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The absolute sum of chromatic polynomial coefficient of forest, q-tree, unicyclic graphs, and
quasiwheel graphs, are determined in this paper.

1. Introduction

For a century ago, one of the most famous problems in mathematics was to prove the Four-
Color Problem. During the period that the Four-Color Problem was unsolved, which spanned
more than a century, many approaches were introduced with the hopes that they would lead
to a solution of this famous problem. In 1913, Birkhoff [1] defined a function P(M,λ) that
gives the number of proper λ-colorings of a map M for a positive integer λ. As we will see,
P(M,λ) is a polynomial in λ for every map M and is called the chromatic polynomial of M.
Consequently, if it could be verified that P(M, 4) > 0 for every mapM, then this would have
established the truth of the Four-Color Conjecture. In 1932, Whitney [2] expanded the study
of chromatic polynomials from maps to graphs. While Whitney obtained a number of results
on chromatic polynomials of graphs and others obtained results on the roots of chromatic
polynomials of planar graphs, this did not contribute to a proof of the Four-Color Conjecture.
Renewed interest in chromatic polynomials of graphs occurred in 1968 when Read [3] wrote
a survey paper on chromatic polynomials. Let G be a graph and λ ∈ �. A mapping f :
V (G) → {1, 2, . . . , λ} is called a λ-coloring of G if f(u)/= f(v) whenever the vertices u and v
are adjacent in G. For a positive integer λ, the number of different proper λ-colorings of G is
denoted by P(G, λ) and is called the chromatic polynomial of G. By convention, P(G, 0) = 0,
and P(G, λ) ≥ 1 if and only if G is λ-colorable. More precisely, we have

χ(G) = min{λ ∈ � : P(G, λ) ≥ 1}. (1.1)
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There are many results about the coefficient of the chromatic polynomials of graphs,
see related references [4–8]. In [5], the authors characterized the absolute sum of chromatic
polynomial of trees, 2-trees, cycles, wheels and completed graphs, and obtained the sharp
upper and lower bounds for the absolute sum of chromatic polynomial coefficients of
any connected graphs. In this paper, we investigate absolute sum of chromatic polynomial
coefficients of forest, q-tree, unicyclic graphs and quasiwheel graphs.

2. Preliminaries

Let G = (V, E) be a graph whose sets of vertices and edges are V (G) and E(G), respectively,
n = |V (G)|, m = |E(G)| are the number of vertices and edges of G. E′ ⊆ E(G), we denote by
G − E′(G + E′) the subgraph of G obtained by deleting (adding) the edges of E′. W ⊆ V (G),
G−W(G+W) denote the subgraph of G obtained by deleting (adding) the vertices ofW and
the edges incident with them. G ·xy is the graph obtained fromG by contracting x and y and
removing any loop and all but one of the multiple edges, if they arise, where x, y ∈ V (G).
Terminologies and notations not defined here can be found in [9]. The following basic results
will be used and can be found in the references cited.

Lemma 2.1 (see [9]). (i) Let x and y be two nonadjacent vertices in a graph G. Then P(G, λ) =
P(G + xy, λ) + P(G · xy, λ).

(ii) Let e ∈ E(G), then P(G, λ) = P(G − e, λ) − P(G · e, λ).
(iii) For the empty graph On of order n, it is clear that P(On, λ) = λn. More generally, if

G =
⋃k

i=1 Gi, then

P(G, λ) =
k∏

i=1

P(Gi, λ). (2.1)

Lemma 2.2 (see [5]). (i) Let G be an arbitrary graph with n vertices, then the sum of chromatic
polynomial of P(G, λ) =

∑n
i=1 aiλi is

n∑

i=1

ai =

⎧
⎨

⎩

0, m/= 0,

1, m = 0.
(2.2)

(ii) Let T be an arbitrary tree with n vertices and P(T, λ) =
∑n

i=1 aiλi = λ(λ − 1)n−1. Then,
∑n

i=1 |ai| = 2n−1.
(iii) Let T2

n be an arbitrary 2-tree with n vertices and P(T2
n, λ) =

∑n
i=1 aiλi = λ(λ−1)(λ−2)n−2.

Then,
∑n

i=1 |ai| = 2 · 3n−2.
(iv) Let Cn be an arbitrary graph with n vertices and P(Cn, λ) =

∑n
i=1 aiλi = (λ − 1)n +

(−1)n(λ − 1). Then,
∑n

i=1 |ai| = 2n − 2.
(v) Let Wn be an arbitrary graph with n vertices and P(Wn, λ) =

∑n
i=1 aiλi = λ(λ − 2)n−1 +

(−1)n−1λ(λ − 2). Then,
∑n

i=1 |ai| = 3n−1 − 3.
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(vi) Let Kn be an arbitrary graph with n vertices and P(Kn, λ) =
∑n

i=1 aiλi = λ(λ − 1)(λ −
2) · · · (λ − n + 1). Then,

∑n
i=1 |ai| =

∏n
i=1i.

(vii) Let G be an arbitrary connected graph with n (n > 1) vertices and P(G, λ) =
∑n

i=1 aiλi,
then

2n−1 ≤
n∑

i=1

|ai| ≤
n∏

i=1

i. (2.3)

The left equality holds if and only if G ∼= Tn and the right equality holds if and only if G ∼= Kn.
Given q ∈ �, the class of q-trees Tq

n is defined recursively as follows: any complete graphKq is
a q-tree, and any q-tree of order n + 1 is a graph obtained from a q-tree G of order n, where n ≥ q, by
adding a new vertex and joining it to each vertex of a Kq in G. As an example, a 3-tree is depicted in
Figure 1(a).

Lemma 2.3 (see [9]). Let Tq
n is a q-tree with n vertices, then

P
(
T
q
n , λ

)
= λ(λ − 1) · · · (λ − q + 1

)
. (2.4)

Lemma 2.4 (see [6]). Let Un(m) is a unicyclic graph order n and girthm, then

P(Un(m), λ) = (λ − 1)n + (−1)m(λ − 1)n−m+1. (2.5)

For 1 ≤ s ≤ n − 2, we denote by W(n, s) the graph obtained from Wn by deleting all
but s consecutive spokes. For convenience, we call W(n, s) as the quasiwheel graphs, as shown in
Figure 1(b).

Lemma 2.5 (see [9]). Let W(n, s) is a quasiwheel graph with n vertices, then

P(W(n, s), λ) = (λ − 2)s−1
[
(λ − 1)n−s+1 + (−1)n−s

]
+ (−1)n−1λ(λ − 2). (2.6)

3. Main Results

In this section, we investigate the absolute sum of chromatic polynomial coefficients of
forests, q-trees, unicyclic graphs, and quasiwheel graphs.

Theorem 3.1. Let F be the forest of order n and c components and P(F, λ) =
∑n

i=1 aiλi. Then
∑n

i=1 |ai| = 2n−c.

Proof. It is a direct result of the combination of Lemma 2.1(iii) and Lemma 2.2(ii).

Theorem 3.2. Let Tq
n is a q-tree of order n (n ≥ q) and P(Tq

n , λ) =
∑n

i=1 aiλi. Then
∑n

i=1 |ai| =
q! × (q + 1)n−q.
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(a) 3-tree (b) W(8, 3)

Figure 1: The graphs 3-tree and W(8, 3).

Proof. We prove the result inductively on n.

(i) n = q. In this case Tq
n
∼= Kq.

P
(
T
q
q , λ

)
= λ(λ − 1) · · · (λ − q + 1

)
=

v∑

i=1

aiλ
i, (3.1)

then
∑v

i=1 |ai| =
∏q

i=1i = q!.

(ii) Assume that n = k(k ≥ q), let P(Tq

k
, λ) =

∑k
i=1 biλ

i, we have
∑k

i=1 |bi| = q!× (q + 1)k−q.

(iii) When n = k + 1, let P(Tq

k+1, λ) =
∑k+1

i=1 ciλi. u is a vertex with degree q, and the edges
connecting u are e1, e2, . . . , eq, respectively. By Lemma 2.1(ii), we have

P
(
T
q

k+1, λ
)
= P

(
T
q

k+1 − e1, λ
)
− P

(
T
q

k+1 · e1, λ
)

= P
((

T
q

k+1 − e1
)
− e2, λ

)
− P

((
T
q

k+1 − e1
)
· e2, λ

)
− P

(
T
q

k+1 · e1, λ
)

= · · ·

= λP
(
T
q

k
, λ
)
− qP

(
T
q

k
, λ
)

= λ
k∑

i=1

biλ
i − q

k∑

i=1

biλ
i.

(3.2)

Then,
∑k+1

i=1 |ci| =
∑k

i=1 |bi| + q
∑k

i=1 |bi| = (q + 1) × q! × (q + 1)k−q = q! × (q + 1)k+1−q.

Combining above, the results follows.

Theorem 3.3. Let Un(m) is a unicyclic graph order n and girth m and P(Un(m), λ) =
∑n

i=1 aiλi.
Then,

∑n
i=1 |ai| = 2n − 2n−m+1.
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Proof. From Lemma 2.3, we have

P(Un(m), λ) = (λ − 1)n + (−1)m(λ − 1)n−m+1

=
n∑

i=0

Ci
nλ

n−i(−1)i + (−1)m
n−m+1∑

i=0

Ci
n−m+1λ

n−m+1−i(−1)i

=
m−2∑

i=0

Ci
nλ

n−i(−1)i +
n∑

i=m−1

[
Ci

n(−1)i + Ci+1−m
n−m+1(−1)i+1

]
λn−i.

(3.3)

Let (λ − 1)n + (−1)m(λ − 1)n−m+1 =
∑n

i=1 aiλi, then

n∑

i=0

|ai| =
m−2∑

i=0

∣
∣
∣Ci

n

∣
∣
∣ +

n∑

i=m−1

∣
∣
∣Ci

n −Ci+1−m
n−m+1

∣
∣
∣

=
m−2∑

i=0

Ci
n +

n∑

i=m−1

∣
∣
∣Cn−i

n − Cn−i
n−m+1

∣
∣
∣

=
m−2∑

i=0

Ci
n +

n∑

i=m−1
Cn−i

n −
n∑

i=m−1
Cn−i

n−m+1

= 2n − 2n−m+1.

(3.4)

Theorem 3.4. Let W(n, s) is a quasiwheel graph with n vertices and P(W(n, s), λ) =
∑n

i=1 aiλi.
Then,

∑n
i=1 |ai| = 3s−1(2n−s+1 − 1) − 3.

Proof. From Lemma 2.5, we have

P(W(n, s), λ) = (λ − 2)s−1
[
(λ − 1)n−s+1 + (−1)n−s

]
+ (−1)n−1λ(λ − 2)

=
[
λs−1 + · · · + C1

s−1λ(−2)s−2 + (−2)s−1, λn−s+1 + · · · +C2
n−s+1λ

2(−1)n−s−1

+C1
n−s+1λ(−1)n−s

]
+ (−1)n−1

(
λ2 − 2λ

)

= λn + · · · +
[
C1

s−12
s−2C1

n−s+1(−1)n−2 + C2
n−s+12

s−1(−1)n−2 + (−1)n−1
]
λ2

+
[
C1

n−s+12
s−1(−1)n−1 + 2(−1)n

]
λ.

(3.5)

Let (λ − 2)s−1[(λ − 1)n−s+1 + (−1)n−s] = ∑n
i=1 biλ

i, then
∑n

i=1 |bi| = 3s−1(2n−s+1 − 1).
Moreover,

n∑

i=1

biλ
i = λn + · · · +

[
C1

s−12
s−2C1

n−s+1(−1)n−2 +C2
n−s+12

s−1(−1)n−2
]
λ2

+C1
n−s+12

s−1(−1)n−1λ.
(3.6)
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Thus,

n∑

i=1

|bi| =
n∑

i=3

|bi| + C1
s−12

s−2C1
n−s+1 +C2

n−s+12
s−1 + C1

n−s+12
s−1,

n∑

i=1

|ai| =
n∑

i=3

|bi| + C1
s−12

s−2C1
n−s+1 − 1 + C2

n−s+12
s−1 + C1

n−s+12
s−1 − 2

= 3s−1
(
2n−s+1 − 1

)
− 3.

(3.7)

This completes the proof.
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