
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 408132, 12 pages
doi:10.1155/2011/408132

Research Article
New Exact Solutions for an Oldroyd-B Fluid in
a Porous Medium

I. Khan,1 M. Imran,1 and K. Fakhar1, 2

1 Department of Mathematics, Faculty of Science, Technological University of Malaysia (UTM),
81310 Skudai, Malaysia

2 Ibnu Sina Institute for Fundamental Science Studies, Technological University of Malaysia (UTM),
81310 Skudai, Malaysia

Correspondence should be addressed to K. Fakhar, kamranfakhar@yahoo.com

Received 9 December 2010; Revised 21 March 2011; Accepted 13 April 2011

Academic Editor: Ricardo Estrada

Copyright q 2011 I. Khan et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

New exact solutions for unsteady magnetohydrodynamic (MHD) flows of an Oldroyd-B fluid
have been derived. The Oldroyd-B fluid saturates the porous space. Two different flow cases have
been considered. The analytical expressions for velocity and shear stress fields have been obtained
by using Laplace transform technique. The corresponding solutions for hydrodynamic Oldroyd-
B fluid in a nonporous space appeared as the limiting cases of the obtained solutions. Similar
solutions for MHD Newtonian fluid passing through a porous space are also recovered. Graphs
are sketched for the pertinent parameters. It is found that the MHD and porosity parameters have
strong influence on velocity and shear stress fields.

1. Introduction

The behavior of viscoelastic materials in particularly the response of many polymeric liquids
are best described by Oldroyd-B fluid model [1]. Further, these, fluids are also quite useful
in chemical and process industry due to the fact that they encounter both the memory and
elastic effects exhibited by most polymers and biological liquids. In early 1970, Waters and
King [2, 3] have obtained first time the exact solutions to these fluids using Laplace transform
technique. Later, several authors [4–20] have discussed the different motions of Oldroyd-B
fluids in different geometries using various approaches for the solution.

Recently, the concept of studing the fluid flows through porous medium has gained
much attention largely due to their several technological and industrial applications such
as geothermal energy extrusion, oil recovery, food processing, ground water flow, irrigation
problems, and the biophysical sciences where the human lungs, for example, are modeled as
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a porous layer. The literature survey revealed that very few attempts are available in which
the flows of electrically conducting Oldroyd-B fluid through a porous medium are studied
[21–26]. Therefore, the basic objective of the present paper is to study the motion of Oldroyd-
B fluid taking into account both magnetic and porosity effects.

To the best of authors knowledge so far no study has been reported in which the MHD
flow of an Oldroyd-B fluid passing through a porous medium has been considered for the
following two cases: (i) flow due to impulsive motion of the plate and (ii) flow due to uniform
motion of the plate. Therefore the main objective of this paper is to make such an attempt.
The rest of the paper is arranged as follows. The mathematical formulation of the problem is
given in Section 2. Section 3 comprises the solution of the problem. The graphical results are
displayed and discussed in the last section.

2. Problem Formulation

For the MHD flow through a porous medium, the continuity and momentum equations are
given by (Tan and Masuoka [22])

divV = 0, (2.1)

ρ

(
dV
dt

)
= divT + J × B − μφ

k

(
1 + λr

∂

∂t

)
V, (2.2)

where V = (u, v,w) denotes the velocity vector, ρ is the fluid density, J is the current density,
B is the total magnetic field,T is the Cauchy stress tensor, d/dt is the material time derivative,
φ (0 < φ < 1) is the porosity, and k > 0 is the permeability of the porous medium.

The Cauchy stress tensor T for an incompressible Oldroyd-B fluid is given by [1]

T = −pI + S, (2.3)

in which the extra stress tensor S satisfies

S + λ

[
∂S
∂t

+ (V · ∇)S − LS − SLT

]
= μ

[
A1 + λr

(
∂A1

∂t
+ (V · ∇)A1 − LA1 −A1LT

)]
, (2.4)

where −pI is the spherical part of the stress due to the constraint of incompressibility, μ is the
dynamic viscosity, L is the velocity gradient, A1 = L + LT is the first Rivlin-Ericksen tensor,
and λ and λr(< λ) are, respectively, the relaxation and retardation times.

The second term on the right side of (2.2) is called the Lorentz force and can be written
as

J × B =
(
−σB2

0u, 0, 0
)
, (2.5)

in which B0 is the magnitude of a uniform magnetic field B0 applied in a direction normal to
the fluid motion and σ is the electrical conductivity of the fluid.
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By taking the velocity field of the form

V =
(
u
(
y, t
)
, 0, 0

)
, (2.6)

the continuity equation is automatically satisfied and the momentum equation in the absence
of external pressure gradient, together with (2.3)–(2.5) having in mind the initial condition

S
(
y, 0
)
= 0, (2.7)

finally gives

ρ

(
1 + λ

∂

∂t

)
∂u
(
y, t
)

∂t
=
(
1 + λ

∂

∂t

)
∂T
(
y, t
)

∂t
−
(
1 + λ

∂

∂t

)
σB2

0u − μφ

k

(
1 + λr

∂

∂t

)
u

+
(
1 + λ

∂

∂t

)
T
(
y, t
)

= μ

(
1 + λr

∂

∂t

)
∂u
(
y, t
)

∂t
,

(2.8)

where T(y, t) = Sxy(y, t) is the tangential stress.

3. Solution of the Problem

3.1. Flow due to Impulsive Motion of the Plate

Consider the unsteady flow of an incompressible Oldroyd-B fluid occupying the upper
porous half-space of (x, y) plane. The fluid is bounded by a rigid plate at y = 0 such that
the positive Y -axis is taken normal to the plate and X-axis is taken parallel to the plate. The
Oldroyd-B fluid is assumed to be electrically conducting under the influence of a uniform
magnetic field B0 applied in a direction normal to the flow. Initially, both the fluid and the
plate are at rest. At time t = 0+, the plate is suddenly jerked and the motion in the fluid is
induced in the direction parallel to X-axis. Under these assumptions the flow is governed by
(2.8) along with the following initial and boundary conditions:

u
(
y, 0
)
= 0, T

(
y, 0
)
= 0, y > 0, (3.1)

u(0, t) = U0, t > 0. (3.2)

Furthermore, the natural conditions

u
(
y, t
)
, T
(
y, t
) −→ 0, as y −→ ∞, (3.3)

have to be also satisfied.
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Using the following dimensionless variables [26]:

τ =
t

λ
, ξ =

y

cλ
, U =

u

U0
, S =

T

ρcU0
, (3.4)

the governing (2.8) take the following form

∂U

∂τ
=

∂S

∂ξ
−M2U − 1

K

(
1 + α

∂

∂τ

)
U,

(
1 +

∂

∂τ

)
S =
(
1 + α

∂

∂τ

)
∂U

∂ξ
.

(3.5)

The corresponding initial and boundary conditions are

U(ξ, 0) = 0, S(ξ, 0) = 0, (3.6)

U(0, τ) = 1, τ > 0, (3.7)

U(ξ, τ), S(ξ, τ) −→ 0, as ξ −→ ∞, (3.8)

where

M2 =
σB2

0λ

ρ
,

1
K

=
μφλ

ρk
, α =

λr

λ
, c =

√
μ

ρλ
. (3.9)

Applying Laplace transform to (3.5), using the initial conditions (3.6), we attain the following
system in the transformed q-plane:

∂S
(
ξ, q
)

∂ξ
=
(
M2 +

1
K

)
U
(
ξ, q
)
+
( α
K

+ 1
)
qU
(
ξ, q
)
,

(
1 + q

)
S
(
ξ, q
)
=
(
1 + αq

)∂U(ξ, q)
∂ξ

,

(3.10)

where

U
(
0, q
)
=

1
q
; U

(
ξ, q
)
, S
(
ξ, q
) −→ 0, as ξ −→ 0. (3.11)

Eliminating S(ξ, q) between (3.10) and solving the resulting equation for U(ξ, q) using
conditions (3.11), we get

U
(
ξ, q
)
=

1
q
exp

⎛
⎝−ξ

√
a3√
α

√
q2 + a4q + a5

q + α0

⎞
⎠, (3.12)
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or

U
(
ξ, q
)
=

1
q
exp

⎛
⎜⎝−

ξ
√
a3
√
w
(
q
)

√
α

⎞
⎟⎠ where w

(
q
)
=
q2 + a4q + a5

q + α0
. (3.13)

From (3.10), it is easy to write

S
(
ξ, q
)
= −√a3α

q2 + a4q + a5

q2 + q

exp
(
−
(
ξ
√
a3/

√
α
)√(

q2 + a4q + a5
)
/
(
q + α0

))
√(

q2 + a4q + a5
)
/
(
q + α0

) (3.14)

or equivalently

S
(
ξ, q
)
= −√a3α

q2 + a4q + a5

q2 + q

exp
(
−
(
ξ
√
a3/

√
α
)√

w
(
q
))

√
w
(
q
) . (3.15)

Now in order to determineU(ξ, τ) = L−1{U(ξ, q)}, we are writing (3.13) as follows:

U
(
ξ, q
)
= u1

(
q
)
u2
(
ξ, q
)
, (3.16)

where

u1
(
q
)
=

1
q
, u2

(
ξ, q
)
= exp

(
−ξ

√
a3√
α

√
w
(
q
))

. (3.17)

If we denote u1(τ) = L−1{u1(q)} and u2(ξ, τ) = L−1{u2(ξ, q)}, then it is easy to write

u1(τ) = 1, (3.18)

u2(ξ, τ) =
ξ
√
a3

2
√
απ

∫∞

0

δ(τ − u)
u
√
u

exp

(
−ξ

2a3

4αu
− a6u

)
du

− ξ
√
a3a7

2
√
απ

∫τ

0

∫∞

0

δ(τ − s − u)
u
√
s

exp

(
−ξ

2a3

4αu
− α0s − a6u

)

× J1
(
2
√
a7us

)
du ds.

(3.19)

Using the convolution formula

U(ξ, τ) =
∫ τ

0
u1(τ − s)u2(ξ, s)ds. (3.20)
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Equations (3.18) and (3.19) give

U(ξ, τ) =
ξ
√
a3

2
√
απ

∫ τ

0

1
s
√
s
exp

(
−a3ξ2

4αs
− a6s

)
ds

− ξ
√
a3a7

2
√
απ

∫ τ

0

∫w

0

1
(s −w)

√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w)

)

× J1

(
2
√
a7(s −w)w

)
dw ds.

(3.21)

Similarly the Laplace inverse of (3.15) is derived as

S(ξ, τ) = −
√
a3α√
πτ

exp

(
−a3ξ2

4ατ
− a6τ

)

+
√
a3a7α√
π

∫ τ

0

1√
s
exp

(
− a3ξ2

4α(τ − s)
− α0s − a6(τ − s)

)

× J1

(
2
√
a7s(τ − s)

)
ds − a5

√
a3α√
π

∫ τ

0

1√
s
exp

(
−a3ξ2

4αs
− a6s

)
ds

+
a5
√
a7a3α√
π

∫ τ

0

∫w

0

1√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w)

)

× J1

(
2
√
a7w(s −w)

)
dw ds − a9

√
a3α√
π

∫ τ

0

1√
s
exp

(
−a3ξ2

4αs
− a6s − (τ − s)

)
ds

+
a9
√
a7a3α√
π

∫ τ

0

∫w

0

1√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w) − (τ − s)

)

× J1

(
2
√
a7w(s −w)

)
dw ds,

(3.22)

where

a1 = M2 +
1
K
, a2 = M2 + 1 +

1
K

+
α

K
, a3 =

α

K
+ 1,

a4 =
a2

a3
, a5 =

a1

a3
, a6 = a4 − α0, a7 = a5 − α0(a4 − α0),

a8 = a4 − 1, a9 = a8 − a5.

(3.23)
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3.2. Flow due to Uniform Motion of the Plate

Here we consider the flow situation in which motion in the fluid is induced by the uniform
acceleration of the plate in x-direction. The governing equations, initial conditions, and a part
of boundary conditions are same. The only boundary condition (3.2) is replaced by

u(0, t) = At. (3.24)

Using a similar method of solution as in previous section, the derived expressions for velocity,
and shear stress fields are given as follows:

U(ξ, τ) =
ξ
√
a3

2
√
απ

∫ τ

0

(τ − s)
s
√
s

exp

(
−a3ξ2

4αs
− a6s

)
ds

− ξ
√
a3a7

2
√
απ

∫ τ

0

∫w

0

(τ − s)
(s −w)

√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w)

)

× J1

(
2
√
a7(s −w)w

)
dw ds,

S(ξ, τ) = −a11
√
a3α√
π

∫τ

0

1√
s
exp

(
−a3ξ2

4αs
− a6s

)
ds

+
a11

√
a3a7α√
π

∫ τ

0

∫w

0

1√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w)

)

× J1

(
2
√
a7w(s −w)

)
dw ds − a5

√
a3α√
π

∫ τ

0

(τ − s)√
s

exp

(
−a3ξ2

4αs
− a6s

)
ds

+
a5
√
a7a3α√
π

∫ τ

0

∫w

0

(τ − s)√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w)

)

× J1

(
2
√
a7w(s −w)

)
dw ds − a10

√
a3α√
π

∫ τ

0

1√
s
exp

(
−a3ξ2

4αs
− a6s − (τ − s)

)
ds

+
a10

√
a7a3α√
π

∫ τ

0

∫w

0

1√
w

exp

(
− a3ξ2

4α(s −w)
− α0w − a6(s −w) − (τ − s)

)

× J1

(
2
√
a7w(s −w)

)
dw ds,

(3.25)

where U = u/λA, S = T/ρcλA, a10 = a5 + 1 − a4 and a11 = a4 − a5.
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4. Limiting Cases

In this section we want to reduce the solutions obtained in the previous section to their
limiting cases.

(1) The solutions (3.21) and (3.22) (impulsive motion of the plate), and (3.25) (uniform
motion of the plate) for hydrodynamic Oldroyd-B fluid (M = 0) in a nonporous space (1/K =
0) reduce to the following equations:

U(ξ, τ) =
ξ

2
√
απ

∫ τ

0

1
s
√
s
exp

(
− ξ2

4αs
− (1 − α0)s

)
ds

− ξ
√
α0(α0 − 1)
2
√
απ

∫ τ

0

∫w

0

1
(s −w)

√
w

exp

(
− ξ2

4α(s −w)
− α0w − (1 − α0)(s −w)

)

× J1

(
2
√
α0(α0 − 1)(s −w)w

)
dw ds,

(4.1)

S(ξ, τ) = −
√
α√
πτ

exp

(
− ξ2

4ατ
− (1 − α0)τ

)

+

√
α0(α0 − 1)α√

π

∫ τ

0

1√
s
exp

(
− ξ2

4α(τ − s)
− α0s − (1 − α0)(τ − s)

)

× J1

(
2
√
α0(α − 1)s(τ − s)

)
ds,

(4.2)

U(ξ, τ) =
ξ

2
√
απ

∫ τ

0

(τ − s)
s
√
s

exp

(
− ξ2

4αs
− (1 − α0)s

)
ds

− ξ
√
α0(α0 − 1)
2
√
απ

∫ τ

0

∫w

0

(τ − s)
(s −w)

√
w

exp

(
− ξ2

4α(s −w)
− α0w − (1 − α0)(s −w)

)

× J1

(
2
√
α0(α0 − 1)(s −w)w

)
dw ds,

(4.3)

S(ξ, τ) = −
√
α√
π

∫ τ

0

1√
s
exp

(
− ξ2

4αs
− (1 − α0)s

)
ds +

√
α0(α0 − 1)α√

π

×
∫ τ

0

∫w

0

1√
w

exp

(
− ξ2

4α(s −w)
− α0w − (1 − α0)(s −w)

)

× J1

(
2
√
α0(α0 − 1)w(s −w)

)
dw ds.

(4.4)
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Here we can see that (4.1) and (4.2) are identical to (3.20) and (3.19) from [14]. The
criteria for getting (4.1) and (4.2) is different than one used in [14]. This is due to the fact that
the inclusion of last term due to the porosity effect in the equation of motion makes it difficult
to use the procedure followed in [14]. However, in the present situation we make it able to
find the solutions (4.1) and (4.2) in a very easy and interesting way.

(2) Making the limit as α → 1 (λr → λ) into (3.21), (3.22), and (3.25), we get the
similar solutions for aNewtonian fluid performing the samemotion. Thus the solutions (3.21)
and (3.22) corresponding to the flow due to impulsive motion of the plate are given by

U(ξ, τ) =
ξ
√
K + 1

2
√
Kπ

∫ τ

0

1
s
√
s
exp

(
−(K + 1)ξ2

4Ks
−
(
M2 +

1
K

)
s

)
ds,

S(ξ, τ) = −
√
K + 1√
Kπτ

exp

(
−(K + 1)ξ2

4Kτ
−
(
M2 +

1
K

)
τ

)

−
(
KM2 + 1

)
√
(K + 1)Kπ

∫ τ

0

1√
s
exp

(
−(K + 1)ξ2

4Ks
−
(
M2 +

1
K

)
s

)
ds

(4.5)

and the solutions (3.25) due to uniform motion of the plate reduce to

U(ξ, τ) =
ξ
√
K + 1

2
√
πK

∫ τ

0

(τ − s)
s
√
s

exp

(
−ξ

2(K + 1)
4Ks

−
(
M2 +

1
K

)
s

)
ds,

S(ξ, τ) = −
√
K + 1√
Kπ

∫ τ

0

1√
s
exp

(
−(K + 1)ξ2

4Ks
−
(
M2 +

1
K

)
s

)
ds

− M2K + 1√
(K + 1)Kπ

∫ τ

0

(τ − s)√
s

exp

(
−(K + 1)ξ2

4Ks
−
(
M2 +

1
K

)
s

)
ds.

(4.6)

It is important to note that if we take M = 1/K = 0 into (4.5) and make some suitable
change of variables, we get the similar solutions as given in [14] ([see (4.2) and (4.3)]).

5. Results and Discussion

This section includes the graphical illustrations of various results from the flow analyzed
in this paper. The results have been interpreted for various values of permeability parameter
K andMHDparameterM. Special attention has been focused on the permeability parameter
K. It is found that the flow analysis strongly depends on these parameters. The graphical
results are displayed for velocity and shear stress fields for two different flow cases, namely
(i) flow due to impulsive motion of the plate and (ii) flow due to uniformmotion of the plate.
In all these figures the relaxation parameter λ, the retardationparameter λr and dimensionless
time τ are, respectively, chosen as 1.0, 2.0 and 0.4. Further, in these Figures 1–4 panels (a) and
(b) are displayed for velocity and shear stress fields, respectively.

Figures 1 and 2 are prepared for velocity and shear stress fields for flow induced by
the impulsive motion of the plate for various values of permeability parameter K magnetic
parameter M. It is noted from Figure 1 that velocity and boundary layer thickness increases
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Figure 1: Profiles of (a) velocity and (b) shear stress for different values of K (impulsive motion of the
plate).
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Figure 2: Profiles of (a) velocity and (b) shear stress for different values of M (impulsive motion of the
plate).
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Figure 3: Profiles of (a) velocity and (b) shear stress for different values ofK (uniformmotion of the plate).
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Figure 4: Profiles of (a) velocity and (b) shear stress for different values of M (uniform motion of the
plate).

with increasing values of K. It may also be expected due to the fact that increasing values of
K reduces the friction forces which assists the fluid considerably to move fast. Further as it
was expected that the strongest shear stress occurs near the boundary and decreases rapidly
with increasing distance from the plate. Figure 2 is sketched in order to explore the variations
of magnetic parameter M. It is observed that the velocity and boundary layer thickness
decreases upon increasing the values of M. It is because of the fact that the application of
transverse magnetic field will result in a resistive type force (called Lorentz force) similar to
drag force and upon increasing the values of M increases the drag force which leads to the
deceleration of the flow. However, the magnitude of the shear stress increaseswith increasing
values of M. The magnitude of the shear stress in the close regime of the boundary is larger
as compared to the region away from the boundary.

Figures 3 and 4 have been sketched for the situation when the flow is driven by the
uniform motion of the plate. It is observed that the variations of velocity and shear stress
fields in these figures are qualitatively similar to the figures in case of impulsive motion of
the plate. However, when analyzed carefully, it is found that these observations are not the
same quantitatively.
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