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A hypercomplex system (h.c.s.) L1(Q,m) is, roughly speaking, a space which is defined by a
structure measure (c(A,B, r), (A,B ∈ B(Q))), such space has been studied by Berezanskii and
Krein. Our main result is to define the exponentially convex functions (e.c.f.) on (h.c.s.), and we
will study their properties. The definition of such functions is a natural generalization of that
defined on semigroup.

1. Introduction

Harmonic Analysis theory and its relation with positive definite kernels is one of the most
important subjects in functional analysis, which has different applications in mathematics
and physics branches.

Mercer (1909) defines a continuous and symmetric real-valued function Φ on [a, b] ×
[a, b] ⊆ R2 to be positive type if and only if

∫∫b

a

C(x)C
(
y
)
Φ
(
x, y

)
dx dy ≥ 0, (1.1)

where C(x), C(y) ∈ C[a, b].
Positive definite kernels generate a different kinds of functions, for example, positive,

negative, and e.c.f. For more details you can see the work done by Stewart [1] in 1976 who
gave a survey of these functions.
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Harmonic analysis of these functions on finite and infinite spaces or groups,
semigroups, and hypergroups have a long history and many applications in probability
theory, operator theory, and moment problem (see [2–10]).

Many studies were done on e.c.f. on different structures (see [10–18]).
Our aim in this study is to carry over the harmonic analysis of the e.c.f to the case of the

h.c.s. These functions were first introduced by Berg et al., cf. [2]. The continuous functions
f :]a, b[→ R is e.c.f. if and only if the kernel (x, y) �→ f(x + y) is positive definite on the
region ](1/2)a, (1/2)b[×](1/2)a, (1/2)b[.

Now, I will give a short summary of the h.c.f.
Let Q be a complete separable locally compact metric space of points p, q, r, . . . , β(Q)

be the σ-algebra of Borel subsets, and β0(Q) be the subring of β(Q), which consists of sets with
compact closure. We will consider the Borel measures; that is, positive regular measures on
β(Q), finite on compact sets. The spaces of continuous functions of finite continuous function,
and of bounded functions are denoted by C(Q), C0(Q), and, Cb(Q), respectively.

An h.c.s. with the basis Q is defined by its structure measure c(A,B, r) (A,B ∈
β(Q); r ∈ Q). A structure measure c(A,B, r) is a Borel measure in A (resp. B) if we fix B, r
(resp. A, r) which satisfies the following properties:

(H1) For allA,B ∈ β0(Q), the function c(A,B, r) ∈ C0(Q).

(H2) For allA,B ∈ β0(Q) and s, r ∈ Q, the following associativity relation holds

∫
Q

c(A,B, r)drc(Er, C, s) =
∫
Q

c(B,C, r)drc(A,Er, s), C ∈ β(Q). (1.2)

(H3) The structure measure is said to be commutative if

c(A,B, r) = c(B,A, r),
(
A,B ∈ β0(Q)

)
(1.3)

A measurem is said to be a multiplicative measure if

∫
Q

c(A,B, r)dm(r) = m(A)m(B); A,B ∈ β0(Q). (1.4)

(H4) We will suppose the existence of a multiplicative measure.

For any f, g ∈ L1(Q,m), the convolution
(
f ∗ g)(r) =

∫∫
Q

f
(
p
)
g
(
q
)
dmr

(
p, q

)
. (1.5)

is well defined (see [19]).
The space L1(Q,m) with the convolution (1.5) is a Banach algebra which is
commutative if (H3) holds. This Banach algebra is called the h.c.s. with the basis
Q.
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A nonzero measurable and bounded almost everywhere function Q � r → x(r) ∈
� is said to be a character of the h.c.s. L1, if for all A,B ∈ β0(Q)

∫
Q

c(A,B, r)x(r)dm(r) = x(A)x(B),

∫
C

x(r)dm(r) = x(C), C ∈ β0(Q).

(1.6)

(H5) An h.c.s. is said to be normal, if there exists an involution homomorphism Q � r �→
r∗ ∈ Q, such that m(A) = m(A∗), and

c(A,B, C) = c(C, B∗, A), c(A,B, C) = c(A∗, C, B),
(
A,B ∈ β0(Q)

)
, (1.7)

where

c(A,B, C) =
∫
C

c(A,B, r)dm(r). (1.8)

(H6) A normal h.c.s. possesses a basis unity if there exists a point e ∈ Q such that e∗ = e
and

c(A,B, e) = m(A∗ ∩ B), A, B ∈ β(Q). (1.9)

If r∗ = r for all r ∈ Q, then the normal h.c.s. is called Hermitian which is
commutative.

We should remark that, for a normal h.c.s., the mapping

L1(Q,m) � f(r) −→ f∗(r) ∈ L1(Q,m) (1.10)

is an involution in the Banach algebra L1, the multiplicative measure is unique and characters
of such a system are continuous. A character x of a normal h.c.s. is said to be Hermitian if

x(r∗) = x(r), (r ∈ Q). (1.11)

Let X and Xh be the sets of characters and Hermitian characters, respectively.
A Hermitian character of a Hermitian h.c.s. are real valued x(p) = x(p) (p ∈ Q).
Let L1(Q,m) be an h.c.s. with a basisQ and Φ a space of complex valued functions on

Q. Assume that an operator valued function Q � p �→ Rp : Φ → Φ is given such that the
function g(p) = (Rpf)(q) belongs to Φ for any f ∈ Φ and any fixed q ∈ Q. The operators
Rp (p ∈ Q) are called right generalized translation operators, provided that the following
axioms are satisfied.
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(T1) Associativity axiom: the equality

(
R
q
p

(
Rqf

))
(r) =

(
Rr
q

(
Rpf

))
(r) (1.12)

holds for any elements p, q ∈ Q.

(T2) There exists an element e ∈ Q such that Re is the identity in Φ.

By the bilinear form

(
Lpf, g

)
=
(
g∗, Rp∗f

∗) =
(
Rrf, g

)
,

(
f, g ∈ L2; r, p ∈ Q

)
, (1.13)

we define the left generalized translation operators Lp, such that Lpf(r) = Rrf(p) for almost
all p and q with respect to the measure m × m. Lp and Rp have the same properties, so that
will call them generalized translation operators.

A one-to-one correspondence exists between normal h.c.s. L1(Q,m) with basis unity
e and weakly continuous families of bounded involutive generalized translation operators
Lp satisfying the finiteness condition, preserving positivity in the space L2(Q,m) with
unimodular strongly invariant measure m, and preserving the unit element. Convolution in
the hypercomplex system L1(Q,m) and the corresponding family of generalized translation
operators Lp satisfy the relation

(
f ∗ g)(p) =

∫
Q

(
Lpf

)(
q
)
g
(
q∗
)
dq =

(
Lpf, g

∗)
2,

(
f, g ∈ L2

)
. (1.14)

Moreover, the h.c.s. L1(Q,m) is commutative if and only if the generalized translation
operators Lp (p ∈ Q) are commutative (see [20]).

2. Exponentially Convex Functions

Let L1(Q,m) be a commutative normal h.c.s. with basis unity.

Definition 2.1. An essentially bounded function ϕ(r) (r ∈ Q) is called e.c.f if

∫
ϕ(r)(x∗ ∗ x)(r)dr ≥ 0, ∀x ∈ L1. (2.1)

Note that we use the identical involution x∗ = x, we also present another definition of e.c.f.

A continuous bounded function ϕ(r) (r ∈ Q) is called e.c.f. if the inequality

n∑
i,j=1

λiλj

(
Rrjϕ

)(
rj
) ≥ 0 (2.2)

holds for all r1, . . . , rn ∈ Q and λ1, . . . , λn ∈ �, (n ∈ �).
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Theorem 2.2. If the generalized translation operators Rt extended to L∞ : Cb(G) → Cb(G × G).
Then the defination (2.1) and (2.2) are equivalent for the functions ϕ(r) ∈ Cb(Q).

Proof.

∫
ϕ(t)(x ∗ x)(t)dt =

∫ ∫
(Ltx)(s)ϕ(t)x(s)ds dt

=
∫ ∫

(Lsx)(t)ϕ(t)x(s)ds dt

=
∫ (

x, Ls∗ϕ
)
2x(s)ds

=
∫ ∫

x(t)
(
Ls∗ϕ

)
(t)x(s)ds

=
∫ ∫(

Lsϕ
)
(t)x(t)x(s)ds dt

=
∫ ∫(

Rtϕ
)
(s)x(s)x(t)ds dt ≥ 0.

(2.3)

It follows that (Rtϕ)(s) ∈ Cb(Q ×Q), then the last inequality clearly implies (2.2).
Let us prove the converse assertion.
Let Qn be an increasing sequence of compact sets covering the entire Q, that is, Q1 ⊆

Q2 ⊆ · · · ⊆ Qn and Q =
⋃n

i=1 Qi.
We consider a function h(r) ∈ C0(Q) and set λi = h(ri) in (2.2).
This yields

n∑
i,j=1

(
Rriϕ

)(
rj
)
h(ri)h

(
rj
) ≥ 0. (2.4)

By integrating this inequality with respect to each r1, . . . , rn over the set Qk (k ∈ �) and
collecting similar terms, we conclude that

nm(Qk)
∫
Qk

(
Rrϕ

)
(r)h2(r)dr + n(n − 1)

∫∫
Qk

(
Rrϕ

)
(s)h(r)h(s)dr ds ≥ 0. (2.5)

Further, we divide this inequality by n2 and pass to the limit as n → ∞. We get

∫∫
Qk

(
Rrϕ

)
(s)h(r)h(s) dr ds ≥ 0, (2.6)

for each k ∈ �. By passing to the limit as k → ∞ and applying Lebesgue theorem, we see
that (2.1) holds for all functions from C0(Q). Approximating an arbitrary function from L1 by
finite continuous functions, we arrive at (2.1).

By E · C(Q), we shall denote the set of all bounded or continuous e.c.f.
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The next theorem is an analog of the Bochner theorem for h.c.s.

Theorem 2.3. Every function ϕ ∈ E ·C(Q) admits a unique representation in the form of an integral

ϕ(r) =
∫
Xh

x(r)dμ(x), (r ∈ Q), (2.7)

where μ is a nonnegative finite regular measure on the spaceXh. Conversely, each function of the form
(2.7) belongs to E · C(Q).

Proof. The proof is similar to that given for Theorem 3.1 of [20], so we omit it.

Corollary 2.4. If the product of any two Hermitian characters is e.c., then the product of any two
continuous e.c.f. is also e.c.

Proof. It follows directly from Theorem 2.3.

Corollary 2.5. Assume that L1(Q,m) is a commutative h.c.s. with basis unity. Then a continuous
bounded function ϕ(r) is e.c. in the sense of (2.1) if and only if it is e.c. in the sense of (2.2). Moreover,
it has the following properties:

(i) ϕ(e) ≥ 0;

(ii) ϕ(r) = ϕ(r);

(iii) |ϕ(r)| ≤ ϕ(e);

(iv) |(Rsϕ)(t)|2 ≤ (Rsϕ)(s)(Rtϕ)(t);

(v) |ϕ(s) − ϕ(t)|2 ≤ 2ϕ(e)[ϕ(e) − (Rsϕ)(t)].

Proof. Let ϕ(r) ∈ Cb(Q) is e.c.f. in the sense of (2.1) and let r1, . . . , rn ∈ Q and λ1, . . . , λn ∈
�. Relation (2.7) and the fact that the generalized translation operators are continuous in
L∞(Q,m) imply that

n∑
i,j=1

λiλj

(
Rriϕ

)(
rj
)
=

n∑
i,j=1

λiλj

∫
Xh

(Rrix)
(
rj
)
dμ(x)

=
∫
Xh

n∑
i,j=1

λiλjx(ri)x
(
rj
)
dμ(x)

=
∫
Xh

(
n∑

k=1

λkx(rk)

)2

dμ(x) ≥ 0.

(2.8)

It is also follows from relation (2.7) that

(i) and (ii) are trivial.

(iii)

∣∣ϕ(r)∣∣ ≤
∫
Xh

|x(r)|dμ(x) ≤ μ(X) = ϕ(e). (2.9)
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(iv)

∣∣(Rsϕ
)
(t)

∣∣2 =
∣∣∣∣∣
∫
Xh

x(s)x(t)dμ(x)

∣∣∣∣∣
2

≤
∫
Xh

|x(s)|2dμ(x)
∫
Xh

|x(t)|2dμ(x)

=
∫
Xh

x(s)x(s∗)dμ(x)
∫
Xh

x(t)x(t∗)dμ(x)

=
(
Rsϕ

)
(s)

(
Rtϕ

)
(t).

(2.10)

Finally,

(v)

∣∣ϕ(s) − ϕ(t)
∣∣2 ≤

∣∣∣∣∣
∫
Xh

(x(s) − x(t))dμ(x)

∣∣∣∣∣
2

≤ ϕ(e)
∫
Xh

(
|x(s)|2 + |x(t)|2 − 2x(s)x(t)

)
dμ(x)

≤ 2ϕ(e)
∫
Xh

(1 − Rsx)(t)dμ(x) = 2ϕ(e)
[
ϕ(e) − (

Rsϕ
)
(t)

]
.

(2.11)

3. Exponentially Convex Functions and Kernals

Inequality (2.2) means that the kernel K(t, s) = (Rtϕ)(s) is positive definite function.
Therefore, this kernel possesses the following properties:

K(t, t) ≥ 0, K(t, s) = K(s, t),

|K(t, s)|2 ≤ K(t, t)K(s, s),

|K(t, r) −K(s, r)|2 ≤ K(r, r)(K(t, t) − 2ReK(t, s) +K(s, s)).

(3.1)

Now, we can use the properties of the kernel to prove the properties of the e.c.f.
Indeed,

ϕ(r) =
(
Reϕ

)
(r) = K(e, r) = K(r, e) = ϕ(r). (3.2)

Similarly, (Rrϕ)(s) = (Rsϕ)(r). This implies that

∣∣(Rtϕ
)
(s)

∣∣2 ≤ (
Rtϕ

)
(t)

(
Rsϕ

)
(s), (3.3)

that is, (iv).
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By setting s = e in (iv), we obtain

∣∣(Rtϕ
)
(e)

∣∣2 ≤ (
Rtϕ

)
(t)

(
Reϕ

)
(e),

∣∣(Iϕ)(t)∣∣2 ≤ (
Rtϕ

)
(t)ϕ(e),

∣∣ϕ(t)∣∣2 ≤ ϕ(e)
(
Rtϕ

)
(t).

(3.4)

In view of the relation |(Lpf)(q)| ≤ ‖f‖∞ (f ∈ Cb(Q)), we have

(
Rrϕ

)
(r) ≤ ∥∥ϕ∥∥∞. (3.5)

Consequently,

∣∣ϕ(r)∣∣2 ≤ ϕ(e), (3.6)

which implies (iii) and, hence, (i). Finally, (v) follows from the last inequality for K(t, s),
where r = e.

∣∣ϕ(s) − ϕ(t)
∣∣2 ≤ ∣∣(Rtϕ

)
(e) − (

Rsϕ
)
(e)

∣∣2
≤ (

Reϕ
)
(e)

[(
Rtϕ

)
(t) − 2Re

(
Rtϕ

)
(s) +

(
Rsϕ

)
(s)

]
= ϕ(e)

[(
Rtϕ

)
(t) − 2

(
Rtϕ

)
(s) +

(
Rsϕ

)
(s)

]
≤ 2ϕ(e)

[
ϕ(e) − (

Rsϕ
)
(t)

]
.

(3.7)

4. Exponentially Convex Functions and Representations of
Hypercomplex Systems

In this section, we will give the relation between the h.c.s. and e.c.f.
Let L1(Q,m) be a normal h.c.s. with basis unity e. The family of bounded operators

U = (Up)p∈Q in a separable Hilbert spaceH is called a representation of an h.c.s. if

(1) Ue = 1,

(2) U∗
p = Up∗ (p ∈ Q),

(3) for each ζ ∈ H, the vector Q � p �→ Upζ ∈ H is weakly continuous,

(4) for all A,B ∈ B0(Q)

∫
c(A,B, r)Urdr =

∫
A

Updp

∫
B

Uqdq. (4.1)

Condition (4.1) implies that the function Q � p �→ ‖ Up‖ is locally bounded.

Example 4.1. The family of generalized translation operators Lp (p ∈ Q) defines a
representation of the h.c.s. L1(Q,m) in Helbert space L2(Q,m).
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Let Q � p �→ Up be a representation of the h.c.s. L1(Q,m). Below, we consider
representation that satisfy conditions (1.5)–(2.2) and the following additional condition:

(5) the function Q � p �→ ‖ Up‖ is bounded.

Such representation are called bounded.
Let L1(Q,m) � x �→ Ux be a representation of the Banach algebra L1(Q,m) in a

separable Hilbert spaceH.
Two representation of an h.c.s. L1(Q,m) are unitarity equivalent if and only if the

corresponding representations of the algebra L1(Q,m) are equivalent h.c.s.
We recall that a representation of the Banach algebra L1(Q,m) inH is said to be cyclic

if there exists a vector ζ ∈ H, cyclic vector, such that the linear subspace {Uxζ : x ∈ L1(Q,m)}
is dense inH.

Corollary 4.2. For any bounded representation Ur of a normal h.c.s. with basis unity that satisfies
the condition of separate continuity the following relation holds:

Rs

(
Urζ, η

)
H =

(
UrUsζ, η

)
H,

Ls

(
Urζ, η

)
H =

(
UsUrζ, η

)
H,

(
r, s ∈ Q; ζ, η ∈ H)

.
(4.2)

For the proof (see [20]).

Theorem 4.3. Let L1(Q,m) be a normal h.c.s. with basis unity satisfying the condition of separate
continuity. Then there is a bijection between the collection of continuous bounded function on Q e.c.
in the sense of (2.1) and the set of classes of unitarily equivalent bounded cyclic representation on the
h.c.s. L1(Q,m). This bijection is given by the relation

ϕ(r) = (Urζ0, ζ0)H, (r ∈ Q), (4.3)

where Q ∈ E · C(Q) and Ur is the corresponding representation of the h.c.s. L1(Q,m) in a Hilbert
spaceH with cyclic vector ζ0.

Proof. If Ur is a bounded representation of the h.c.s. L1(Q,m) with cyclic vector ζ0. Then the
function ϕ(r) = (Urζ0, ζ0)H is e.c.f. in the sense of (2.1). Indeed, Let x ∈ L1(Q,m). Then

∫
ϕ(r)(x ∗ x)(r)dr =

(∫
(x ∗ x)(r) Urdrζ0, ζ0

)
H

= (Ux∗xζ0, ζ0)H

= ‖ Uxζ0‖22 ≥ 0.

(4.4)

Corollary 4.4. For a normal h.c.s. with basis unity that satisfies the condition of separate continuity,
the concepts of e.c. in the sense of (2.1) and (2.2) are equivalent.
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Proof. It suffices to show that if ϕ(r) is e.c. in the sense of (2.1), then relation (2.2) holds for
any λ1, . . . , λn ∈ � and r1, . . . , rn ∈ Q. Indeed, by virtue of (4.2) and (4.3), we have

n∑
i,j=1

λiλj

(
Rriϕ

)(
rj
)
=

n∑
i,j

λiλjRri

(
Urj ζ0, ζ0

)
H

=
n∑

i,j=1

λiλj

(
UrjUri ζ0, ζ0

)
H

=
∥∥∥∑λiUriζ0

∥∥∥2

H
≥ 0.

(4.5)
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