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An analytical method, called homotopy perturbation method (HPM), is used to compute an
approximation to the solution of the nonlinear differential equation governing the problem of
two-dimensional and steady flow of a second-grade fluid in a converging channel. The table and
figures are presented for influencing various parameters on the velocity field. The results compare
well with those obtained by the numerical method. The method is straightforward and concise,
and it can also be applied to other nonlinear evolution equations in mathematical physics.

1. Introduction

In recent years, there has been a considerable interest in the channel flow of non-Newtonian
fluid because of its various applications in different fields of engineering. The problem of
laminar flow of a viscous fluid in a parallel-walled channel was first studied by Berman [1] for
two-dimensional case and the case of very cross-flow Reynolds number. In 1963, Rosenhead
[2] explained this phenomenon more adequately by the theory of converging and diverging
channel with a permeable wall and suction or injection at the wall whose magnitude is
inversely proportional to the distance along the wall from the origin of the channel. Terrill [3]
presented the new form for channel flow and considered suction at one wall and injection at
the other wall where the rates of this injection and suction were equal. Some other researchers
continued the solution of this phenomenon for different cases [4–7]. In 2001, Baris restated
Terrill’s problem by introducing a second-grade fluid and presented the effect of the elasticity
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of the fluid on the velocity distribution for different values of Reynolds number and cross-
flow Reynolds number [8].

In all of these cases, these problems do not admit analytical solution, so these equations
should be solved using special techniques. In recent years, much attention has been devoted
to the newly developed methods to construct an analytic solution of equation; such methods
include the Adomian decomposition method [9–12], the homotopy perturbation method
(HPM) [13–24], and the variational iteration method (VIM) [25–31]. HPM is the most
effective and convenient one for both linear and nonlinear equations. This method does
not depend on a small parameter. Using homotopy technique in topology, a homotopy
is constructed with an embedding parameter p ∈ [0, 1], which is considered as a “small
parameter.” HPM has been shown to effectively, easily, and accurately solve a large class
of linear and nonlinear problems with components converging rapidly to accurate solutions.
HPM was first proposed by He [14–19] and was successfully applied to various engineering
problems.

The organization of this paper is as follows: in Section 2, the mathematical framework
of the homotopy perturbation method is illustrated. To present a clear overview of this
method, Section 3 contains the description of the laminar flow of a second-grade viscoelastic
fluid in a porous converging channel of total opening of 60◦. In Section 4, this analytical
method is utilized to solve the nonlinear equation governing the described problem. Finally,
some results are provided.

2. Fundamentals of the Homotopy Perturbation Method

To illustrate the homotopy perturbation method (HPM) for solving nonlinear differential
equations, He [14, 15] considered the following non-linear differential equation:

A(u) − f(r) = 0, r ∈ Ω, (2.1)

with the boundary condition of

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (2.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, Γ is the boundary of the domain Ω, and ∂( )/∂n denotes differentiation along the
normal vector drawn outwards from Ω. The operator A can generally be divided into two
parts L and N, where L is linear and N is nonlinear. Therefore, (2.1) can be rewritten as
follows:

L(u) +N(u) − f(r) = 0, r ∈ Ω. (2.3)

Homotopy perturbation structure is shown as follows:

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
A(v) − f(r)

]
= 0, (2.4)
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where

v
(
r, p

)
: Ω × [0, 1] −→ R. (2.5)

Equation (2.4) is equivalent to

H
(
v, p

)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0. (2.6)

So, we have

H(v, 0) = L(v) − L(u0) = 0, H(v, 1) = A(v) − f(r) = 0. (2.7)

The changing process of p from zero to unity is just that of H(v, p) from L(v) − L(u0)
to A(v) − f(r). In topology, this is called deformation and L(v) − L(u0) and L(v) − L(u0) are
called homotopic. According to the homotopy perturbation method, the parameter p is used
as a small parameter, and the solution of (2.4) can be expressed as a series in p in the form
of

v = v0 + pv1 + p2v2 + · · · . (2.8)

When p → 1, (2.4) corresponds to the original one and (2.5) and (2.8) become the
approximate solution of (2.3), that is,

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (2.9)

The convergence of the series in (2.9) is discussed by He in [14, 15].

3. Problem Statement and Mathematical Formulation

In this section, we state the problem and present the governing equation. The phenomenon of
two-dimensional non-Newtonian viscoelastic fluid flow in a converging channel whose wall
has suction and injection is considered. The rates of these suction and injection in two walls
are equal and vary in inverse proportion to the distance along the wall from the center of the
channel. We assume that the wall which has suction is located in θ = +α and the other wall
which has injection of fluid is in θ = −α (Figure 1). According to Figure 1, u(r, θ) and ν(r) are
velocity components in the directions of r and θ, respectively.

The governing equations for this problem are

continuity equation:

∇ · V = 0. (3.1)
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Figure 1: Schematic diagram of the physical system.

Momentum equation:

ρ(V · ∇V ) = ∇ · T, (3.2)

where V is the velocity, ρ is the density, and T is The Cauchy stress tensor [5, 9] and it is
presented as follows:

T = −p0I +A1 + β
(
A2 −A2

1

)
, β = α1 = −α2. (3.3)

Terrill and Roy and Nayak presented velocity field in the form of [3, 6]

u(r, θ) =
U0r0
r

f(θ),

v(r) =
V0r0
r

,

(3.4)

where V0 is the velocities of suction and injection at θ = +α and θ = −α, respectively, at the
typical length of r0. Also,U0 is the magnitude of the velocity in the direction of r at the center
line of the channel.

The boundary conditions for this problem are

u(r,−α) = 0,

u(r,+α) = 0,

u(r0, 0) = −|U0|.
(3.5)
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Using (3.1)–(3.5), we will have

∂P

∂θ
=
2μU0r0

r2
f ′ +

2βr20U
2
0

r4
f ′f ′′

∂P

∂r
=
ρr20
r3

(
V 2
0 +U2

0f
2 −U0V0f

′ +
νU0

r0
f ′′

)

+
βr20
r5

(
−8V 2

0 − 8U2
0f

2 + 4U0V0f
′ − 2U2

0f
′2 − 4U2

0ff
′′ +U0V0f

′′′
)
,

(3.6)

where, in these equations, prime denotes derivation with respect to θ and ν is the kinematic
viscosity. Using (3.6) and eliminating the pressure term, (3.1) and (3.2) reduce to the
following ordinary differential equation or similarity equation:

f ′′′ − Rf ′′ + 2Re ff ′ + 4f ′ +N
(
−16Re ff ′ + 4Rf ′′ − 4Re ff ′′′ + RfIV

)
= 0, (3.7)

where R, Re, andN are the cross-flow Reynolds number, Reynolds number, and elastic num-
ber, respectively.

The boundary conditions for this equation are

f(−α) = 0, f(0) = −1, f(+α) = 0. (3.8)

Equation (3.7) with the boundary conditions (3.8) is solved numerically by Bariş [9]
for different cases of R, Re, and N. In this paper, we reconsider the governing equation and
solve it by He’s homotopy perturbation method.

4. HPM Solutions for Velocity and Temperature Fields

In this section, we will solve (3.7) using HPM. So, we construct the following homotopy for
these equations:

H
(
f, p

)
=
(
1 − p

)(
f ′′′ − f ′′′

0

)

+ p
(
f ′′′ − Rf ′′ + 2Reff ′ + 4f ′

+N
(
−16Reff ′ + 4Rf ′′ − 4Reff ′′′ + RfIV

))
= 0.

(4.1)

According to the definition of the HPM, we consider function f(θ) as follows:

f = f0 + pf1 + p2f2 + p3f3 + · · · . (4.2)
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Figure 2: Comparison of HPM and the numerical method for Re = 3, R = 5, and N = 0.015.
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Figure 3: Velocity distribution for Re = 0.5, R = 2, and different N using HPM.
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Figure 4: Velocity distribution for Re = 0.5, R = 5, and different N using HPM.
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Figure 5: Velocity distribution for Re = 5, R = 2, and different N using HPM.
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Table 1: The results of HPM and NM methods for Re = 3, R = 5, and N = 0.015.

θ fHPM fNM | fNM − fHPM|
−π/6 0.000024651 0.000000000 0.000025

−0.5235 −0.000133055 −0.000232980 0.000100

−0.5027 −0.034635498 −0.049303900 0.014668

−0.4817 −0.071891003 −0.098813000 0.026922

−0.4398 −0.152402362 −0.197161000 0.044759

−0.3665 −0.307655871 −0.366006250 0.058350

−0.2617 −0.542915584 −0.593305700 0.050390

−0.1571 −0.764703592 −0.791658300 0.026955

0.0000 −1.000000000 −1.000000000 0.000000

0.1571 −1.028797379 −1.034518440 0.005721

0.2617 −0.905274553 −0.915206190 0.009932

0.3665 −0.659877151 −0.652557500 0.007320

0.4398 −0.405545492 −0.381704720 0.023841

0.4817 −0.221073168 −0.198909090 0.022164

0.5027 −0.115346628 −0.100998040 0.014349

0.5235 −0.000482123 −0.000485050 0.000003

+π/6 0.000096447 0.000000000 0.000096

Assuming f ′′′
0 = 0 substituting f(θ) from (4.2) into (4.1), and using some simplification and

rearranging based on powers of p-terms, we have

p0 : f ′′′
0 = 0, (4.3)

f0(−α) = 0, f0(0) = −1, f0(+α) = 0, (4.4)

p1 : f ′′′
1 − Rf ′′

0 + 4NRf ′′
0 + 2Re f0f ′

0 +NRf IV
0

+ 4f ′
0 − 4N Re f0f ′′′

0 − 16N Re f0f ′
0 = 0,

(4.5)

f1(−α) = 0, f1(0) = 0, f1(+α) = 0, (4.6)

p2 : f ′′′
2 + 4f ′

1 − 16NRe f1f ′
0 + 2Re f1f ′

0

− 16N Re f0f ′
1 − Rf ′′

1 − 4N Re f0f ′′′
1 + 4NRf ′′

1

− 4N Re f1f ′′′
0 + 2Re f0f ′

1 +NRf IV
1 = 0,

(4.7)

f2(−α) = 0, f2(0) = 0, f2(+α) = 0,

...
(4.8)
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By using Maple software, we solve (4.3), (4.5), and (4.7) with considering boundary
conditions (4.4), (4.6), and (4.8). We have obtained the 4-term approximations to f(θ), but
for lack of space, only the first 3 terms produced are given below

f0(θ) =
36θ2

π2 − 1,

f1(θ) = −114.048
π4

θ6 +
3.840
π2 θ4 +

56.400
π2 θ3 − 0.01866θ2 − 1.56666θ,

f2(θ) =
240.8693

π6 θ10 − 263.9396
π6 θ8 − 15.6408

π4
θ8 − 331.8253

π4
θ7 +

0.2821
π2 θ6

+
25.5052

π4
θ6 +

22.1088
π2 θ5 +

87.8688
π4

θ5 +
65.5788

π2 θ4 − 11.3040
π2 θ3

− 0.001991θ4 − 0.363466θ3 − 1.835365θ2 + 0.247672θ,

...

(4.9)

According to the definition of the HPM in Section 2 ((2.8) and (2.9)), we consider 4-
order solution of f(θ) as following:

f(θ) =
4∑
i=0

fi(θ). (4.10)

In the case of Re = 3, R = 5, andN = 0.015 (Table 1), functions f(θ) are

f(θ) = 0.008022θ18 − 0.062658θ16 − 0.245778θ15 + 0.110238θ14 + 1.386855θ13

+ 2.362529θ12 − 1.570382θ11 − 8.762153θ10 − 8.056363θ9 + 5.259996θ8

+ 14.617810θ7 + 5.696890θ6 − 4.530889θ5 − 4.098633θ4 + 3.711309θ3

+ 4.284551θ2 − 0.929478θ − 1.

(4.11)

In the same manner, we have obtained the other cases for Re, R, and N. The results
are presented in Figures 2, 3, 4, and 5.

5. Conclusion

In this paper, we have successfully developedHPM to obtain the solutions of non-Newtonian
viscoelastic fluid flow in a porous channel with suction and injection in their walls. The
governing equation is solved for different cases of Reynolds number, Re, the cross-flow
Reynolds number,R, and elastic number,N. It is apparently seen that homotopy perturbation
method is a very powerful and efficient technique for solving different kinds of problems
arising in various fields of science and engineering and present a rapid convergence for the
solutions.
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