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This paper is concerned with a finite-horizon optimal selling rule problem when the underlying
stock price movements are modeled by a Markov switching Lévy process. Assuming that the
transaction fee of the selling operation is a function of the underlying stock price, the optimal
selling rule can be obtained by solving an optimal stopping problem. The corresponding value
function is shown to be the unique viscosity solution to the associated HJB variational inequalities.
A numerical example is presented to illustrate the results.

1. Introduction

One of the major decision investors have to make on a daily basis is to identify the best time
to sell or buy a particular stock. Usually if the right decision is not taken at the right time,
this will generally result in large losses for the investor. Such decisions are mainly affected by
various macro- andmicro-economical parameters. One of the main factors that affect decision
making in the marketplace is the trend of the stock market. In this paper, we study trading
decision making when we assume that market trends are subject to change and that these
fluctuations can be captured by a combination of a latent Markov chain and a jump process.
In fact, we model the stock price dynamics with a regime switching Lévy process. Regime
switching Lévy processes are obtained by combining a finite number of geometric Lévy
processes modulated by a finite-state Markov chain. This type of processes clearly capture
the main features of a wide variety of stock such as energy stock and commodities which
usually display a lot of spikes and seasonality. Selling rule problems in general have been
intensively studied in the literature, and most of the work have been done when the stock
price follows a geometric Brownian motion or a simple Markov switching process. Among
many others, we can cite the work of Zhang [1]; in this paper, a selling rule is determined
by two threshold levels, and a target price and a stop-loss limit are considered. One makes
a selling decision whenever the price reaches either the target price or the stop-loss limit.
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The objective is to choose these threshold levels to maximize an expected return function.
In [1], such optimal threshold levels are obtained by solving a set of two-point boundary
value problems. Recently Pemy and Zhang [2] studied a similar problem in the case where
there is no jump process associated and the underlying dynamics is just a traditional Markov
switching process built by coupling a set of geometric Brownian motions.

In this paper, we extend the result of Pemy and Zhang [2], we consider an optimal
selling rule among the class of almost all stopping times under a regime switching Lévy
model. We study the case when the stock has to be sold within a prespecified time limit.
Given a transaction cost which is a function of the underlying stock price, the objective is to
choose a stopping time so as to maximize an expected return. The optimal stopping problem
was studied by McKean [3] back to the 1960s when there is no switching; see also Samuelson
[4] in connection with derivative pricing and Øksendal [5] for optimal stopping in general.
In models with regime switching, Guo and Zhang [6] considered the model with a two-state
Markov chain. Using a smooth-fit technique, they were able to convert the optimal stopping
problem to a set of algebraic equations under certain smoothness conditions. Closed-form
solutions were obtained in these cases. However, it can be shown with extensive numerical
tests that the associated algebraic equations may have no solutions. This suggests that the
smoothness (C2) assumption may not hold in these cases. Moreover, the results in [5, 6] are
established on an infinite time horizon setup. However, in practice, an investor often has to
sell his stock holdings by a certain date due to various nonprice-related considerations such
as year-end tax deduction or the need for raising cash for major purchases. In these cases, it is
necessary to consider the corresponding optimal sellingwith a finite horizon. It is the purpose
of this paper to treat the underlying finite horizon optimization problem with possible
nonsmoothness of the solutions to the associated HJB variational inequalities. We resort to
the concept of viscosity solutions and show that the corresponding value function is indeed
the only viscosity solution to the HJB variational inequalities. We clearly prove that the value
function of this optimal stopping time problem is the unique viscosity solution to the associ-
atedHJB variational inequalities, which enables us to run some numerical schemes in order to
approximate the value function and derive the both the continuation region and the stopping
region. It is well known that the optimal stopping rule can be determined by the correspond-
ing value function; see, for example, Krylov [7] and Øksendal [5] for diffusions, Pham [8] for
jump diffusions, and Guo and Zhang [6] and [9] for regime switching diffusions.

The paper is organized as follows. In the next section, we formulate the problem
under consideration and then present the associated HJB inequalities and their viscosity
solutions. In Section 3, we obtain the continuity property of the value function and show
that it is the only viscosity solution to the HJB equations. In Section 4, we give a numerical
example in order to illustrate our results. To better present the results without undue technical
difficulties, all proofs are moved to the appendix placed at the end of the paper.

2. Problem Formulation

Given an integer m ≥ 2, let α(t) ∈ M = {1, 2, . . . , m} denote a Markov chain with an m × m
matrix generator Q = (qij)m,m, that is, qij ≥ 0 for i /= j and Σm

j=1qij = 0 for i ∈ M and a Lévy
process (ηt)t. LetN be the Poisson random measure of (ηt)t, then it is defined as follows: for
any Borel setU ⊂ R,

N(t,U) =
∑

0<s≤t
1U
(
ηs − ηs−

)
. (2.1)
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The differential form of N is denoted by N(dt, dz). Let ν be the Lévy measure of (ηt)t; we
have ν(U) = E[N(1, U)] for any Borel setU ⊂ R. We define the differential formN(dt, dz) as
follows:

N(dt, dz) =

⎧
⎨

⎩
N(dt, dz) − ν(dz)dt, if |z| < 1,

N(dt, dz), if |z| ≥ 1.
(2.2)

From Lévy-Khintchine formula, we have

∫

R

min
(
|z|2, 1

)
ν(dz) <∞. (2.3)

In our regime switching Lévy market model, the stock price denoted by X(t) satisfies the
following Lévy stochastic differential equation

dX(t) = X(t)
(
μ(α(t))dt + σ(α(t))dW(t) +

∫

R

γ(α(t))zN(dt, dz)
)
,

X(s) = x, s ≤ t ≤ T,
(2.4)

where x is the initial price and T is a finite time. For each state i ∈ M, μ(i) the rate of return,
σ(i) the volatility and γ(i) the jump intensity are known and satisfied the linear growth
condition. There exists a constant C > 0 such that for all x ∈ R and all t ∈ [0, T], we have

x2
(
μ(α(t))2 + σ(α(t))2 +

∫

R

∣∣γ(α(t))
∣∣2z2ν(dz)

)
≤ C(1 + x2). (2.5)

W(t) is the standard Weiner process, and Ñ(dt, dz) represents the differential form of the
jump measure of ηt. The processes W(·), α(·), and η(·) are defined on a probability space
(Ω,F, P) and are independent of each other.

In this paper, we consider the optimal selling rule with a finite horizon T . We assume
that the transaction cost function a(·) > 0 is the function of the stock price itself. In this case,
we take into account all costs associated with the selling operation. The main objective of this
selling problem is to sell the stock by time T so as to maximize the quantity E[e−r(τ−s)(X(τ) −
a(X(τ)))], where r > 0 is a discount rate.

Let Ft = σ{α(s),W(s), η(s); s ≤ t} and let Λs,T denote the set of Ft-stopping times such
that s ≤ τ ≤ T a.s. The value function can be written as follows:

v(s, x, i) = sup
τ∈Λs,T

E
[
e−r(τ−s)(X(τ) − a(X(τ))) | X(s) = x, α(s) = i

]
. (2.6)

Given the value function v(s, x, i), it is typical that an optimal stopping time τ∗ can be
determined by the following continuation region:

D = {(t, x, i) ∈ [0, T) × R ×M; v(t, x, i) > x − a(x)}, (2.7)
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as follows:

τ∗ = inf{t > 0; (t, X(t), α(t)) /∈ D}. (2.8)

It can be proved that if τ∗ < +∞, then

v(s, x, i) = Es,x,i
[
e−r(τ

∗−s)(X(τ∗) − a(x))
]
. (2.9)

Thus, τ∗ is the optimal stopping time; see [9].
The process (X(t), α(t)) is a Markov process with generator A defined as follows:

(Af
)
(s, x, i) =

1
2
x2σ2(i)

∂2f(s, x, i)
∂x2

+ xμ(i)
∂f(s, x, i)

∂x
+Qf(s, x, ·)(i)

+
∫

R

(
f
(
s, x + γ(i)xz

) − f(s, x) − γ(i)xz1{|z|<1}(z)
∂f

∂x

)
ν(dz),

(2.10)

where

Qf(s, x, ·)(i) =
∑

j /= i

qij
(
f
(
s, x, j

) − f(s, x, i)). (2.11)

The corresponding Hamiltonian has the following form:

H
(
i, s, x, u,Dsu,Dxu,D2

xu
)

= min
[
ru(s, x, i) − ∂u(s, x, i)

∂s
− (Au)(s, x, i), u(s, x, i) − (x − a(x))

]

= 0.

(2.12)

Note that X(t) > 0 for all t. Let R
+ = (0,∞). Formally, the value function v(s, x, i) satisfies the

HJB equation

H
(
i, s, x, v,Dsv,Dxv,D2

xv
)
= 0, for (s, x, i) ∈ [0, T) × R

+ ×M,

v(T, x, α(T)) = (x − a(x)).
(2.13)

In order to study the possibility of existence and uniqueness of a solution of (2.12), we use a
notion of viscosity solution introduced by Crandall et al. [10].

Definition 2.1. We say that f(s, x, i) is a viscosity solution of

H
(
i, s, x, f,

∂f

∂s
,
∂f

∂x
,
∂2f

∂x2

)
= 0, for i ∈ M, s ∈ [0, T), x ∈ R

+,

f(T, x, α(T)) = (x − a(x)).
(2.14)
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If

(1) for all x ∈ R
+f(T, x, α(T)) = (x − a(x)), and for each i ∈ M, f(s, x, i) is continuous

in (s, x), moreover, there exist constants K and κ such that

f(s, x, i) ≤ K(1 + |x|κ), (2.15)

(2) for each i ∈ M,

H
(
i, s0, x0, f,

∂φ

∂s
,
∂φ

∂x
,
∂2φ

∂x2

)
≤ 0 (2.16)

whenever φ(s, x) ∈ C2 such that f(s, x, i) − φ(s, x) has local maximum at (s, x) =
(s0, x0),

(3) and for each i ∈ M,

H
(
i, s0, x0, f,

∂ψ

∂s
,
∂ψ

∂x
,
∂2ψ

∂x2

)
≥ 0 (2.17)

whenever ψ(s, x) ∈ C2 such that f(s, x, i) − ψ(s, x) has local minimum at (s, x) =
(s0, x0).

Let f be a function that satisfies (2.3). It is a viscosity subsolution (resp. supersolution) if it
satisfies (2.4) (resp. (2.5)).

3. Properties of Value Functions

In this section, we study the continuity of the value function, show that it satisfies the
associated HJB equation as a viscosity solution, and establish the uniqueness. We first show
the continuity property.

Lemma 3.1. For each i ∈ M, the value function v(s, x, i) is continuous in (s, x). Moreover, it has at
most linear growth rate, that is, there exists a constant C such that |v(s, x, i)| ≤ C(1 + |x|).

The continuity of the value function and its at most linear growth will be very helpful
in deriving the maximum principle which itself guarantees the uniqueness of the value
function. The following lemma is a simple version of the dynamic programming principle
in optimal stopping. A similar result has been proven in Pemy [9]. For general dynamic
programming principle, see Krylov [7] for diffusions, Pham [8] for jump diffusions, and Yin
and Zhang [11] for dynamic models with regime switching.

Definition 3.2. For each ε > 0, a stopping time τε ∈ Λs,T is said to be ε-optimal if

0 ≤ v(s, x, i) − E
[
e−r(τε−s)v(τε, X(τε), α(τε))

]
≤ ε. (3.1)
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Lemma 3.3. (1) Let β, γ ∈ Λs,T two stopping time such that s ≤ β ≤ γ a.s., then one has

E
[
e−r(β−s)v

(
β,X
(
β
)
, α
(
β
))] ≥ E

[
e−r(γ−s)v

(
γ,X
(
γ
)
, α
(
γ
))]

. (3.2)

In particular for any stopping time θ ∈ Λs,T , one has

v(s, x, i) ≥ Es,x,i
[
e−r(θ−s)v(θ,X(θ), α(θ))

]
. (3.3)

(2) Let θ ∈ Λs,T such that s ≤ θ ≤ τε for any ε > 0, where τε an ε-optimal stopping time. Then,
one has

v(s, x, i) = Es,x,i
[
e−r(θ−s)v(θ,X(θ), α(θ))

]
. (3.4)

With Lemma 3.3 at our hand, we proceed and show that the value function v(s, x, i) is a
viscosity solution of the variational inequality (2.13).

Theorem 3.4. The value function v(s, x, i) is a viscosity solution of (2.13).

3.1. Uniqueness of the Viscosity Solution

In this subsection, wewill prove that the value function defined in (2.6) is the unique viscosity
solution of the HJB equation (2.13). We begin by recalling the definition of parabolic superjet
and subjet.

Definition 3.5. Let f(s, x, i) : [0, T] × R ×M → R. Define the parabolic superjet by

P2,+f(s, x, i) =
{(
p, q,M

) ∈ R × R : f
(
t, y, i

) ≤ f(s, x, i) + p(t − s) + q(y − x)

+
1
2
(
y − x)2M + o

(∣∣y − x∣∣2
)
as
(
t, y
) −→ (s, x)

}
,

(3.5)

and its closure is

P2,+
f(s, x, i) =

{(
p, q,M

)
= lim

n→∞
(
pn, qn,Mn

)

with
(
pn, qn,Mn

) ∈ P2,+f(sn, xn, i) and

lim
n→∞

(
sn, xn, f(sn, xn, i)

)
=
(
x, f(s, x, i)

)}
.

(3.6)

Similarly, we define the parabolic subjet P2,−f(s, x, i) = −P2,+(−f)(s, x, i) and its closure

P2,−
f(s, x, i) = −P2,+

(−f)(s, x, i)



International Journal of Mathematics and Mathematical Sciences 7

We have the following result.

Lemma 3.6. P2,+f(s, x, i) (resp. P2,−f(s, x, i)) consist of the set of (∂φ(s, x)/∂s, ∂φ(s, x)/
∂x, ∂2φ(s, x)/∂x2) where φ ∈ C2([0, T] × R) and f − φ has a global maximum (resp. minimum)
at (s, x).

A proof can be found in Fleming and Soner [12].
The following result from Crandall et al. [10] is crucial for the proof of the uniqueness.

Theorem 3.7 (Crandall et al. [10]). For i = 1, 2, let Ωi be locally compact subsets of R, and Ω =

Ω1 ×Ω2, and let ui be upper semicontinuous in [0, T] ×Ωi, and P2,+
Ωi
ui(t, x) the parabolic superjet of

ui(t, x), and φ twice continuously differentiable in a neighborhood of [0, T] ×Ω.
Set

w(t, x1, x2) = u1(t, x1) + u2(t, x2) (3.7)

for (t, x1, x2) ∈ [0, T] ×Ω, and suppose (t̂, x̂1, x̂2) ∈ [0, T] ×Ω is a local maximum of w − φ relative
to [0, T] ×Ω. Moreover, let us assume that there is an r > 0 such that for everyM > 0 there exists a
C such that for i = 1, 2

bi ≤ C whenever
(
bi, qi, Xi

) ∈ P2,+
Ωi
ui(t, xi),

|xi − x̂i| +
∣∣∣t − t̂

∣∣∣ ≤ r, |ui(t, xi)| +
∣∣qi
∣∣ + ‖Xi‖ ≤M.

(3.8)

Then, for each ε > 0, there exists Xi ∈ S(1) = R such that

(1)

(
bi,Dxiφ

(
t̂, x̂
)
, Xi

)
∈ P2,+

Ωi
ui
(
t̂, x̂i
)

for i = 1, 2, (3.9)

(2)

−
(
1
ε
+
∥∥∥D2φ(x̂)

∥∥∥
)
I ≤
(
X1 0

0 X2

)
≤ D2φ(x̂) + ε

(
D2φ(x̂)

)2
, (3.10)

(3)

b1 + b2 =
∂φ
(
t̂, x̂, ŷ

)

∂t
. (3.11)

We have the following maximum principle.

Theorem 3.8 (Comparison Principle). If v1(t, x, i) and v2(t, x, i) are continuous in (t, x) and are,
respectively, viscosity subsolution and supersolution of (2.13) with at most a linear growth. Then,

v1(t, x, i) ≤ v2(t, x, i) ∀(t, x, i) ∈ [0, T] × R
+ ×M. (3.12)
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The following lemma is be very useful in derivation of the maximum principle.

Lemma 3.9. Let CLip([0, T] × R × M) be the set of functions v(s, x, i) on [0, T] × R × M which
are continuous with respect to s and Lipschitz continuous with respect to the variable x. For fixed
tδ ∈ [0, T] and α0 ∈ M, let the operator F on R×CLip([0, T]×R×M)×R×R be defined as follows:

F(x, v, β,X) = −1
2
x2σ2(α0)X − xμ(α0)β −Qv(tδ, x, ·)(α0)

−
∫

R

(
v
(
tδ, x + γ(α0)xz, α0

) − v(tδ, x, α0) − γ(α0)xz1{|z|<1}(z)β
)
ν (dz).

(3.13)

Then, there exits a constant C > 0 such that

F(y,w, a(x − y) − by, Y) − F(x, v, a(x − y) + bx,X)

≤ C
(
x2X − y2Y

)
+ Ca

∣∣x − y∣∣2

+ Cb
(
1 +
∣∣∣x2
∣∣∣
)
+Qv(tδ, x, ·)(α0) −Qw

(
tδ, y, ·

)
(α0)

+
∫

Rn

(
v
(
tδ, x + γ(α0)zx, α0

) −w(tδ, y + γ(α0)zy, α0
)

−v(tδ, x, α0) +w
(
tδ, y, α0

))
ν(dz),

(3.14)

for any v, w ∈ CLip([0, T] × R ×M) and x, y, a, b, X, Y ∈ R.

Remark 3.10. Theorem 3.8 obviously implies the uniqueness of the viscosity solution of the
variational inequality (2.13). If we assume that (2.13) has two solutions v1 and v2 with linear
growth, then they are both viscosity subsolution and supersolution of (2.13). Therefore, using
the fact that v1 is subsolution and v2 is supersolution, Theorem 3.8 implies that v1(t, x, i) ≤
v2(t, x, i) for all (t, x, i) ∈ [0, T] × R

+ ×M. And conversely, we also have v2(t, x, i) ≤ v1(t, x, i)
for all (t, x, i) ∈ [0, T]×R

+ ×M, since v2 is subsolution and v1 is supersolution. Consequently,
we have v1(t, x, i) = v2(t, x, i) for all (t, x, i) ∈ [0, T] × R

+ × M, which confirms the fact the
value function defined on (2.6) is the unique solution of the variational inequality (2.13).

4. Numerical Example

This example is for a stock which share price roughly around $55 in average; in this example
we assume that the market has two main movements: an uptrend and a downtrend. Thus
the Markov chain α takes two states M = {1, 2}, where α(t) = 1 denotes the uptrend and
α(t) = 2 denotes the downtrend. The transaction fee a = 0.5, the discount rate r = 0.05, the
return vector is μ = (0.01,−0.01), the volatility vector is σ = (0.4, 0.2), the intensity vector is
λ = (0.25, 0.5), the time T = 0.35 (in year), and the generator of the Markov chain is

Q =

(−0.023 0.023

1.023 −1.023

)
. (4.1)
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Figure 1: Value functions v(t, x, 1) for the uptrend and v(t, x, 2) for the downtrend.
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Figure 2: Free boundary curves.

Figures 1 and 2 represent the value function v(t, x, i) computed by solving the
nonlinear system of equations (2.13) and the free boundary curves in both trends. These
curves divide the plane in two regions. The region below the free boundary curve is the
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continuation region, and the region above the free boundary curve is the stopping region. In
other terms, whenever the share price at any given time within the interval [0, T] is below
the free boundary curve, it is optimal for the investor to hold the stock. And whenever the
share price is above the free boundary, it is optimal for the investor to sell. This selling rule is
obviously easy to implement. This example clearly shows that the selling rule derived by our
method can be very attractive to practitioners in an automated trading setting.

Appendix

A. Proofs of Results

A.1. Proof of Lemma 3.3

We have

v
(
β,X
(
β
)
, α
(
β
))

= sup
τ∈Λβ,T

E
[
e−r(τ−β)g(α(τ), X(τ))

]
,

E
[
e−r(β−s)v

(
β,X
(
β
)
, α
(
β
))] ≥ sup

τ∈Λβ,T

E
[
e−r(β−s)e−r(τ−β)g(α(τ), X(τ))

]

≥ sup
τ∈Λβ,T

E
[
e−r(τ−s)g(α(τ), X(τ))

]

≥ sup
τ∈Λγ,T

E
[
e−r(γ−s)e−r(τ−γ)g(α(τ), X(τ))

]

= E
[
e−r(γ−s)v

(
γ,X
(
γ
)
, α
(
γ
))]

.

(A.1)

This proves (3.2).
Now let us prove (3.4). Since θ ≤ τε for any ε > 0, using (3.2), we have

E
[
e−r(θ−s)v(θ,X(θ), α(θ))

]
≥ E
[
e−r(τε−s)v(τε, X(τε), α(τε))

]
. (A.2)

So using (3.1) and (3.3), we obtain

0 ≤ v(s, x, i) − E
[
e−r(θ−s)v(θ,X(θ), α(θ))

]
≤ v(s, x, i) − E

[
e−r(τε−s)v(τε, X(τε), α(τε))

]
≤ ε,
(A.3)

for any ε > 0. Thus, letting ε → 0, we obtain (3.4).
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A.2. Proof of Lemma 3.1

Given x1 and x2, let X1 and X2 be two solutions of (2.4) with X1(s) = x1 and X2(s) = x2,
respectively. For each t ∈ [s, T], we have

X1(t) −X2(t) = x1 − x2 +
∫ t

s

(X1(ξ) −X2(ξ))μ(α(ξ))dξ +
∫ t

s

(X1(ξ) −X2(ξ))σ(α(ξ))dW(ξ)

+
∫ t

s

∫

R

(X1(ξ) −X2(ξ))γ(α(ξ))zN(dξ, dz).

(A.4)

Using the Itô-Lévy isometry, we have

E(X1(t) −X2(t))2 ≤ C0|x1 − x2|2 + C1

∫ t

s

E(X1(ξ) −X2(ξ))
2dξ + C2

∫ t

s

E(X1(ξ) −X2(ξ))
2dξ

+ C3

∫ t

s

∫

R

E(X1(ξ) −X2(ξ))
2z2ν (dz)dξ

≤ C0|x1 − x2|2 +max(C1, C2)
∫ t

s

E(X1(ξ) −X2(ξ))
2dξ

+ C3

∫ t

s

E(X1(ξ) −X2(ξ))
2dξ

∫

R

z2ν (dz).

(A.5)

Taking into account (2.5), we can find K < ∞ such that C3
∫
R
z2ν (dz) < K. The inequality

(A.5) becomes

E(X1(t) −X2(t))2 ≤ C0|x1 − x2|2 +max(C1, C2)
∫ t

s

E(X1(ξ) −X2(ξ))
2dξ

+K
∫ t

s

E(X1(ξ) −X2(ξ))
2dξ.

(A.6)

Let C = max(C0, C1, C2, K), then (A.7) becomes

E(X1(t) −X2(t))2 ≤ C|x1 − x2|2 + C
∫ t

s

E(X1(ξ) −X2(ξ))
2dξ. (A.7)
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Applying Gronwall’s inequality, we have

E|X1(t) −X2(t)|2 ≤ C|x1 − x2|2eCt. (A.8)

This implies, in view of Cauchy-Schwarz inequality, that

E|X1(t) −X2(t)| ≤ C|x1 − x2|eCt. (A.9)

Using this inequality, we have

v(s, x1, i) − v(s, x2, i) ≤ sup
τ∈Λs,T

E
[
e−r(τ−s)|(X1(τ) − a) − (X2(τ) − a)|

]

≤ sup
τ∈Λs,T

E[|X1(τ) −X2(τ)|]

≤ C|x1 − x2|eCT .

(A.10)

This implies the (uniform) continuity of v(s, x, i)with respect to x.
We next show the continuity of v(s, x, i) with respect to s. Let Xt be the solution of

(2.4) that starts at t = swith X(s) = x and α(s) = i. Let 0 ≤ s ≤ s′ ≤ T , we define

X′(t) = X
(
t − (s′ − s)),

α′(t) = α
(
t − (s′ − s)).

(A.11)

It is easy to show that

E
(
X(t) −X′(t)

)2 ≤ C(s′ − s) for some constant C > 0. (A.12)

Given τ ∈ Λs,T , let τ ′ = τ + (s′ − s). Then, τ ′ ≥ s′ and P(τ ′ > T) → 0 as s′ − s → 0.
Let g(t, x) = e−rt(x − a(x)). Then, v(s, x, i) = erssupτ∈Γs,T Eg(τ,X(τ)). It is easy to show

that

∣∣g(s, x) − g(s′, x′)∣∣ ≤ ∣∣x − x′∣∣ + C
∣∣x′ − a(x′)∣∣∣∣s − s′∣∣, (A.13)

for some constant C.
We define

J(s, x, i, τ) = ersEg(τ,X(τ)). (A.14)
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We have

J(s, x, i, τ) =ersEg
(
τ ′ − (s′ − s), X′(τ ′

))

=ers
′
Eg
(
τ ′, X′(τ ′

))
+ o(1)

=ers
′
Eg
(
τ ′, X′(τ ′

))
I{τ ′≤T} + ers

′
Eg
(
τ ′, X′(τ ′

))
I{τ ′>T} + o(1)

=J
(
s′, x, i, τ ′ ∧ T) + o(1),

(A.15)

where o(1) → 0 as s′ − s → 0. It follows that

∣∣v
(
s′, x, i

) − v(s, x, i)∣∣ ≤ sup
τ∈Λs,T

∣∣J
(
s′, x, i, τ ′

) − J(s, x, i, τ)∣∣ −→ 0. (A.16)

Therefore, we have

lim
s′−s→ 0

∣∣v
(
s′, x, i

) − v(s, x, i)∣∣ = 0. (A.17)

This gives the continuity of v with respect to s.
The joint continuity of v follows from (A.10) and (A.17). Finally, the linear growth

inequality follows from (A.10) and

|v(s, x, i)| ≤ |x| + |v(s, 0, i)| ≤ C(1 + |x|). (A.18)

This completes the proof.

A.3. Proof of Theorem 3.4

First we prove that v(s, x, i) is a viscosity supersolution of (2.13). Given (s, xs) ∈ [0, T]×R
+, let

ψ ∈ C2([0, T]×R
+) such that v(t, x, α)−ψ(t, x) has local minimum at (s, xs) in a neighborhood

N(s, xs). We define a function

ϕ(t, x, i) =

⎧
⎨

⎩

ψ(t, x) + v(s, xs, αs) − ψ(s, xs) if i = αs,

v(t, x, i) if i /=αs.
(A.19)
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Let γ ≥ s be the first jump time of α(·) from the initial state αs, and let θ ∈ [s, γ] be such that
(t, X(t)) starts at (s, xs) and stays inN(s, xs) for s ≤ t ≤ θ. Moreover, α(t) = αs, for s ≤ t ≤ θ.
Using Dynkin’s formula, we have

Es,xs,αse−r(θ−s)ϕ(θ,X(θ), αs) − ϕ(s, xs, αs)

= Es,xs,αs
∫θ

s

e−r(t−s)
(

− rϕ(t, X(t), αs) +
∂ϕ(t, X(t), αs)

∂t
+
1
2
X2
t σ

2(αs)
∂2ϕ(t, X(t), αs)

∂x2

+Xtμ(αs)
∂ϕ(t, X(t), αs)

∂x
+Qϕ(t, X(t), ·)(αs)

+
∫

R

(
ϕ
(
t, X(t) + γ(i)X(t)z

) − ϕ(t, X(t)) − γ(i)X(t)z1{|z|<1}(z)
∂ϕ

∂x

)

×ν(dz)
)
dt.

(A.20)

Recall that (s, xs) is the minimum of v(t, x, αs) − ψ(t, x) inN(s, xs). For s ≤ t ≤ θ, we have

v(t, Xt, αs) ≥ ψ(t, Xt) + v(s, xs, αs) − ψ(s, xs) = ϕ(t, Xt, αs). (A.21)

Using (A.19) and (A.21), we have

Es,xs,αse−r(θ−s)v(θ,Xθ, αs) − v(s, xs, αs)

≥ Es,xs,αs
∫θ

s

e−r(t−s)
(
− rv(t, X(t), αs)

+
∂ψ(t, X(t))

∂t
+
1
2
X2
t σ

2(αs)
∂2ψ(t, Xt)

∂x2

+Xtμ(αs)
∂ψ(t, Xt)

∂x
+Qϕ(t, Xt, ·)(αs)

×
∫

R

(
ϕ
(
t, X(t) + γ(i)X(t)z, αs

) − ϕ(t, X(t), αs)

−γ(i)X(t)z1{|z|<1}(z)
∂ψ(t, X(t))

∂x

)
ν(dz)

)
dt.

(A.22)

Moreover, we have

Qϕ(t, Xt, ·)(αs) =
∑

β /=αs

qαsβ
(
ϕ
(
t, Xt, β

) − ϕ(t, Xt, αs)
)

≥
∑

β /=αs

qαsβ
(
v
(
t, Xt, β

) − v(t, Xt, αs)
)

≥ Qv(t, Xt, ·)(αs).

(A.23)



International Journal of Mathematics and Mathematical Sciences 15

Combining (A.22) and (A.23), we have

Es,xs,αse−r(θ−s)v(θ,Xθ, αs) − v(s, xs, αs)

≥ Es,xs,αs
∫θ

s

e−r(t−s)
{
− rv(t, X(t), αs) +

∂ψ(t, X(t))
∂t

+
1
2
X2
t σ

2(αs)
∂2ψ(t, Xt)

∂x2

+Xtμ(αs)
∂ψ(t, Xt)

∂x
+Qv(t, Xt, ·)(αs)

+
∫

R

(
ϕ
(
t, X(t) + γ(i)X(t)z, αs

) − ϕ(t, X(t), αs)

−γ(i)X(t)z1{|z|<1}(z)
∂ψ(t, X(t))

∂x

)
ν(dz)

}
dt.

(A.24)

It follows from Lemma 3.3 that

Es,xs,αs
∫θ

s

e−r(t−s)
(
−rv(t, X(t), αs) +

∂ψ(t, X(t))
∂t

+
1
2
X2(t)σ2(αs)

∂2ψ(t, X(t))
∂x2

+X(t)μ(αs)
∂ψ(t, X(t))

∂x
+Qv(t, Xt, ·)(αs)

+
∫

R

(
ϕ
(
t, X(t) + γ(i)X(t)z, αs

) − ϕ(t, X(t), αs)

−γ(i)X(t)z1{|z|<1}(z)
∂ψ(t, X(t))

∂x

)
ν(dz)

)
dt ≤ 0.

(A.25)

Dividing both sides by Eθ > 0 and sending θ → s lead to

− rv(s, xs, αs) +
∂ψ(s, xs)

∂t
+
1
2
x2
sσ

2(αs)
∂2ψ(s, xs)

∂x2
+ xsμ(αs)

∂ψ(s, xs)
∂x

+Qv(s, xs, ·)(αs)

+
∫

R

(
v
(
s, xs + γ(i)xsz, αs

) − v(s, xs, αs) − γ(i)xsz1{|z|<1}(z)
∂ψ(s, xs)

∂x

)
ν(dz) ≤ 0.

(A.26)

By definition, v(s, x, i) ≥ x − a(x). The supersolution inequality follows from this inequality
and (A.27).

Now, let us prove the subsolution inequality, namely, that let φ ∈ C1,2([s, T] × R
+) and

v(t, x, αs) − φ(t, x) has a local maximum at (s, xs) ∈ [s, T] × R
+, then we can assume without

loss of generality that v(s, xs, αs) − φ(s, xs) = 0.
Define

Φ(t, x, i) =

⎧
⎨

⎩
φ(t, x) if i = αs,

v(t, x, i) if i /=αs.
(A.27)
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Let γ be the first jump time of α(·) from the state αs, and let θ0 ∈ [s, γ] be such that (t, X(t))
starts at (s, xs) and stays in N(s, xs) for s ≤ t ≤ θ0. Since θ0 ≤ γ we have α(t) = αs, for
s ≤ t ≤ θ0, and let τD be the optimal stopping time, and for s ≤ θ ≤ min(τD, θ0), we have from
Lemma 3.3 (The appendix)

v(s, xs, αs) ≤ Es,xs,αs
[
e−r(θ−s)v(θ,X(θ), α(θ))

]
. (A.28)

Moreover, since v(s, xs, αs) − φ(s, xs) = 0 and attains its maximum at (s, xs) inN(s, xs), then

v(θ,X(θ), α(θ)) ≤ φ(θ,X(θ)). (A.29)

Thus, we also have

v(θ,X(θ), α(θ)) ≤ Φ(θ,X(θ), α(θ)). (A.30)

This implies, using Dynkin’s formula, that

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)

≤ Es,xs,αse−r(θ−s)Φ(θ,X(θ), αs)

= Φ(s, xs, αs) + Es,xs,αs
∫θ

s

e−r(t−s)
[
∂φ(t, X(t))

∂t
− rΦ(t, X(t), α(t))

+X(t)μ(αs)
∂φ(t, X(t))

∂x
+QΦ(t, X(t), ·)(αs)

+
1
2
X(t)2σ2(αs)

∂2φ(t, X(t))
∂x2

+
∫

R

(
Φ
(
t, X(t) + γ(i)X(t)z, αs

) −Φ(t, X(t), αs)

−γ(i)X(t)z1{|z|<1}(z)
∂φ(t, X(t))

∂x

)
ν(dz)

]
dt.

(A.31)

Note that

QΦ(t, X(t), ·)(αs) =
∑

β /=αs
qαsβ
(
v
(
t, X(t), β

) − φ(t, X(t))
)

≤
∑

β /=αs

qαsβ
(
v
(
t, X(t), β

) − v(t, X(t), αs)
)

≤ Qv(t, X(t), ·)(αs).

(A.32)
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Using (A.27) and (A.32), we obtain

Es,xs,αse−r(θ−s)v(θ,X(θ), αs)

≤ Es,xs,αse−rθ−sΦ(θ,X(θ), αs)

= φ(s, xs) + Es,xs,αs
∫θ

s

e−r(t−s)
[
∂φ(t, X(t))

∂t
+X(t)μ(αs)

∂φ(t, X(t))
∂x

− rv(t, X(t), αs)

+
1
2
X(t)2σ2(αs)

∂2φ(t, X(t))
∂x2

+Qv(t, X(t), ·)(αs)

+
∫

R

(
Φ
(
t, X(t) + γ(i)X(t)z, αs

) −Φ(t, X(t), αs)

−γ(i)X(t)z1{|z|<1}(z)
∂φ(t, X(t))

∂x

)
ν(dz)

]
dt.

(A.33)

Recall that, v(s, xs, αs) = φ(s, xs) by assumption. From (A.28), we deduce

0 ≤ E,xs,αse−r(θ−s)v(θ,X(θ), αs) − φ(s, xs)

≤ Es,xs,αs
∫θ

s

e−rt
[
− rv(t, X(t), αs) +

∂φ(t, X(t))
∂t

+
1
2
X(t)2σ2(αs)

∂2φ(X(t), αs)
∂x2

+X(t)μ(αs)
∂φ(X(t), αs)

∂x
+Qv(t, X(t), ·)(αs)

+
∫

R

(
Φ
(
t, X(t) + γ(i)X(t)z, αs

)

−Φ(t, X(t), αs) − γ(i)X(t)z1{|z|<1}(z)
∂φ(t, X(t))

∂x

)
ν(dz)

]
dt.

(A.34)

Dividing the last inequality by Eθ > 0 and sending θ ↓ s give

rv(s, xs, αs) −
∂φ(s, xs)

∂t
− 1
2
x2
sσ

2(αs)
∂2φ(xs, αs)

∂x2
− xsμ(αs)

∂φ(xs, αs)
∂x

−Qv(s, xs, ·)(αs)

−
∫

R

(
v
(
s, xs + γ(i)xsz, αs

) − v(s, xs, αs) − γ(i)xsz1{|z|<1}(z)
∂φ(s, xs)

∂x

)
ν(dz) ≤ 0.

(A.35)

This gives the subsolution inequality. Therefore, v(t, x, α) is a viscosity solution of (2.13).
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A.4. Proof of Lemma 3.9

Let v,w ∈ CLip([0, T] × R ×M) and x, y, λ, a, b, X, Y ∈ R, then we have

F(y,w, a(x − y) − by, Y) − F(x, v, a(x − y) + bx,X)

= −1
2
y2σ2(α0)Y − yμ(α0)

(
a
(
x − y) − by) −Qw(tδ, y, ·

)
(α0)

−
∫

R

(
w
(
tδ, y + γ(α0)yz, α0

) −w(tδ, y, α0
) − γ(α0)yz1{|z|<1}(z)

[
a
(
x − y) − by])ν(dz)

+
1
2
x2σ2(α0)X + xμ(α0)

(
a
(
x − y) + bx) +Qv(tδ, x, ·)(α0)

+
∫

R

(
v
(
tδ, x + γ(α0)xz, α0

) − v(tδ, x, α0) − γ(α0)xz1{|z|<1}(z)
[
a
(
x − y) + bx])ν(dz)

=
1
2
σ2(α0)

(
x2X−y2Y

)
+μ(α0)

(
a
(
x−y)2+b

(
x2+y2

))
+Qv(tδ, x, ·)(α0)−Qw

(
tδ, y, ·

)
(α0)

+
∫

R

([
v
(
tδ, x + γ(α0)xz, α0

) −w(tδ, y + γ(α0)yz, α0
)]

−[v(tδ, x, α0) −w
(
tδ, y, α0

)] − zγ(α0)1{|z|<1}(z)
[
a
(
x − y)2 + b

(
x2 + y2

)])
ν(dz)

≤ μ(α0)a
∣∣x−y∣∣2+μ(α0)b

(
x2+y2

)
+
1
2
σ2(α0)

(
x2X−y2Y

)
+Qv(tδ, x, ·)(α0)−Qw

(
tδ, y, ·

)
(α0)

+
∫

R

([
v
(
tδ, x + γ(α0)xz, α0

) −w(tδ, y + γ(α0)yz, α0
)]

−[v(tδ, x, α0) −w
(
tδ, y, α0

)]
+
∣∣zγ(α0)1{|z|<1}(z)

∣∣
[∣∣∣a
(
x − y)2|+ |b

(
x2 + y2

)∣∣∣
])
ν(dz).

(A.36)

Note that from the Lévy-Khintchine inequality (2.3), one can prove
∫
{|z|<1} |z|ν(dz) < ∞;

therefore, there exists a constant C > 0 such that

F(y,w, a(x − y) − by, Y) − F(x, v, a(x − y) + bx,X)

≤ C
(
a
∣∣x − y∣∣2 + b

(
x2 + y2

)
+
(
x2X − y2Y

))
+Qv(tδ, x, ·)(α0) −Qw

(
tδ, y, ·

)
(α0)

+
∫

R

([
v
(
tδ, x+γ(α0)xz, α0

)−w(tδ, y+γ(α0)yz, α0
)]−[v(tδ, x, α0)−w

(
tδ, y, α0

)])
ν(dz).

(A.37)

This proves (3.14).
Now, let us proof the theorem.
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A.5. Proof of Theorem 3.8

For any 0 < δ < 1 and 0 < η < 1, we define

Φ
(
t, x, y, i

)
= v1(t, x, i) − v2

(
t, y, i

) − 1
δ

∣∣x − y∣∣2 − ηe(T−t)
(
x2 + y2

)
,

φ
(
t, x, y

)
=

1
δ

∣∣x − y∣∣2 + ηe(T−t)
(
x2 + y2

)
.

(A.38)

Note that v1(t, x, i) and v2(t, x, i) satisfy the linear growth. Then, we have for each i ∈ M

lim
|x|+|y|→∞

Φ
(
t, x, y, i

)
= −∞ (A.39)

and since Φ is a continuous in (t, x, y), therefore it has a global maximum at a point
(tδ, xδ, yδ, α0). Observe that

Φ(tδ, xδ, xδ, α0) + Φ
(
tδ, yδ, yδ, α0

) ≤ 2Φ
(
tδ, xδ, yδ, α0

)
. (A.40)

It implies

v1(tδ, xδ, α0) − v2(tδ, xδ, α0) − 2ηe(T−tδ)
(
x2
δ

)
+ v1
(
tδ, yδ, α0

) − v2
(
tδ, yδ, α0

) − 2ηe(T−tδ)
(
y2
δ

)

≤ 2v1(tδ, xδ, α0) − 2v2
(
tδ, yδ, α0

) − 2
δ

∣∣xδ − yδ
∣∣2 − 2ηe(T−tδ)

(
x2
δ + y

2
δ

)
.

(A.41)

Then,

− v2
(
tδ, yδ, α0

) − 2e(T−tδ)η
(
x2
δ

)
+ v1(tδ, xδ, α0) − 2ηe(T−tδ)

(
y2
δ

)

≤ v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

) − 2
δ

∣∣xδ − yδ
∣∣2 − 2ηe(T−tδ)

(
x2
δ + y

2
δ

)
.

(A.42)

Consequently, we have

2
δ

∣∣xδ − yδ
∣∣2 ≤ (v1(tδ, xδ, α0) − v1

(
tδ, yδ, α0

))
+
(
v2(tδ, xδ, α0) − v2

(
tδ, yδ, α0

))
. (A.43)

By the linear growth condition, we know that there exist K1, K2 such that v1(t, x, i) ≤ K1(1 +
|x|) and v2(t, x, i) ≤ K2(1 + |x|). Therefore, there exists C such that we have

2
δ

∣∣xδ − yδ
∣∣2 ≤ C(1 + |xδ| +

∣∣yδ
∣∣). (A.44)
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So,

∣∣∣x0
δ1 − x0

δ2

∣∣∣
2 ≤ δC

(
1 +
∣∣∣x0

δ1

∣∣∣
κ1
+
∣∣∣x0

δ1

∣∣∣
κ2)

. (A.45)

We also have Φ(s, 0, 0, α0) ≤ Φ(tδ, xδ, yδ, α0) and |Φ(s, 0, 0, α0)| ≤ K(1 + |xδ| + |yδ|). This leads
to

ηe(−tδ)
(
x2
δ + y

2
δ

)
≤ v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

) − 1
δ

∣∣xδ − yδ
∣∣2 −Φ(s, 0, 0, α0)

≤ 3C
(
1 + |xδ| +

∣∣yδ
∣∣).

(A.46)

It comes that

ηe(T−tδ)
(
x2
δ
+ y2

δ

)
(
1 + |xδ| +

∣∣yδ
∣∣) ≤ 3C, (A.47)

therefore there exists Cη such that

|xδ| +
∣∣yδ
∣∣ ≤ Cη, tδ ∈ [s, T]. (A.48)

The inequality (A.48) implies the sets {xδ, δ > 0} and {yδ, δ > 0} are bounded by Cη

independent of δ, so we can extract convergent subsequences that we also denote (xδ)δ, (yδ)δ,
and (tδ)δ. Moreover, from the inequality (A.45), it comes that the exists x0 such that

lim
δ→ 0

xδ = x0 = lim
δ→ 0

yδ, lim
δ→ 0

tδ = t0. (A.49)

Using (A.43) and the previous limit, we obtain

lim
δ→ 0

2
δ

∣∣xδ − yδ
∣∣2 = 0. (A.50)

Φ achieves its maximum at (tδ, xδ, yδ, α0), so by the Theorem 3.7 for each ε > 0, there exist
b1δ, b2δ, Xδ, and Yδ such that

(
b1δ,

2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ,Xδ

)
∈ P2,+

v1(tδ, xδ, α0), (A.51)

(
−b2δ,− 2

δ

(
xδ − yδ

)
+ 2ηe(T−t)yδ,−Yδ

)
∈ P2,+(−v2

(
tδ, yδ, α0

))
. (A.52)

But, we know that

P2,+(−v2
(
tδ, yδ, α0

))
= −P2,−

v2
(
tδ, yδ, α0

)
. (A.53)
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Therefore, we obtain

(
b2δ,

2
δ

(
xδ − yδ

) − 2ηe(T−t)yδ, Yδ
)

∈ P2,−
v2
(
tδ, yδ, α0

)
. (A.54)

Equation (A.51) implies by the definition of the viscosity solution that

min
[
rv1(tδ, xδ, α0)−b1δ− 1

2
x2
δσ

2(α0)Xδ−xδμ(α0)
(
2
δ

(
xδ−yδ

)
+2ηe(T−t)xδ

)
−Qv1(tδ, xδ, ·)(α0)

−
∫

R

(
v1
(
tδ, xδ + γ(α0)xδz, α0

) − v1(tδ, xδ, α0) − γ(α0)xδz1{|z|<1}(z)

×
(
2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ

))
ν(dz), v1(tδ, xδ, α0) − (xδ − a)

]
≤ 0.

(A.55)

Consequently, we have two cases; either

v1(tδ, xδ, α0) − (xδ − a) ≤ 0 (A.56)

or

rv1(tδ, xδ, α0) − b1δ − 1
2
x2
δσ

2(α0)Xδ − xδμ(α0)
(
2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ

)
−Qf(s, xδ, ·)(α0)

−
∫

R

(
v1
(
tδ, xδ + γ(α0)xδz

) − v1(tδ, xδ)

−γ(α0)xδz1{|z|<1}(z) ×
(
2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ

))
ν(dz) ≤ 0.

(A.57)

First of all, we assume that v1(tδ, xδ, α0) − (xδ − a) ≤ 0. And similarly, (A.54) implies by the
definition of the viscosity solution that

min
[
rv2
(
tδ, yδ, α0

)−b2δ− 1
2
y2
δσ

2(α0)Yδ−yδμ(α0)
(
2
δ

(
xδ−yδ

)−2ηe(T−t)yδ
)
−Qv2

(
tδ, yδ, ·

)
(α0)

−
∫

R

(
v2
(
tδ, yδ + γ(α0)yδz, α0

) − v2
(
tδ, yδ, α0

) − γ(α0)yδz1{|z|<1}(z)

×
(
2
δ

(
xδ − yδ

) − 2ηe(T−t)yδ
))

ν(dz), v2
(
tδ, yδ, α0

) − (yδ − a
)] ≥ 0.

(A.58)

Therefore, we have

v2
(
tδ, yδ, α0

) − (yδ − a
) ≥ 0. (A.59)
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It comes that

v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

) − (xδ − yδ
) ≤ 0. (A.60)

Letting δ → 0, we obtain

v1(t0, x0, α0) − v2(t0, x0, α0) ≤ 0. (A.61)

Note that the function Φ reaches its maximum at (tδ, xδ, yδ, α0). It follows that for all x ∈ R,
t ∈ [s, T], and i ∈ M, we have

v1(t, x, i) − v2(t, x, i) − 2ηe(T−t)x2 = Φ(x, x, i) ≤ Φ
(
tδ, xδ, yδ, α0

)

≤ v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

)

− ηe(T−tδ)
(
x2
δ + y

2
δ

)
.

(A.62)

Again letting δ → 0 and using (A.61), we obtain

v1(t, x, i) − v2(t, x, i) − 2ηe(T−t)x2 ≤ v1(t0, x0, α0) − v2(t0, x0, α0) − 2ηe(T−t0)(x0)2 ≤ 0. (A.63)

so, we have

v1(, x, i) − v2(t, x, i) ≤ 2ηe(T−t)x2. (A.64)

Second of all, let assume that

rv1(tδ, xδ, α0) − b1δ − 1
2
x2
δσ

2(α0)Xδ − xδμ(α0)
(
2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ

)
−Qf(s, xδ, ·)(α0)

−
∫

R

(
v1
(
tδ, xδ + γ(α0)xδz

) − v1(tδ, xδ) − γ(α0)xδz1{|z|<1}(z)
(
2
δ

(
xδ − yδ

)
+ 2ηe(T−t)xδ

))

× ν(dz) ≤ 0,
(A.65)

and, moreover, we have

rv2
(
tδ, yδ, α0

) − b2δ − 1
2
y2
δσ

2(α0)Yδ − yδμ(α0)
(
2
δ

(
xδ − yδ

) − 2ηe(T−tδ)yδ
)
−Qv2

(
tδ, yδ, ·

)
(α0)

−
∫

R

(
v2
(
tδ, yδ + γ(α0)yδz, α0

) − v2
(
tδ, yδ, α0

) − γ(α0)yδz1{|z|<1}(z)

×
(
2
δ

(
xδ − yδ

) − 2ηe(T−t)yδ
))

ν(dz) ≥ 0.

(A.66)
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Let us use the operator F(x, u, β,M) defined on the Lemma 3.9; thus,

F(x, v, β,M) = −1
2
x2σ2(α0)M − xμ(α0)β −Qv(tδ, x, ·)(α0)

−
∫

R

(
v
(
tδ, x + γ(α0)xz, α0

) − v(tδ, x, α0) − γ(α0)xzβ
)
ν(dz).

(A.67)

Using the operator F, thus (A.65) becomes

rv1(tδ, xδ, α0) + F
(
xδ, v1,

2
δ

(
xδ − yδ

)
+ 2xδηe(T−tδ), Xδ

)
− b1δ ≤ 0, (A.68)

and (A.66) becomes

rv2
(
tδ, yδ, α0

)
+ F
(
yδ, v2,

2
δ

(
xδ − yδ

) − 2yδηe(T−tδ), Yδ
)
− b2δ ≥ 0. (A.69)

Combining the last two inequalities, we obtain

r
(
v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

)) ≤ F
(
yδ, v2,

2
δ

(
xδ − yδ

) − 2yδηe(T−tδ), Yδ
)

− F
(
xδ, v1,

2
δ

(
xδ − yδ

)
+ 2xδηe(T−tδ), Xδ

)
+ b2δ − b1δ.

(A.70)

From Lemma 3.9, there exists a constant C > 0 such that

F
(
yδ, v2,

2
δ

(
xδ − yδ

) − 2yδηe(T−tδ), Yδ
)
− F
(
xδ, v1,

2
δ

(
xδ − yδ

)
+ 2xδηe(T−tδ), Xδ

)

≤ C
(
2
δ

∣∣xδ − yδ
∣∣2 + 2ηe(T−tδ)

(
x2
δ + y

2
δ

)
+
(
x2
δXδ − y2

δYδ
))

+Qv(tδ, x, ·)(α0)

−Qw(tδ, y, ·
)
(α0) +

∫

R

([
v
(
tδ, x + γ(α0)xz, α0

) −w(tδ, y + γ(α0)yz, α0
)]

−[v(tδ, x, α0) −w
(
tδ, y, α0

)])
ν(dz).

(A.71)

Recall that Qv(t, x, ·)(i) =∑j /= i v(t, x, j) − v(t, x, i), so we have

Qv1(tδ, xδ, ·)(α0) −Qv2
(
tδ, yδ, ·

)
(α0) =

∑

i /=αδ

[v1(tδ, xδ, i) − v1(tδ, xδ, α0)]

− [v2
(
tδ, yδ, i

) − v2
(
tδ, yδ, α0

)]
.

(A.72)
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Since Φ attains its maximum at (tδ, xδ, yδ, α0), we have Φ(tδ, xδ, yδ, i) ≤ Φ(tδ, xδ, yδ, α0);
therefore

v1(tδ, xδ, i) − v2
(
tδ, yδ, i

) − 1
δ

∣∣xδ − yδ
∣∣2 + ηeT−tδ

(
|xδ|2 +

∣∣yδ
∣∣2
)

≤ v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

) − 1
δ

∣∣xδ − yδ
∣∣2 − ηeT−tδ

(
|xδ|2 +

∣∣yδ
∣∣2
)
.

(A.73)

Thus, we have

v1(tδ, xδ, i) − v2
(
tδ, yδ, i

) ≤ v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

)
. (A.74)

Consequently, from (A.74) it comes that (A.72) implies

Qv1(tδ, xδ, ·)(α0) −Qv2
(
tδ, yδ, ·

)
(α0) ≤ 0. (A.75)

Note that from (3.11), we have

b1δ − b2δ =
∂φ
(
tδ, xδ, yδ

)

∂t
= ηe(T−tδ)

(
(xδ)2 +

(
yδ
)2)

. (A.76)

Therefore, we have

r
(
v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

)) ≤ C
(
2
δ

∣∣xδ − yδ
∣∣2 + 2ηe(T−tδ)

(
x2
δ + y

2
δ

)
+
(
x2
δXδ − y2

δYδ
))

+
∫

R

([
v1
(
tδ, xδ + γ(α0)xδz, α0

) − v2
(
tδ, yδ + γ(α0)yδz, α0

)]

−[v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

)])
ν(dz).

(A.77)

Similarly, for any z ∈ R, we have

Φ
(
tδ, xδ + γ(α0)xδz, yδ + γ(α0)yδz, α0

) ≤ Φ
(
tδ, xδ, yδ, α0

)
; (A.78)
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consequently, we derive that

∫

R

[
v1
(
tδ, xδ + γ(α0)xδz, α0

) − v2
(
tδ, yδ + γ(α0)yδz, α0

)]
ν(dz)

≤
∫

R

[
v1(tδ, xδ, αδ) − v2

(
tδ, yδ, αδ

)
+
1
δ

∣∣(xδ + γ(α0)xδz
) − (yδ + γ(α0)yδz

)∣∣2

+ηeT−tδ
(∣∣xδ + γ(α0)xδz

∣∣2 − ∣∣yδ + γ(α0)yδz
∣∣2
)]
ν(dz)

≤
∫

R

[
v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

)
+
1
δ

(∣∣xδ − yδ
∣∣2 +
∣∣γ(α0)xδz − γ(α0)yδz

∣∣2
)

+ηeT−tδ
(
|xδ|2 +

∣∣γ(α0)xδz
∣∣2 +
∣∣yδ
∣∣2 +
∣∣γ(α0)yδz

∣∣2
)]
ν(dz).

(A.79)

Therefore, using (2.3), we obtain

∫

R

([
v1
(
tδ, xδ + γ(α0)xδz, α0

) − v2
(
tδ, yδ + γ(α0)yδz, α0

)]

−[v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

)])
ν(dz)

≤
∫

R

[
1
δ

(∣∣xδ − yδ
∣∣2 +
∣∣γ(α0)xδz − γ(α0)yδz

∣∣2
)

+ηeT−tδ
(
|xδ|2 +

∣∣γ(α0)xδz
∣∣2 +
∣∣yδ
∣∣2 +
∣∣γ(α0)yδz

∣∣2
)]
ν(dz)

≤ C
(
1
δ

∣∣xδ − yδ
∣∣2 + ηeT−tδ

(
1 + |xδ|2 +

∣∣yδ
∣∣2
))

,

(A.80)

for some constant C > 0. Taking into account (A.75) and (A.80), thus (A.77) becomes

r
(
v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

)) ≤ C
(
2
δ

∣∣xδ − yδ
∣∣2 + 2ηe(T−tδ)

(
x2
δ + y

2
δ

)
+
∣∣∣x2

δXδ − y2
δYδ
∣∣∣
)
.

(A.81)

We know from the Maximum principle that

−
(
1
ε
+
∥∥∥∥D

2
(x,y)φ

(
tδ, xδ, yδ

)∥∥∥∥
)
I ≤
(
Xδ 0

0 −Yδ

)

≤ D2
(x,y)φ

(
tδ, xδ, yδ

)
+ ε
(
D2
(x,y)φ

(
tδ, xδ, yδ

))2

.

(A.82)
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Moreover,

D2
(x,y)φ

(
tδ, xδ, yδ

)
=

2
δ

(
1 −1
−1 1

)
+ 2ηe(T−tδ)

(
1 0

0 1

)
,

(
D2
(x,y)φ

(
tδ, xδ, yδ

))2

=
8
δ2

(
1 −1
−1 1

)
+
8ηe(T−tδ)

δ

(
1 −1
−1 1

)
+ 4η2e2(T−tδ)

(
1 0

0 1

)

=
8 + 8ηδe(T−tδ)

δ2

(
1 −1
−1 1

)
+ 4η2e2(T−tδ)

(
1 0

0 1

)
.

(A.83)

Note that

(xδ)2Xδ −
(
yδ
)2
Yδ =

(
xδ, yδ

)
(
Xδ 0

0 −Yδ

)(
xδ

yδ

)

≤ (xδ, yδ
)
[
2
δ

(
1 −1
−1 1

)
+
(
2ηe(T−tδ) + 4εη2e2(T−tδ)

)(1 0

0 1

)

+ε
8 + 8ηδe(T−tδ)

δ2

(
1 −1
−1 1

)](
xδ

yδ

)
.

(A.84)

Letting η → 0, we obtain

(xδ)2Xδ −
(
yδ
)2
Yδ ≤ (xδ, yδ

)
[(

2
δ
+ ε

8
δ2

)( 1 −1
−1 1

)](
xδ

yδ

)
. (A.85)

Take ε = δ/4, this leads to

(xδ)2Xδ −
(
yδ
)2
Yδ ≤ (xδ, yδ

)
[
4
δ

(
1 −1
−1 1

)](
xδ

yδ

)
=

4
δ

(
xδ − yδ

)2
. (A.86)

Using (A.50), we obtain

lim sup
δ↓0

(xδ)2Xδ −
(
yδ
)2
Yδ ≤ lim sup

δ↓0

(
xδ, yδ

)
[
4
δ

(
1 −1
−1 1

)](
xδ

yδ

)

= lim sup
δ↓0

4
δ

(
xδ − yδ

)2 = 0.

(A.87)

Letting η → 0 in (A.81), we have

r
(
v1(tδ, xδ, α0) − v2

(
tδ, yδ, α0

)) ≤ C
(
2
δ

∣∣xδ − yδ
∣∣2 +
(
x2
δXδ − y2

δYδ
))

(A.88)
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and taking the lim sup as δ goes to zero and using (A.87), we obtain

r(v1(t0, x0, α0) − v2(t0, x0, α0)) ≤ 0. (A.89)

Recall that (tδ, xδ, yδ, α0) is maximum of Φ. Then, for all x ∈ R, t ∈ [s, T], and for all i ∈ M,
we have

Φ(t, x, x, i) ≤ Φ
(
tδ, xδ, yδ, α0

)
. (A.90)

It comes that

v1(t, x, i) − v2(t, x, i) − 2ηe(T−t)x2 ≤ v1(tδ, xδ, α0) − v2
(
tδ, yδ, α0

) − 2ηe(T−tδ)
(
x2
δ + y

2
δ

)
.

(A.91)

Letting δ → 0, we obtain

v1(t, x, i) − v2(t, x, i) − 2ηe(T−t)x2 ≤ v1(t0, x0, α0) − v2(t0, x0, α0) − 2ηe(T−t)x2
0. (A.92)

Using (A.89), we have

v1(t0, x0, α0) − v2(t0, x0, α0)≤ 0. (A.93)

Therefore, using (A.92), we conclude that

v1(t, x, i) − v2(t, x, i) − 2ηe(T−t)x2 ≤ v1(t0, x0, α0) − v2(t0, x0, α0) − 2ηe(T−t0)x2
0 ≤ 0. (A.94)

Letting η → 0 in (A.64) and the previous inequality, we have

v1(t, x, i) ≤ v2(t, x, i). (A.95)

This completes the proof of the theorem.
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