � , (3.2)

or, equivalently,
∣∣
∣∣arg

{
(1 − α)

f(z)
z

+ αf ′(z)
}∣∣
∣∣ < β

π

2
, z ∈ � . (3.3)

Using Corollary 2.7 we have the following.

Corollary 3.1. Let n ∈ �, α ≥ 0, and β ∈ (0, β1(n, α, 1)]. If f ∈ A(n) and

∣∣
∣∣arg

{
(1 − α)

f(z)
z

+ αf ′(z)
}∣∣
∣∣ < c1

(
n, α, 1, β

)π
2
, (3.4)

then

∣∣
∣∣arg
{
f(z)
z

}∣∣
∣∣ < β

π

2
, z ∈ � . (3.5)

The above result we can write in the following form.
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Corollary 3.2.

Rn

(
α, c1

(
n, α, 1, β

))
⊂ Rn

(
0, β
)
. (3.6)

(ii) p(z) = f ′(z), z ∈ � , f ∈ A(n), n ∈ �

For n ∈ �, α ≥ 0, β ∈ (0, 1] let Tn(α, β) denote class of functions f ∈ A(n) such that

f ′(z) + αzf ′′(z) ≺ hβ(z), z ∈ � , (3.7)

or, equivalently,

∣∣arg
{
f ′(z) + αzf ′′(z)

}∣∣ < β
π

2
, z ∈ � . (3.8)

Remark 3.3. (1) The class T1(1, 1) was introduced in [13].
(2) The class T1(α, 1) coincides with the class H(α, 1,−1) studied in [14].
Observe that f ∈ Tn(α, β) if and only if zf ′ ∈ Rn(α, β).

Using Corollary 2.7 we have the following.

Corollary 3.4. Let n ∈ �, α ≥ 0, and β ∈ (0, β1(n, α, 1)]. If f ∈ A(n) and

∣∣arg
{
f ′(z) + αzf ′′(z)

}∣∣ < c1
(
n, α, 1, β

)π
2
, z ∈ � , (3.9)

then

∣
∣arg

{
f ′(z)

}∣∣ < β
π

2
, z ∈ � . (3.10)

Hence we have the following.

Corollary 3.5.

Tn

(
α, c1

(
n, α, 1, β

))
⊂ Tn

(
0 , β
)
. (3.11)

(II) γ = 1, k = 2.

(ii) p(z) = zf ′(z)/f(z), z ∈ � , f ∈ A(n), n ∈ �.
For n ∈ �, α ≥ 0, β ∈ (0, 1] let Mn(α, β) denote class of functions f ∈ A(n) such

that f(z)f ′(z)/= 0 for z ∈ � and

(1 − α)
zf ′(z)
f(z)

+ α
(
1 +

zf ′′(z)
f ′(z)

)
≺ hβ(z), z ∈ � , (3.12)
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or, equivalently,

∣∣
∣∣arg
{
(1 − α)

zf ′(z)
f(z)

+ α
(
1 +

zf ′′(z)
f ′(z)

)}∣∣
∣∣ < β

π

2
, z ∈ � . (3.13)

Remark 3.6. (1) The class M1(α, 1), that is, the class of so-called α-convex functions was
introduced by Mocanu [15].

(2) The class M1(0, 1) is identical with the class S∗ of starlike functions. The
class M1(1, 1) is identical with the class C of convex functions.

(3) The class M1(0, β) denoted by S∗(β) were defined by Brannan and Kirwan [16]
and, independently, by Stankiewicz [17, 18]. Functions in this class are called strongly starlike
of order β.

The class M1(1, β) denoted by C∗(β) contains functions called strongly convex of order
β.

Using Corollary 2.12 we have the following result proved by Marjono and Thomas
[19].

Corollary 3.7. Let n ∈ �, α ≥ 0, and β ∈ (0, 1]. If f ∈ A(n) and

∣∣∣
∣arg

{
(1 − α)

zf ′(z)
f(z)

+ α
(
1 +

zf ′′(z)
f ′(z)

)}∣∣∣
∣ < c2

(
n, α, 1, β

)π
2
, z ∈ � , (3.14)

then

∣
∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣ < β
π

2
, z ∈ � . (3.15)

For α = 1 one has the result due to Nunokawa and Thomas [12]:

Corollary 3.8. Let n ∈ � and β ∈ (0, 1]. If f ∈ A(n) and

∣
∣∣∣arg

{
1 +

zf ′′(z)
f ′(z)

}∣∣∣∣ < c2
(
n, 1, 1, β

)π
2
, z ∈ � , (3.16)

then

∣∣∣
∣arg
{
zf ′(z)
f(z)

}∣∣∣
∣ < β, z ∈ � . (3.17)

Corollary 3.9.

Mn

(
α, c2

(
n, α, 1, β

))
⊂ Mn

(
0, β
)
,

M1(α, 1) ⊂ S∗,

C ⊂ S∗.

(3.18)



16 International Journal of Mathematics and Mathematical Sciences

3.2. Geometric Mean

(I) α = 1, k = 1.

(i) p(z) = f(z)/z, z ∈ � , f ∈ A(n), n ∈ �.
For n ∈ �, β ∈ (0, 1], and γ ∈ [0, 1] let Ln(γ, β) denote class of functions f ∈

A(n) such that

(
f(z)
z

)1−γ(
f ′(z)

)γ ≺ hβ(z), z ∈ � , (3.19)

or equivalently

∣∣
∣∣∣
arg

{(
f(z)
z

)1−γ(
f ′(z)

)γ
}∣∣
∣∣∣
< β

π

2
, z ∈ � . (3.20)

Remark 3.10. The class L1(γ, 1) was introduced in [20].

Applying Theorem 2.6 with α = 1 we have the following.

Corollary 3.11. Let n ∈ �, γ ∈ [0, 1], and β ∈ (0, β1(n, 1, γ)]. If f ∈ A(1) and

∣
∣∣∣
∣
arg

{(
f(z)
z

)1−γ(
f ′(z)

)γ
}∣∣∣∣
∣
< c1
(
n, 1, γ, β

)π
2
, z ∈ � , (3.21)

then

∣
∣∣∣arg
{
f(z)
z

}∣∣∣∣ < β
π

2
, z ∈ � . (3.22)

Corollary 3.12.

Ln

(
γ, c1
(
n, 1, γ, β

))
⊂ Ln

(
0, β
)
. (3.23)

(II) α = 1, k = 2.

(ii) p(z) = zf ′(z)/f(z), z ∈ � , f ∈ A(n), n ∈ �.
For n ∈ �, β ∈ (0, 1], and γ ∈ [0, 1] let S∗

n(γ, β) denote class of functions f ∈
A(n) such that

(
zf ′(z)
f(z)

)1−γ(
1 +

zf ′′(z)
f ′(z)

)γ
≺ hβ(z), z ∈ � , (3.24)
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or, equivalently,

∣
∣∣∣
∣
arg

{(
zf ′(z)
f(z)

)1−γ(
1 +

zf ′′(z)
f ′(z)

)γ}∣∣∣∣
∣
< β

π

2
, z ∈ � . (3.25)

Remark 3.13. (1) The class S∗
n(γ, 1), that is, the class of so-called γ -starlike functions was

introduced by Lewandowski et al. [21].
(2) Clearly,

S∗
1(0, 1) = S∗, S∗

1(1, 1) = C,

S∗
1

(
0, β
)
= M1

(
0, β
)
= S∗(β

)
,

S∗
1

(
1, β
)
= M1

(
1, β
)
= C∗(β

)
.

(3.26)

Using Theorem 2.8 we obtain results due to Darus and Thomas [22].

Theorem 3.14. Let n ∈ �, γ ∈ [0, 1], and β ∈ (0, 1]. If f ∈ A(n) and

∣
∣∣∣
∣
arg

{(
zf ′(z)
f(z)

)1−γ(
1 +

zf ′′(z)
f ′(z)

)γ}∣∣∣∣
∣
< c2
(
n, 1, γ, β

)π
2
, z ∈ � , (3.27)

then

∣
∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣ < β
π

2
, z ∈ � . (3.28)

Corollary 3.15.

S∗
n

(
γ ; c2

(
n, 1, γ, β

))
⊂ S∗

n

(
β
)
,

S∗
1

(
γ, 1
)
⊂ S∗.

(3.29)

As further applications of Theorems 2.6 and 2.8 we can use arbitrary well-defined
functionals over the class A(n). We recall two examples:

(1)

p(z) =
Kδ+1
a f(z)
z

, z ∈ � , f ∈ A(n), n ∈ �, a > 0, δ ≥ 0, (3.30)
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where the integral operator Kδ
a over the class A(n) was defined by Komatu [23] as follows:

Kδ
af(z) =

aδ

Γ(δ)

∫1

0
ta−2
(
log

1
t

)δ−1
f(zt)dt, z ∈ � , (3.31)

where Γ is the Gamma function;
(2)

p(z) =
Lλf(z)

z
, z ∈ � , f ∈ A, λ ≥ −1, (3.32)

where the operator Lλ over the class A called Ruscheweyh derivative [24] was defined as
follows:

Lλf(z) =
z

(1 − z)λ+1
∗ f(z), z ∈ � . (3.33)
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