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In a Banach space with a basis we define a similar norm to the norm shown by Lin to make l1
into a space with FPP and make a comparative study of certain geometric properties such as the
Opial property,WNS, and uniform nonsquareness of the original space and the space with the new
norm.

1. Introduction

Dowling et al. in [1] defined a norm in l1 which was used by Lin [2] to exhibit an equivalent
norm which makes l1 into a space with the fixed point property (FPP). A similar norm can be
defined in every Banach spaceX with a basis. Since l1 with its usual norm does not have FPP,
we asked ourselves if this norm in these spaces would also improve properties that imply
the weak fixed point property (WFPP). We found out that in some instances it does, in some
cases the original norm has better properties, and in some cases you cannot compare them.
We give several examples to illustrate our assertions.

2. The Γ Norm in a Banach Space

We start by giving the definition of the generalization of the norm used by Lin in a Banach
space with a basis.

Definition 2.1. Let (X, ‖ · ‖) be a Banach space with a basis {en}. Let x =
∑∞

i=1 xiei ∈ X and
Qn : X → X be the projectionQn(

∑∞
i=1 xiei) =

∑∞
i=n xiei. The basis {en} is called premonotone
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if ‖Qnx‖ ≥ ‖Qn+1x‖ and monotone if ‖Pnx‖ ≤ ‖Pn+1x‖ where Pnx = (I − Qn+1)x for every
x ∈ X and for every n ∈ �.

Definition 2.2. Let (X, ‖ · ‖) be a Banach space with a basis {en} and Γ = {γn} ⊂ � with 0 < γn <
γn+1 and limnγn = 1. Let x =

∑∞
i=1 xiei ∈ X. Then if

|‖x‖| = sup
n

γn‖Qnx‖, (2.1)

|‖ · ‖| is a norm in X which we will call Γ-norm.
Clearly

γ1‖x‖ ≤ |‖x‖| ≤
(

sup
n

‖Qn‖
)

‖x‖. (2.2)

Observe that, if {en} is a basis in (X, ‖ · ‖), then it is always premonotone in (X, |‖ · ‖|)
and, if {en} is monotone in (X, ‖ · ‖), then it is also monotone in (X, |‖ · ‖|). Also observe
that since for every x ∈ X we have that limnγn‖Qnx‖ = 0, there exists n0 such that |‖x‖| =
γn0‖Qn0x‖.

Next we define the properties related to wfpp we are going to analyze. The definition
of GGLD is not the original one found in [3], but an equivalent one found in [4].

Definition 2.3. Let Y be a Banach space.

(1) Y has the Opial property if for every weakly null sequence {xn} ⊂ Y and for every
x ∈ Y , x/= 0,

lim sup
n

‖xn‖ < lim sup
n

‖xn − x‖. (2.3)

(2) If Y has a basis, it has the generalized Gossez-Lami Dozo property (GGLD) [4] if,
for every weakly null normalized block basic sequence {yn}, we have that

lim
n

sup
i,j≥n

∥
∥yi − yj

∥
∥ > 1. (2.4)

(3) A bounded sequence {yn} ⊂ Y is called diametral if

lim
n

d
(
yn+1, conv

{
yi

}n
i=1

)
= diam

{
yn

}∞
n=1. (2.5)

Y has weak normal structure (WNS) if there is no weakly null diametral nonzero
sequence in Y .

(4) The coefficient J(Y), related to uniform nonsquareness, since J(Y) < 2 if and only
if Y is uniformly nonsquare, is given by

J(Y) = sup
{
min
(∥
∥x + y

∥
∥,
∥
∥x − y

∥
∥
)
: x, y ∈ BY

}
. (2.6)
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(5) The coefficient R(Y) [5] is defined by

R(Y) = sup
{

lim inf
n
‖xn + x‖ : {x}, {xn} ⊂ BY , xn −→

w
0
}

. (2.7)

(6) Coefficients RW(a, Y) and MW(Y) [6] are defined as follows: for each a > 0

RW(a, Y) = sup
{

min
(

lim inf
n
‖xn + x‖, lim inf

n
‖xn − x‖

)

: ‖x‖ ≤ a, {xn} ⊂ BY , xn −→
w

0
}

,

MW(Y) = sup
{

1 + a

RW(a, Y)
: a > 0

}

.

(2.8)

It is known that GGLD ⇒ WNS ⇒ wfpp and the Opial property implies wfpp. Also

R(Y) < 2 =⇒ MW(Y) > 1 =⇒ wfpp, (2.9)

J(Y) < 2 =⇒ MW(Y) > 1 =⇒ wfpp. (2.10)

First we will show that the Opial property is inherited from (X, |‖ · ‖|) to (X, ‖ · ‖) and
that (X, ‖ · ‖) has GGLD if and only if (X, |‖ · ‖|) has GGLD. In order to achieve this, we need
the following result shown in [7].

Lemma 2.4. Let (X, ‖ · ‖) be a Banach space with a premonotone basis {en}. Then
(1) if {xn} converges weakly to x, limn‖xn − x‖ = a if and only if limn|‖xn − x‖| = a,

(2) if {xn} converges weakly to 0 and limnlimr‖xn − xr‖ = a, there exists a subsequence {yn}
of {xn} such that limnlimr |‖yn − yr‖| = a.

Lemma 2.5. Let (X, ‖·‖) be a Banach space with a premonotone basis {en}. If (X, |‖ ·‖|) has the Opial
property, then (X, ‖ · ‖) also has the Opial property, but the converse is false.

Proof. Let {xn} be weakly null in X and x ∈ X, x /= 0. Then, by Lemma 2.4 and by (2.2),

lim sup
n

‖xn‖ = lim sup
n

|‖xn‖| < lim sup
n

|‖xn − x‖| ≤ lim sup
n

‖xn − x‖. (2.11)

It is known that, for 1 < p < ∞, (lp, ‖ · ‖) has the Opial property. Consider any Γ-norm

|‖ · ‖| in lp with the canonical basis {en}, and let δ > 0 be such that δ < ((γp2 − γ
p

1 )/γ
p

1 )
1/p

.
Then, for n ≥ 2,

|‖δe1 + en‖| = max
[
γ1(δp + 1)1/p, γn

]
= γn,

lim
n
|‖en‖| = lim

n
γn = lim

n
|‖δe1 + en‖| = 1.

(2.12)

Thus, (lp, |‖ · ‖|) does not have the Opial property.
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Lemma 2.6. Let (X, ‖·‖) be a Banach space with a premonotone basis {en}. Then, (X, ‖·‖) has GGLD
if and only if (X, |‖ · ‖|) has GGLD.

Proof. Let {yn} be a weakly null normalized block basic sequence. By Lemma 2.4, limn‖yn‖
exists if and only if limn|‖yn‖| exists and in this case limn‖yn‖ = limn|‖yn‖|. Also

lim
n

sup
i,j≥n

∥
∥yi − yj

∥
∥ = lim

n
sup
i,j≥n

∣
∣
∥
∥yi − yj

∥
∥
∣
∣. (2.13)

The above equality follows immediately from the following inequality, for i, j ≥ n :

∣
∣
∥
∥yi − yj

∥
∥
∣
∣ ≤ ∥∥yi − yj

∥
∥ ≤ 1

γn

∣
∣
∥
∥yi − yj

∥
∥
∣
∣. (2.14)

This proves the lemma.

Now we will show that there exists a space with WNS such that with the Γ-norm it
does not have WNS.

Lemma 2.7. Let X be the space c0 with the norm ‖x‖ = sup |bi| +
∑∞

i=1 εi|bi|, where x =
∑∞

i=1 biei,
εi > 0 and

∑∞
i=1 εi < ∞. Then X has WNS.

Proof. Let {xn} ⊂ X be a weakly null nonzero sequence. We may assume that x1 /= 0 and that
there exists a block basic sequence {un} ⊂ Xwith ‖un−xn‖ →

n→∞
0. Suppose that un =

∑qn
i=pn

aiei

with pn ≤ qn < pn+1 for n ∈ � and that x1 =
∑∞

i=1 biei. Let k be such that
∑k

i=1 εi|bi| = δ /= 0. Let
ε < δ/2, s > k with ‖Qsx1‖ < ε and n > s. Then,

‖x1 − un‖ + ε ≥ ‖Psx1 − un‖ = max(‖Psx1‖∞, ‖un‖∞) +
s∑

i=1

εi|bi| +
qn∑

i=pn

εi|ai| ≥ ‖un‖ + δ. (2.15)

Hence, lim supn‖x1 − xn‖ ≥ lim supn‖xn‖ + δ/2 and {xn} cannot be a diametral sequence,
since for a diametral sequence {xn} it is true that limn‖x − xn‖ = diam{xn} for every x ∈
conv{xn}.

Lemma 2.8. Let Γ = {γn} ⊂ (0, 1) be an increasing sequence with limnγn = 1. Then there is a space
(X, ‖ · ‖) with WNS, such that X with the Γ-norm |‖ · ‖| does not have WNS.

Proof. Let {γnj}j be a subsequence of {γn} such that, if εnj = (1/3)(1/γnj −1), then
∑∞

i=1 εni < ∞.
Observe that εnj < εnj+1 . Let X be the space c0 with the norm ‖x‖ = sup |ai| +

∑∞
i=1 εni |ani | +∑∞

i=1,i /=nj
(|ai|/2i), where x =

∑∞
i=1 aiei. By Lemma 2.7, since

∑∞
i=1(εni + 1/2i) < ∞, we know

that X has WNS. Now let |‖ · ‖| be the Γ-norm in X with respect to {γi}. Let uj = enj ; then
γnj = 1/(1 + 3εnj ), and thus

∣
∣
∥
∥uj

∥
∥
∣
∣ = γnj

(
1 + εnj

)
< 1, (2.16)
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and, if j < m,

∣
∣
∥
∥uj − um

∥
∥
∣
∣ = max

(
γnj

(
1 + εnj + εnm

)
, γnm(1 + εnm)

)

≤ max
(
γnj

(
1 + 2εnj

)
, γnm(1 + εnm)

)
< 1.

(2.17)

Therefore, since 0 ∈ conv{un} and limn|‖un‖| = 1, we have that diam|‖·‖|{un} = 1. Also, if
0 ≤ λi,

∑n−1
i=1 λi = 1,

|‖un‖| ≤
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

n−1∑

i=1

λiui − un

∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
≤ 1. (2.18)

Hence, {un} is diametral in (X, |‖ · ‖|).

The above example is another proof of the fact that for every ε > 0 there are Banach
spaces X and Y with d(X, Y) < 1 + ε so that X has WNS but Y does not.

With regard to the coefficient MW(X), we will see that, if X has a premonotone basis
and MW(X, ‖ · ‖) > 1, then MW(X, |‖ · ‖|) > 1 and we will show a sufficient condition for the
reverse implication. For this we need the following lemma.

Lemma 2.9. Let X be a Banach space with a basis. If

RW1(a,X) = sup
{

min
(
lim inf

∥
∥un + y

∥
∥, lim inf

∥
∥un − y

∥
∥
)
: un −→

w
0,

{un} ⊂ BX is a block basic sequence,

∥
∥y
∥
∥ ≤ a and support of y is finite

}

,

(2.19)

then RW(a,X) = RW1(a,X).

Proof. It is clear that RW1(a,X) ≤ RW(a,X).
Now let ε > 0, x ∈ X, ‖x‖ ≤ a, and {xn} ⊂ BX , with xn →

w
0 such that min(limn‖xn +

x‖, limn‖xn − x‖) > RW(a,X) − ε. By passing to a subsequence, we may assume that there
exist a block basic sequence {un} ⊂ BX with ‖xn − un‖ < ε andm ∈ � such that ‖x − Pmx‖ < ε
and ‖Pmx‖ < (1 + ε)‖x‖ ≤ a(1 + ε). Then,

∥
∥
∥
∥
Pmx

1 + ε
+ un

∥
∥
∥
∥ ≥ ‖xn + x‖ − ‖xn − un‖ − ‖x − Pmx‖ − ‖Pmx‖ ε

1 + ε
,

∥
∥
∥
∥
Pmx

1 + ε
− un

∥
∥
∥
∥ ≥ ‖xn − x‖ − ‖xn − un‖ − ‖x − Pmx‖ − ‖Pmx‖ ε

1 + ε
.

(2.20)

Let y = Pmx/(1 + ε); then ‖y‖ ≤ a, and we conclude that RW1(a,X) ≥ RW(a,X) − (3 + a)ε,
thus proving the assertion.
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Similarly one can prove that, if X is a space with a basis,

R(Y) = sup
{

lim inf
n
‖un + x‖ : {x}, {un} ⊂ BY , un −→

w
0 ,

{un} is a block basic sequence and support of x is finite
}

.

(2.21)

It is known (see [6, 8]) that, if X, Y are Banach spaces, then

MW(X) ≤ MW(Y)d(X, Y), J(X) ≤ J(Y)d(X, Y). (2.22)

So, if X is a Banach space with a basis, Γ = {γn} with 0 ≤ γn ≤ γn+1 ≤ 1 and γ1 > 1/MW(X),
and Y is X with the Γ-norm, then MW(Y) ≥ MW(X)/d(X, Y) ≥ γ1MW(X) > 1, and if γ1 >
1/MW(Y), MW(X) > 1. Similarly, if γ1 > J(X)/2, then J(Y) < 2 and, if γ1 > J(Y)/2, then
J(X) < 2. But the next proposition shows that in fact MW(X) > 1 always implies MW(Y) > 1.
For the coefficient J , in general neither J(X) < 2 implies J(Y) < 2 nor the other way round, as
we will see in Examples 2.16 and 2.17.

Proposition 2.10. Suppose that X is a Banach space with a premonotone basis {en}. Then MW =
MW(X, ‖ · ‖) > 1 implies that MW1 = MW(X, |‖ · ‖|) > 1.

Proof. Let RW(a, (X, ‖·‖)) = R(a) and RW(a, (X, |‖·‖|)) = R1(a). Suppose that MW1 = 1. Then,
R1(a) = 1 + a for every a > 0. Let a > 0 and 0 < ε < a, y ∈ X with finite support, |‖y‖| ≤ a, and
let {un} be aweakly null block basic sequence with |‖un‖| ≤ 1 such that limn|‖un+y‖| > 1+a−ε
and limn|‖un − y‖| > 1 + a − ε. Then we may suppose that for every n, |‖un + y‖| > 1 + a − ε
and |‖un − y‖| > 1 + a − ε. Hence,

|‖un‖| ≥ 1 − ε,
∣
∣
∥
∥y
∥
∥
∣
∣ ≥ a − ε. (2.23)

We may also assume that the supports of y and un are disjoint. Let un =
∑rn

i=ln
aiei and y =

∑r
i=1 biei.

Suppose that |‖un +y‖| = γmn‖
∑rn

i=mn
(ai + bi)ei‖ for some mn ≤ rn. It is not possible that

mn > r, because this would mean that

1 + a − ε ≤ ∣∣∥∥un + y
∥
∥
∣
∣ = γmn

∥
∥
∥
∥
∥

rn∑

mn

aiei

∥
∥
∥
∥
∥
≤ |‖un‖| ≤ 1. (2.24)

So, by passing to a subsequence if necessary, we may assume that for every n we have that
mn = i0 ≤ r. Thus,

1 + a − ε ≤ ∣∣∥∥un + y
∥
∥
∣
∣ = γi0

∥
∥
∥
∥
∥

rn∑

i=i0

(ai + bi)ei

∥
∥
∥
∥
∥

≤ γi0

(∥
∥
∥
∥
∥

rn∑

i=ln

aiei

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

r∑

i=i0

biei

∥
∥
∥
∥
∥

)

≤ γi0
γln

+ a.

(2.25)
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Since limnγln = 1, by passing to the limit, we obtain that

γi0 ≥ 1 − ε. (2.26)

Similarly, there exists γi1 ≥ 1 − ε with

1 + a − ε ≤ ∣∣∥∥un − y
∥
∥
∣
∣ ≤ γi1

γln
+ a. (2.27)

Suppose that i1 ≥ i0, and let y0 =
∑r

i=i0 biei and y1 =
∑r

i=i1 biei. Then, since the basis is
premonotone, 1 + a − ε ≤ |‖un + y‖| = |‖un + y0‖| ≤ ‖un + y0‖ and 1 + a − ε ≤ |‖un − y‖| =
|‖un − y1‖| ≤ ‖un − y1‖ ≤ ‖un − y0‖; thus,

a − ε ≤ ∣∣∥∥y0
∥
∥
∣
∣ ≤ ∣∣∥∥y∥∥∣∣ ≤ a. (2.28)

Therefore,

a − ε ≤ ∣∣∥∥y0
∥
∥
∣
∣ ≤ ∥∥y0

∥
∥ ≤ 1

γi0

∣
∣
∥
∥y0
∥
∥
∣
∣ ≤ a

γi0
≤ a

1 − ε
(2.29)

and |‖y0‖ − a| ≤ max{ε, aε/(1 − ε)}. Further, since γi0 ≤ γln ,

1 − ε ≤ |‖un‖| ≤ ‖un‖ ≤ 1
γln

|‖un‖| ≤ 1
γln

≤ 1
1 − ε

(2.30)

and |‖un‖ − 1| ≤ ε/(1 − ε).
Hence,

∥
∥
∥
∥
∥

un

‖un‖ +
y0
∥
∥y0
∥
∥
a

∥
∥
∥
∥
∥
≥ ∥∥un + y0

∥
∥ − |‖un‖ − 1| − ∣∣∥∥y0

∥
∥ − a

∣
∣

≥ 1 + a − ε − ε

1 − ε
−max

{

ε,
aε

1 − ε

}

.

(2.31)

Similarly,

∥
∥
∥
∥
∥

un

‖un‖ − y0
∥
∥y0
∥
∥
a

∥
∥
∥
∥
∥
≥ 1 + a − ε − ε

1 − ε
−max

{

ε,
aε

1 − ε

}

. (2.32)

We deduce that min(lim infn‖(un/‖un‖) + (y0/‖y0‖)a‖, lim infn‖(un/‖un‖) − (y0/‖y0‖)a‖) ≥
1 +a− ε − ε/(1 − ε)−max{ε, aε/(1 − ε)}, and letting ε tend to zero we obtain R(a) = 1+ a and
MW = 1.

Examples 2.14 and 2.17 exhibit spaces in which MW(X, ‖ · ‖) = 1 andMW(X, |‖ · ‖|) > 1.
There is however a special case in which MW(X, ‖ · ‖) ≥ MW(X, |‖ · ‖|).
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Recall that a basis {en} of a Banach space X is 1-spreading if, whenever x =
∑∞

i=1 aiei ∈
X and {eni}i is a subsequence of {en},

∑∞
i=1 aieni ∈ X and ‖∑∞

i=1 aiei‖ = ‖∑∞
i=1 aieni‖.

Proposition 2.11. IfX is a Banach space with a premonotone 1-spreading basis, thenMW(X, ‖·‖) ≥
MW(X, |‖ · ‖|).

Proof. Let Tm : X → X be the translation given by Tm
∑∞

i=1 aiei =
∑∞

i=1 aiei+m, and let a >
0,y ∈ X, ‖y‖ ≤ a, {un} ⊂ BX , where y has finite support and {un} is a weakly null block basic
sequence such that min(‖y + un‖, ‖y − un‖) > RW(a, (X, ‖ · ‖)) − ε for every n. Let m ∈ �;
then there exists N ∈ � such that for n > N the supports of Tmy and un are disjoint, and
thus, since the basis is 1-spreading, ‖y − un‖ = ‖Tmy − un‖ and ‖y + un‖ = ‖Tmy + un‖. Then,
|‖Tmy‖| ≤ ‖Tmy‖ ≤ a, |‖un‖| ≤ ‖un‖ ≤ 1 and for n > N

∣
∣
∥
∥Tmy − un

∥
∥
∣
∣ ≥ γm

∥
∥Tmy − un

∥
∥ = γm

∥
∥y − un

∥
∥,

∣
∣
∥
∥Tmy + un

∥
∥
∣
∣ ≥ γm

∥
∥Tmy + un

∥
∥ = γm

∥
∥y + un

∥
∥.

(2.33)

Hence, RW(a, (X, |‖ · ‖|)) ≥ γmRW(a, (X, ‖ · ‖)), and, by passing to the limit as m tends to
infinity, we get RW(a, (X, |‖ · ‖|)) ≥ RW(a, (X, ‖ · ‖)) and thus the desired result.

Similarly to Propositions 2.10 and 2.11 we can prove the following.

Proposition 2.12. Suppose that X is a Banach space with a premonotone basis {en}. Then R =
R(X, ‖ · ‖) < 2 implies that R1 = R(X, |‖ · ‖|) < 2 and, if the basis is premonotone and 1-spreading,
then R = R(X, ‖ · ‖) ≤ R(X, |‖ · ‖|) = R1.

Corollary 2.13. If X is a Banach space with a premonotone 1-spreading basis, then MW1 > 1 if and
only if MW > 1; also R1 < 2 if and only if R < 2.

Next we will show an example of a space without a 1-spreading basis, such that R = 2,
MW = 1 but R1 < 2 and thus MW1 > 1.

Example 2.14. Let X be c0 with the following norm:

‖{an}‖ = |a1| +max
i≥2

|ai|. (2.34)

Let {en} denote the canonical basis of c0. Then for every a > 0, ‖ae1 + en‖ = ‖ae1 − en‖ = 1 + a,
and thus R = 2 and MW = 1. On the other hand let x ∈ X with finite support and |‖x‖| ≤ 1
and suppose that {un} is a block basic sequence with |‖un‖| ≤ 1 for n ∈ N, un =

∑rn
i=mn

aiei
withmn ≤ rn < mn+1 and the support of x does not intersect the support of un. Then, for every
m ≥ 2 and n ≥ m, γm‖Qmx + un‖ = max(γm‖Qmx‖c0 , γm‖un‖c0) ≤ 1,

γ1‖x + un‖ ≤ 1 + γ1‖un‖c0 ≤ 1 +
γ1
γmn

. (2.35)

Thus, lim inf |‖x + un‖| ≤ 1 + γ1. Hence R1 ≤ 1 + γ1 < 2 and, by (2.9), MW1 > 1.

With regard to the coefficient J we have the following which is proved similarly to
Proposition 2.11.
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Proposition 2.15. Suppose that X is a Banach space with a premonotone 1-spreading basis
{en}. Then J(X, ‖ · ‖) ≤ J(X, |‖ · ‖|).

In general neither J(X, ‖ · ‖) < 2 implies J(X, |‖ · ‖|) < 2 nor the other way round, as the
following examples show.

Example 2.16. Let 1 > μ ≥ 1/
√
2 and X = �

2
μ

⊕
2l2, where �2

μ = (�2 , ‖ · ‖(μ)) and ‖(x1, x2)‖(μ) =
max(|x1|, |x2|, μ(|x1| + |x2|)). Then, if μ ≤ γ2/(γ1 + γ2), J(X) < 2 but for every Γ, J(X, |‖ · ‖|) = 2.

Since μ ≥ 1/
√
2, it is easy to see that for x = (x1, x2) ∈ �2 ,

μ
√
1 − 2μ + 2μ2

‖x‖2 ≤ ‖x‖(μ) ≤ μ
√
2‖x‖2. (2.36)

Thus, d(l2, X) ≤ d(�2 ,�2
μ) =

√
2
√
1 − 2μ + 2μ2 <

√
2, and by (2.22), since J(l2) =

√
2, we obtain

that J(X) < 2.
Now let Γ = {γn}, μ ≤ γ2/(γ1 + γ2), x = (1/γ1, 1/γ2, 0, 0, . . .), and y =

(−1/γ1, 1/γ2, 0, 0, . . .). Then |‖x‖| = |‖y‖| = 1 but |‖x + y‖| = |‖x − y‖| = 2.

This last example is another proof of the known fact that for every ε > 0 there are
Banach spacesX and Y with d(X, Y) < 1 + ε, J(X) < 2 but J(Y) = 2. In the following example
we exhibit a space X with J(X) = 2 such that J(X, |‖ · ‖|) < 2.

Example 2.17. Let X = (l2, ‖ · ‖), where, for x = (an) ∈ l2, ‖x‖ = |a1| + (
∑∞

i=2 a
2
i )

1/2. Then
J(X) = 2,MW(X) = 1, and, if Γ is such that γ2 > 1/

√
2 and γ1/γ2 < 1/

√
2, J(X, |‖ · ‖|) < 2 and

thus MW(X, |‖ · ‖|) > 1.
Obviously if {en} is the canonical basis of l2, and a > 0, then ‖ae1 + en‖ = ‖ae1 − en‖ =

1 + a for n > 1 and thus J(X) = 2 and MW(X) = 1.
Suppose now that J(Y) = J(X, |‖ · ‖|) = 2. Then there exist sequences {xn},{yn} ⊂ BY

such that limn|‖xn + yn‖| = limn|‖xn − yn‖| = 2 and {mn}, {ln} ⊂ � so that

∣
∣
∥
∥xn + yn

∥
∥
∣
∣ = γmn

∥
∥Qmn

(
xn + yn

)∥
∥,

∣
∣
∥
∥xn − yn

∥
∥
∣
∣ = γln

∥
∥Qln

(
xn − yn

)∥
∥.

(2.37)

By passing to a subsequence, wemay assume that, for every n ∈ �, e∗1(xn) ≥ 0, e∗1(yn) ≥
0 and e∗1(xn) ≥ e∗1(yn), and that the subsequence satisfies one of the next three cases:

(1) mn > 1 and ln > 1 for every n,

(2) mn = ln = 1 for every n,

(3) mn = 1 and ln > 1 for every n.

Observe that

γm
∥
∥Qm

(
x + y

)∥
∥ ≥ 2 − ε implies γm‖Qm(x)‖ ≥ 1 − ε and γm

∥
∥Qm

(
y
)∥
∥ ≥ 1 − ε. (2.38)
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Case 1. Let Z = (l2, |‖ · ‖|Γ1), where |‖ · ‖|Γ1 is the Γ1 = {γi}∞i=2-norm. Then

|‖Q2xn‖|Γ1 ≤ 1,
∣
∣
∥
∥Q2yn

∥
∥
∣
∣
Γ1

≤ 1,
∣
∣
∥
∥Q2
(
xn + yn

)∥
∥
∣
∣
Γ1

≥ 2 − ε,
∣
∣
∥
∥Q2
(
xn − yn

)∥
∥
∣
∣
Γ1

≥ 2 − ε.
(2.39)

Since 1/γ2 <
√
2, then, by (2.2), d(Z, l2) <

√
2 and, by (2.22), since J(l2) =

√
2, J(Z) < 2 and

this is a contradiction.

Case 2. Let ε > 0. Suppose that x =
∑∞

i=1 aiei, y =
∑∞

i=1 biei ∈ BY , a1 > 0, b1 > 0, a1 > b1 and

γ1

( ∞∑

i=2
(ai + bi)2

)1/2

≥ 2 − ε − γ1(a1 + b1),

γ1

( ∞∑

i=2
(ai − bi)2

)1/2

≥ 2 − ε − γ1(a1 − b1).

(2.40)

Squaring both inequalities and adding them, since γ2(
∑∞

i=2 a
2
i )

1/2 ≤ |‖x‖|, we get

2γ21
γ22

≥ γ21

∞∑

i=2

(
a2
i + b2i

)
≥ (2 − ε − γ1a1

)2 + γ21b
2
1 ≥
(
2 − ε − γ1a1

)2
. (2.41)

By passing to the limit as ε → 0, since γ1a1 ≤ 1, we obtain that
√
2(γ1/γ2) ≥ 2 − γ1a1 ≥ 1, and

this contradicts γ1/γ2 < 1/
√
2.

Case 3. Let 2 > ε > 0. Suppose that x =
∑∞

i=1 aiei, y =
∑∞

i=1 biei ∈ BY , a1 > 0, b1 ≥ 0, a1 > b1 and

|‖x + y‖| = γ1(|a1 + b1| + (
∑∞

i=2 (ai + bi)
2)

1/2
) ≥ 2 − ε and |‖x − y‖| = γm(

∑∞
i=m (ai − bi)

2)
1/2 ≥

2 − ε. Then, by (2.38),

γm

( ∞∑

i=m

a2
i

)1/2

≥ 1 − ε. (2.42)
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Since in l2 if u, v ∈ Bl2 , one has that ‖u − v‖ ≥ δ implies ‖u + v‖ ≤ 2
√

1 − (δ/2)2, then

γm(
∑∞

i=m (ai + bi)2)
1/2 ≤

√
4ε − ε2. Also

2 − ε ≤ γ1

⎛

⎝|a1 + b1| +
(

m−1∑

i=2

(ai + bi)2
)1/2

+

( ∞∑

i=m

(ai + bi)2
)1/2

⎞

⎠

≤ γ1|a1 + b1| + γ1

(
m−1∑

i=2

(ai + bi)2
)1/2

+
γ1
γm

√
4ε − ε2

≤ γ1|a1 + b1| + γ1

(
m−1∑

i=2
(ai + bi)2

)1/2

+
√
4ε − ε2.

(2.43)

Let φ = ε +
√
4ε − ε2; then

2 − φ ≤ γ1|a1 + b1| + γ1

(
m−1∑

i=2

(ai + bi)2
)1/2

. (2.44)

By (2.38), γ1|a1| + γ1(
∑m−1

i=2 a2
i )

1/2 ≥ 1 − φ, and since, for A,B > 0,

(A + B)1/2 −A1/2 =
B

(A + B)1/2 +A1/2
, (2.45)

we have, using (2.42), that

1 ≥ γ1|a1| + γ1

( ∞∑

i=2

a2
i

)1/2

≥ γ1|a1| + γ1

(
m−1∑

i=2

a2
i +

(1 − ε)2

γ2m

)1/2

= γ1|a1| + γ1

(
m−1∑

i=2

a2
i

)1/2

+
γ1(1 − ε)2

γ2m

1

(A + B)1/2 +A1/2

≥ 1 − φ +
γ1(1 − ε)2

γ2m

1

(A + B)1/2 +A1/2
,

(2.46)

where A = (
∑m−1

i=2 a2
i )

1/2
and B = (1 − ε)2/γ2m. But

(A + B)1/2 +A1/2 ≤
(

1
γ22

+
(1 − ε)2

γ2m

)1/2

+
1
γ2

≤ 3
γ2
; (2.47)
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therefore,

γ1 <
γ1

γ2m
≤ φ

(1 − ε)2
3
γ2
, (2.48)

and, taking the limit as ε → 0, we get γ1 = 0 which is a contradiction.
Hence, J(X, |‖ · ‖|) < 2, and, by (2.10), we have that MW(X, |‖ · ‖|) > 1.
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