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We introduce a concept of weak Bregman relatively nonexpansive mapping which is distinct from
Bregman relatively nonexpansive mapping. By using projection techniques, we construct several
modification of Mann type iterative algorithms with errors and Halpern-type iterative algorithms
with errors to find fixed points of weak Bregman relatively nonexpansive mappings and Bregman
relatively nonexpansive mappings in Banach spaces. The strong convergence theorems for weak
Bregman relatively nonexpansive mappings and Bregman relatively nonexpansive mappings are
derived under some suitable assumptions. The main results in this paper develop, extend, and
improve the corresponding results of Matsushita and Takahashi (2005) and Qin and Su (2007).

1. Introduction

Throughout this paper, without other specifications, we denote by R the set of real numbers.
Let E be a real reflexive Banach space with the dual space E∗. The norm and the dual pair
between E∗ and E are denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let f : E → R∪{+∞} be proper
convex and lower semicontinuous. The Fenchel conjugate of f is the function f∗ : E∗ →
(−∞,+∞] defined by

f∗(ξ) = sup
{〈ξ, x〉 − f(x) : x ∈ E

}
. (1.1)

We denote by dom f the domain of f , that is, dom f = {x ∈ E : f(x) < +∞}. Let C be
a nonempty closed and convex subset of E and T : C → C a nonlinear mapping. Denote
by F(T) = {x ∈ C : Tx = x}, the set of fixed points of T . T is said to be nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
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In 1967, Brègman [1] discovered an elegant and effective technique for the using of
the so-called Bregman distance function Df (see, Section 2, Definition 2.1) in the process
of designing and analyzing feasibility and optimization algorithms. This opened a growing
area of research in which Bregman’s technique is applied in various ways in order to design
and analyze iterative algorithms for solving not only feasibility and optimization problems,
but also algorithms for solving variational inequalities, for approximating equilibria, for
computing fixed points of nonlinear mappings, and so on (see, e.g., [1–25], and the references
therein).

Nakajo and Takahashi [26] introduced the following modification of the Mann
iteration method for a nonexpansive mapping T : C → C in a Hilbert space H as follows:

x0 ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥ ≤ ‖z − xn‖
}
,

Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},

xn+1 = PCn∩Qn
x0, ∀n ≥ 0,

(1.2)

where {αn} ⊂ [0, 1] and PC is the metric projection from H onto a closed and convex subset
C of H. They proved that {xn} generated by (1.2) converges strongly to a fixed point of T
under some suitable assumptions. Motivated by Nakajo and Takahashi [26], Matsushita and
Takahashi [27] introduced the following modification of the Mann iteration method for a
relatively nonexpansive mapping T : C → C in a Banach space E as follows:

x0 ∈ C,

yn = J−1(αnJ(xn) + (1 − αn)J(Txn)),

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈J(xn) − J(x0), xn − z〉 ≤ 0},

xn+1 = ΠCn∩Qn
x0, ∀n ≥ 0,

(1.3)

where {αn} ⊂ [0, 1], φ(y, x) = ‖y‖2−2〈y, J(x)〉+‖x‖2 for all x, y ∈ E, J is the duality mapping
of E andΠC is the generalized projection (see, e.g., [2, 3, 28]) from E onto a closed and convex
subset C of E. They also proved that {xn} generated by (1.3) converges strongly to a fixed
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point of T under some suitable assumptions. Martinez-Yanes and Xu [29] gave a Halpern-
type iterative algorithm for a nonexpansive mapping T : C → C as follows:

x0 ∈ C,

yn = βnx0 +
(
1 − βn

)
Txn,

Cn =
{
z ∈ C :

∥
∥z − yn

∥
∥2 ≤ ‖z − xn‖2 + βn

(
‖x0‖2 + 2〈xn − x0, z〉

)}
,

Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0},

xn+1 = PCn∩Qn
x0, ∀n ≥ 0,

(1.4)

where {βn} ⊂ [0, 1]. They derived that {xn} generated by (1.3) converges strongly to a fixed
point of T under some suitable assumptions. Qin and Su [30] generalized the results of
Martinez-Yanes and Xu [29] to a uniformly convex and uniformly smooth Banach space for
a relatively nonexpansive mapping and proposed the following iterative algorithm:

x0 ∈ C,

yn = J−1
(
βnJ(x0) +

(
1 − βn

)
J(Txn)

)
,

Cn =
{
z ∈ C : φ

(
z, yn

) ≤ βnφ(z, x0) +
(
1 − βn

)
φ(z, xn)

}
,

Qn = {z ∈ C : 〈J(xn) − J(x0), xn − z〉 ≤ 0},

xn+1 = ΠCn∩Qn
x0, ∀n ≥ 0,

(1.5)

where {βn} ⊂ [0, 1], ΠC is the generalized projection (see, e.g., [2, 3, 28]) from E onto
a closed and convex subset C of E. They also obtained that {xn} generated by (1.5) converges
strongly to a fixed point of T under some suitable assumptions. In 2003, Butnariu et al. [13]
studied several notions of convex analysis: uniformly convexity at a point, total convexity
at a point, uniformly convexity on bounded sets, and sequential consistency, which are
useful in establishing convergence properties for fixed point and optimization algorithms
in infinite dimensional Banach spaces. They established connections between these concepts
and used these relations in order to obtain improved convergence results concerning the outer
Bregman projection algorithm for solving convex feasibility problems and the generalized
proximal point algorithm for optimization in Banach spaces. In 2006, Butnariu and Resmerita
[14] presented a Bregman-type iterative algorithms and studied the convergence of the
Bregman-type iterative method of solving operator equations. Resmerita [19] investigated
the existence of totally convex functions in Banach spaces and, further, established continuity
and stability properties of Bregman projections. Very recently, by using Bregman projection,
Reich and Sabach [21] presented the following algorithms for finding common zeroes of
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maximal monotone operators Ai : E → 2E
∗
(i = 1, 2, . . . ,N) in reflexive Banach space E as

follows:

x0 ∈ E,

yi
n = Resf

λin

(
xn + ein

)
,

Ci
n =
{
z ∈ E : Df

(
z, yi

n

)
≤ Df

(
z, xn + ein

)}
,

Cn =
N⋂

i=1

Ci
n,

Qn =
{
z ∈ E :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0,

(1.6)

x0 ∈ E,

ηi
n = ξin +

1
λin

(
∇f
(
yi
n

)
− ∇f(xn)

)
, ξin ∈ Aiy

i
n,

ωi
n = ∇f∗

(
λinη

i
n +∇f(xn)

)
,

Ci
n =
{
z ∈ E : Df

(
z, yi

n

)
≤ Df

(
z,ωi

n

)}
,

Cn =
N⋂

i=1

Ci
n,

Qn =
{
z ∈ E :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0.

(1.7)

Further, under some suitable conditions, they obtained two strong convergence theorems of
maximal monotone operators in reflexive Banach spaces. Reich and Sabach [22] studied the
convergence of two iterative algorithms for finitely many Bregman strongly nonexpansive
operators in Banach spaces and obtained two strong convergence theorems for finitely many
Bregman strongly nonexpansive operators under some assumptions. In [24], Reich and
Sabach proposed the following algorithms for finding common fixed points of finitely many
Bregman firmly nonexpansive operators Ti : C → C (i = 1, 2, . . . ,N) in reflexive Banach
space E as follows: if

⋂N
i=1 F(Ti)/= ∅

x0 ∈ E,

Qi
0 = E, i = 1, 2, . . . ,N,

yi
n = Ti

(
xn + ein

)
,
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Qi
n+1 =

{
z ∈ Qi

n :
〈
∇f
(
xn + ein

)
− ∇f

(
yi
n

)
, z − yi

n

〉
≤ 0
}
,

Qn =
N⋂

i=1

Qi
n,

xn+1 = projfQn+1
x0, ∀n ≥ 0.

(1.8)

Under some suitable conditions, they proved that the sequence {xn} generated by (1.8) con-
verges strongly to

⋂N
i=1 F(Ti) and applied it to the solution of convex feasibility and equilib-

rium problems.
Inspired andmotivated by the works, we introduce the concept of weak Bregman rela-

tively nonexpansive mappings in reflexive Banach space and give an example to illustrate the
existence of weak Bregman relatively nonexpansive mapping and the difference between
weak Bregman relatively nonexpansive mapping and Bregman relatively nonexpansive map-
ping. Secondly, by using the conception of the Bregman projection (see, e.g., [1, 13, 14]), we
construct several modification of Mann type iterative algorithms with errors and Halpern-
type iterative algorithms with errors to find fixed points of weak Bregman relatively non-
expansive mappings and Bregman relatively nonexpansive mappings in Banach spaces. The
strong convergence theorems for weak Bregman relatively nonexpansivemappings and Breg-
man relatively nonexpansive mappings are derived under some suitable assumptions. More-
over, the convergence rate of our algorithms is faster than that of Matsushita and Takahashi
[27] and Qin and Su [30]. The main results in this paper develop, extend, and improve the
corresponding results in the literature.

2. Preliminaries

Let C be a nonempty closed convex subset of a real reflexive Banach space E, and let T : C →
C be a nonlinear mapping. A point ω ∈ C is called an asymptotic fixed point of T (see, e.g.,
[2, 3]) if C contains a sequence {xn} which converges weakly to ω such that limn→∞‖Txn −
xn‖ = 0. A point ω ∈ C is called an strong asymptotic fixed point of T (see, e.g., [2, 3]) if C
contains a sequence {xn}which converges strongly to ω such that limn→∞‖Txn −xn‖ = 0. We
denote the sets of asymptotic fixed points and strong asymptotic fixed points of T by F̂(T)
and F̃(T), respectively. When {xn} is a sequence in E, we denote strong convergence of {xn}
to x ∈ E by xn → x. For any x ∈ int(dom f) and y ∈ E, the right-hand derivative of f at x in
the direction y defined by

f0(x, y
)
:= lim

t↘0

f
(
x + ty

) − f(x)
t

. (2.1)

f is called Gâteaux differentiable at x if, for all y ∈ E, limt↘0(f(x + ty) − f(x))/t exists. In
this case, f0(x, y) coincides with ∇f(x), the value of the gradient of f at x. f is called
Gâteaux differentiable if it is Gâteaux differentiable for any x ∈ int(dom f). f is called Fréchet
differentiable at x if this limit is attained uniformly for ‖y‖ = 1. We say f is uniformly Fréchet
differentiable on a subset C of E if the limit is attained uniformly for x ∈ C and ‖y‖ = 1.
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Legendre function f : E → (−∞,+∞] is defined in [7]. From [7], if E is a reflexive
Banach space, then f is Legendre if and only if it satisfies the following conditions (L1) and
(L2):

(L1) the interior of the domain of f , int(dom f), is nonempty, f is Gâteaux differentiable
on int(dom f), and dom f = int(dom f),

(L2) the interior of the domain of f∗, int(dom f∗), is nonempty, f∗ is Gâteaux differen-
tiable on int(dom f∗), and dom f∗ = int(dom f∗).

Since E is reflexive, we know that (∂f)−1 = ∂f∗ (see, e.g., [31]). This, by (L1) and (L2),
implies

∇f =
(∇f∗)−1, ran∇f = dom ∇f∗ = int

(
dom f∗),

ran∇f∗ = dom ∇f = int
(
dom f

)
.

(2.2)

By Theorem 5.4 [7], conditions (L1) and (L2) also yield that the functions f and f∗ are strictly
convex on the interior of their respective domains. From now on, we assume that the convex
function f : E → (−∞,+∞] is Legendre.

We first recall some definitions and lemmas which are needed in our main results.

Definition 2.1 (see [1, 13]). Let f : E → (−∞,+∞] be a Gâteaux differentiable and convex
function. The function Df : dom f × int(dom f) → [0,+∞), defined by

Df

(
y, x
)
:= f
(
y
) − f(x) − 〈∇f(x), y − x

〉
(2.3)

is called the Bregman distancewith respect to f .

Remark 2.2 (see [24]). The Bregman distance has the following properties:

(i) the three point identity, for any x ∈ dom f and y, z ∈ int(dom f),

Df

(
x, y
)
+Df

(
y, z
) −Df(x, z) =

〈∇f(z) − ∇f
(
y
)
, x − y

〉
, (2.4)

(ii) the four point identity, for any y,ω ∈ dom f and x, z ∈ int(dom f),

Df

(
y, x
) −Df

(
y, z
) −Df(ω, x) +Df(ω, z) =

〈∇f(z) − ∇f(x), y −ω
〉
. (2.5)

Definition 2.3 (see [1]). Let f : E → (−∞,+∞] be a Gâteaux differentiable and convex
function. The Bregman projection of x ∈ int(dom f) onto the nonempty closed and convex
set C ⊂ dom f is the necessarily unique vector projfC(x) ∈ C satisfying

Df

(
projfC(x), x

)
= inf

{
Df

(
y, x
)
: y ∈ C

}
. (2.6)
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Remark 2.4. (i) If E is a Hilbert space and f(y) = (1/2)‖x‖2 for all x ∈ E, then the Bregman
projection projfC(x) is reduced to the metric projection of x onto C.

(ii) If E is a smooth Banach space and f(y) = (1/2)‖x‖2 for all x ∈ E, then the Bregman
projection projfC(x) is reduced to the generalized projection ΠC(x) (see, e.g. [3]) which
defined by

φ(ΠC(x), x) = min
y∈C

φ
(
y, x
)
, (2.7)

where φ(y, x) = ‖y‖2 − 2〈y, J(x)〉 + ‖x‖2, J is the normalized duality mapping from E to 2E
∗
.

Definition 2.5 (see[12, 21]). Let C be a nonempty closed and convex set of dom f . The
operator T : C → int(dom f) with F(T)/= ∅ is called:

(i) quasi-Bregman nonexpansive if

Df(u, Tx) ≤ Df(u, x), ∀x ∈ C, u ∈ F(T); (2.8)

(ii) Bregman relatively nonexpansive if

Df(u, Tx) ≤ Df(u, x), ∀x ∈ C, u ∈ F(T), (2.9)

and F̂(T) = F(T),

(iii) Bregman firmly nonexpansive if

〈∇f(Tx) − ∇f
(
Ty
)
, Tx − Ty

〉 ≤ 〈∇f(x) − ∇f
(
y
)
, Tx − Ty

〉
, ∀x, y ∈ C, (2.10)

or equivalently

Df

(
Tx, Ty

)
+Df

(
Ty, Tx

)
+Df(Tx, x) +Df

(
Ty, y

)

≤ Df

(
Tx, y

)
+Df

(
Ty, x

)
, ∀x, y ∈ C.

(2.11)

Definition 2.6. Let C be a nonempty closed and convex set of dom f . The operator T : C →
int(dom f) with F(T)/= ∅ is called weak Bregman relatively nonexpansive if F̃(T) = F(T) and

Df(u, Tx) ≤ Df(u, x), ∀x ∈ C, u ∈ F(T). (2.12)

Remark 2.7. It is easy to see that each nonexpansive mapping T is quasi-Bregman non-
expansive mapping with respect to f(x) = (1/2)‖x‖2 for all x ∈ E. Moreover, every
relatively nonexpansive mapping T also is Bregman relatively nonexpansive mapping, where
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T is called relatively nonexpansive mapping (see, e.g., [32]) if the following conditions
are satisfied:

F̂(T) = F(T)/= ∅, φ(u, Tx) ≤ φ(u, x), ∀x ∈ C, u ∈ F(T). (2.13)

Now, we give an example which is weak Bregman relatively nonexpansive mapping
but not Bregman relatively nonexpansive mapping.

Example 2.8. Let E = l2, f(x) = (1/2)‖x‖2 for all x ∈ E, where

l2 =

{

ξ = (ξ1, ξ2, . . . , ξn, . . .) :
∞∑

n=1

|ξn|2 < ∞
}

, ‖ξ‖ =

( ∞∑

n=1

|ξn|2
)1/2

, ∀ξ ∈ l2, (2.14)

and for any ξ = (ξ1, ξ2, . . . , ξn, . . .), μ = (μ1, μ2, . . . , μn, . . .) ∈ E, 〈ξ, μ〉 =
∑∞

n=1 ξnμn. It is well
known that l2 is a Hilbert space. Let {xn} ⊂ E be a sequence defined by x0 = (1, 0, 0,
0, . . .), x1 = (1, 1, 0, 0, . . .), x2 = (1, 0, 1, 0, . . .), . . . , xn = (ξn,1, . . . , ξn,k, . . .), . . ., where

ξn,k =

⎧
⎨

⎩

1, if k = 1, n + 1,

0, otherwise,
(2.15)

for all n ≥ 0.
Define a mapping T : E → E by

T(x) =

⎧
⎨

⎩

nxn

n + 1
, if x = xn (∃n ≥ 1),

−x, if x /=xn (∀n ≥ 1),
(2.16)

for all n ≥ 0. It is easy to see that F(T) = {0}, and so, {xn} converges weakly to x0. Indeed, for
any g = (ζ1, ζ2 . . . , ζk, . . .) ∈ E, we have

g(xn − x0) =
〈
g, xn − x0

〉
=

∞∑

k=2

ζkξn,k = ζn+1. (2.17)

From
∑∞

n=1 |ζn|2 < ∞, it shows that limn→∞ζn+1 = 0. Moreover,

lim
n→∞

g(xn − x0) = lim
n→∞

ζn+1 = 0. (2.18)

Next, for anym/=n, one has ‖xn−xm‖ =
√
2/= 0; that is, {xn} is not a Cauchy sequence. Owing

to ‖Txn − xn‖ = ‖xn‖/(n + 1), we obtain

lim
n→∞

‖Txn − xn‖ = 0. (2.19)
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Then, x0 is an asymptotic fixed point of T , but x0 /∈ F(T) = {0}. So, T is not Bregman relatively
nonexpansive mapping.

For any strong convergent sequence {yn} ⊂ l2 such that yn → y0 and ‖Tyn − yn‖ → 0
as n → ∞. Then, there exists a sufficiently large nature number M such that yn /=xm for any
n,m > M. Thus, Tyn = −yn for n > M, which implies that 2yn → 0 and yn → y0 = 0 as
n → ∞. That is, y0 = 0 is a strong asymptotic fixed point of T , and so, F̃(T) = F(T) = {0}.
Since

Df(0, Tx) = f(0) − f(Tx) − 〈∇f(Tx), 0 − Tx
〉
= −1

2
‖Tx‖2 + 〈Tx, Tx〉 =

1
2
‖Tx‖2

≤ 1
2
‖x‖2 = f(0) − f(x) − 〈∇f(x), 0 − x

〉
= Df(0, x), x ∈ E.

(2.20)

Therefore, T is a weak Bregman relatively nonexpansive mapping.

Definition 2.9 (see [12]). Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable func-
tion. f is called:

(i) totally convex at x ∈ int(dom f) if its modulus of total convexity at x; that is, the
function νf : int(dom f) × [0,+∞) → [0,+∞) defined by

νf(x, t) := inf
{
Df

(
y, x
)
: y ∈ dom f,

∥∥y − x
∥∥ = t

}
(2.21)

is positive whenever t > 0,

(ii) totally convex if, it is totally convex at every point x ∈ int(dom f),

(iii) totally convex on bounded sets if νf(B, t) is positive for any nonempty bounded subset
B of E and t > 0, where the modulus of total convexity of the function f on the set
B is the function νf : int(dom f) × [0,+∞) → [0,+∞) defined by

νf(B, t) := inf
{
νf(x, t) : x ∈ B ∩ dom f

}
. (2.22)

Definition 2.10 (see [12, 21]). The function f : E → (−∞,+∞] is called:

(i) cofinite if dom f∗ = E∗,

(ii) sequentially consistent if, for any two sequences {xn} and {yn} in E such that the first
is bounded, and

lim
n→∞

Df

(
yn, xn

)
= 0 =⇒ lim

n→∞
∥∥yn − xn

∥∥ = 0. (2.23)

Lemma 2.11 (see [21, Proposition 2.3]). If f : E → (−∞,+∞] is Fréchet differentiable and totally
convex, then f is cofinite.
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Lemma 2.12 (see [14, Theorem 2.10]). Let f : E → (−∞,+∞] be a convex function whose domain
contains at least two points. Then, the following statements hold:

(i) f is sequentially consistent if and only if it is totally convex on bounded sets,

(ii) if f is lower semicontinuous, then f is sequentially consistent if and only if it is uniformly
convex on bounded sets,

(iii) if f is uniformly strictly convex on bounded sets, then it is sequentially consistent and the
converse implication holds when f is lower semicontinuous, Fréchet differentiable on its
domain, and the Fréchet derivative f ′ is uniformly continuous on bounded sets.

Lemma 2.13 (see [20, Proposition 2.1]). Let f : E → R be a uniformly Fréchet differentiable and
bounded on bounded subsets of E. Then, ∇f is uniformly continuous on bounded subsets of E from
the strong topology of E to the strong topology of E∗.

Lemma 2.14 (see [21, Lemma 3.1]). Let f : E → R be a Gâteaux differentiable and totally convex
function. If x0 ∈ E and the sequence {Df(xn, x0)}∞n=1 is bounded, then the sequence {xn}∞n=1 is also
bounded.

Lemma 2.15 (see [21, Proposition 2.2]). Let f : E → R be a Gâteaux differentiable and totally
convex function, x0 ∈ E, and let C be a nonempty closed convex subset of E. Suppose that the sequence
{xn}∞n=1 is bounded and any weak subsequential limit of {xn}∞n=1 belongs to C. If Df(xn, x0) ≤
Df(proj

f

C(x0), x0) for any n ∈ N, then {xn}∞n=1 converges strongly to projfC(x0).

In [23], Reich and Sabach proved the following result.

Lemma 2.16 (see [23, Lemma 15.5]). Let f : E → (−∞,+∞] be a Legendre function. Let C be
a nonempty closed convex subset of int(dom f) and T : C → C a Bregman firmly nonexpansive
mapping with respect to f . Then, F(T) is closed and convex.

Motivated by Lemma 2.16, we get the similar result for quasi-Bregman nonexpansive
mapping.

Proposition 2.17. Let f : E → (−∞,+∞] be a Legendre function. Let C be a nonempty closed
convex subset of int(dom f) and T : C → C a quasi-Bregman nonexpansive mapping with respect
to f . Then, F(T) is closed and convex.

Proof. Without loss of generality, set F(T) is nonempty. Firstly, we show that F(T) is closed.
Let {xn}∞n=0 be a sequence in F(T) such that xn → x. By the definition of quasi-Bregman
nonexpansive mapping, we have

Df(xn, Tx) ≤ Df(xn, x), n ≥ 0. (2.24)

Since f : E → (−∞,+∞] is a Legendre function, f is continuous at x ∈ C ⊂ int(dom f). Then,
from the definition of Bregman distance,

lim
n→∞

Df(xn, Tx) = Df(x, Tx),

lim
n→∞

Df(xn, x) = Df(x, x) = 0.
(2.25)
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From (2.24) and (2.25), it follows that Df(x, Tx) = 0, and so, from [7, Lemma 7.3(vi), page
642], Tx = x. Therefore, x ∈ F(T), and so, F(T) is closed.

We now show that F(T) is convex. For any x, y ∈ F(T) and t ∈ (0, 1), it yields that
z = tx+(1− t)y ∈ C. From the definition of quasi-Bregman nonexpansive mapping, it follows
that

Df(z, Tz) = f(z) − f(Tz) − 〈∇f(Tz), tx + (1 − t)y − T
(
tx + (1 − t)y

)〉

= f(z) + tDf(x, Tz) + (1 − t)Df

(
y, Tz

) − tf(x) − (1 − t)f
(
y
)

≤ f(z) + tDf(x, z) + (1 − t)Df

(
y, z
) − tf(x) − (1 − t)f

(
y
)

=
〈∇f(z), z − tx − (1 − t)y

〉
= 0.

(2.26)

Again, from [7, Lemma 7.3(vi), page 642], we get Tz = z. Therefore, F(T) is convex. This
completes the proof.

From the definitions of Bregman distance and the Fenchel conjugate of f , we have the
following result.

Lemma 2.18. Let f : E → (−∞,+∞] be a Gâteaux differentiable and proper convex lower semi-
continuous. Then, for all z ∈ E,

Df

(

z,∇f∗
(

N∑

i=1

ti∇f(xi)

))

≤
N∑

i=1

tiDf(z, xi), (2.27)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Lemma 2.19 (see [14, Corollary 4.4]). Let f : E → (−∞,+∞] be a Gâteaux differentiable and
totally convex on int(dom f). Let x ∈ int(dom f) and C ⊂ int(dom f) a nonempty closed convex
set. If x̂ ∈ C, then the following statements are equivalent:

(i) the vector x̂ is the Bregman projection of x onto C with respect to f ,

(ii) the vector x̂ is the unique solution of the variational inequality

〈∇f(x) − ∇f(z), z − y
〉 ≥ 0, ∀y ∈ C, (2.28)

(iii) the vector x̂ is the unique solution of the inequality

Df

(
y, z
)
+Df(z, x) ≤ Df

(
y, x
)
, ∀y ∈ C. (2.29)

3. Main Results

In this section, we introduce several modification of Mann-type iterative algorithms with
errors andHalpern-type iterative algorithmswith errors to find fixed points of weak Bregman
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relatively nonexpansive mappings and Bregman relatively nonexpansive mappings in Ba-
nach spaces. The strong convergence theorems for weak Bregman relatively nonexpansive
mappings and Bregman relatively nonexpansive mappings are proved under some suitable
conditions.

Theorem 3.1. Let C be a nonempty closed convex subset of a real reflexive Banach space E and f :
E → R a Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex on
bounded subset of E, and let T : C → C be a weak Bregman relatively nonexpansive mapping such
that F(T)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C, Q0 = C,

zn = ∇f∗(βn∇f(T(xn + en)) +
(
1 − βn

)∇f(xn + en)
)
,

yn = ∇f∗(αn∇f(xn + en) + (1 − αn)∇f(zn)
)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : Df

(
z, yn

) ≤ Df(z, xn + en)
}
,

C0 =
{
z ∈ C : Df

(
z, y0

) ≤ Df(z, x0)
}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0,

(3.1)

where {αn}, {βn} ⊂ [0, 1] such that lim infn→∞(1 − αn)βn > 0, and {en} is an error sequence in E
with en → 0 as n → ∞. Then, the sequences {xn} and {yn} converge strongly to the point
projf

F(T)(x0), where proj
f

F(T)(x0) is the Bregman projection of C onto F(T).

Proof. By Proposition 2.17, it follows that F(T) is a nonempty closed and convex subset of E. It
is easy to verify thatC0, C1, Q0, andQ1 are closed and convex. Suppose thatCk andQk (k ≥ 1)
are closed and convex. Then, Ck ∩Qk is closed and convex. For any z ∈ Ck+1, y ∈ Qk+1,

Df

(
z, yk+1

) ≤ Df(z, xk+1 + ek+1)

⇐⇒ f(z) − f
(
yk+1

) − 〈∇f
(
yk+1

)
, z − yk+1

〉

≤ f(z) − f(xk+1 + ek+1) −
〈∇f(xk+1 + ek+1), z − (xk+1 + ek+1)

〉

⇐⇒ 〈∇f(xk+1 + ek+1), z − (xk+1 + ek+1)
〉 − 〈∇f

(
yk+1

)
, z − yk+1

〉

≤ f
(
yk+1

) − f(xk+1 + ek+1)

⇐⇒ 〈∇f(xk+1 + ek+1) − ∇f
(
yk+1

)
, z − yk+1

〉

≤ f
(
yk+1

) − f(xk+1 + ek+1) −
〈∇f(xk+1 + ek+1), yk+1 − (xk+1 + ek+1)

〉

⇐⇒ 〈∇f(xk+1 + ek+1) − ∇f
(
yk+1

)
, z − yk+1

〉 ≤ Df

(
yk+1, xk+1 + ek+1

)
,

〈∇f(x0) − ∇f(xk), y − xk

〉 ≤ 0,

(3.2)
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which implies that Ck+1 and Qk+1 are closed and convex. As a consequence, Cn and Qn are
closed and convex for all n ≥ 0. Taking p ∈ F(T) arbitrarily,

Df

(
p, yn

)

= Df

(
p,∇f∗(αn∇f(xn + en) + (1 − αn)∇f(zn)

))

≤ αnDf

(
p, xn + en

)
+ (1 − αn)Df

(
p, zn

)

= αnDf

(
p, xn + en

)
+ (1 − αn)Df

(
p,∇f∗(βn∇f(T(xn + en)) +

(
1 − βn

)∇f(xn + en)
))

≤ αnDf

(
p, xn + en

)
+ (1 − αn)

[(
1 − βn

)
Df

(
p, xn + en

)
+ βnDf

(
p, T(xn + en)

)]

≤ αnDf

(
p, xn + en

)
+ (1 − αn)

[(
1 − βn

)
Df

(
p, xn + en

)
+ βnDf

(
p, xn + en

)]

= Df

(
p, xn + en

)
,

(3.3)

that is, p ∈ Cn, and so, F(T) ⊂ Cn for all n ≥ 0. We now show that F(T) ⊂ Qn for all n ≥ 0.
Clearly, F(T) ⊂ Q0 = C. Assume that F(T) ⊂ Qk for all k ≥ 0. Note that xk+1 = projfCk∩Qk

(x0),
and we have

〈∇f(x0) − ∇f(xk+1), xk+1 − z
〉 ≥ 0, z ∈ Ck ∩Qk. (3.4)

Therefore,

〈∇f(x0) − ∇f(xk+1), xk+1 − p
〉 ≥ 0, p ∈ F ⊂ Ck ∩Qk, (3.5)

which yields that p ∈ Qk+1. Then, F(T) ⊂ Qn for all n ≥ 0. Consequently, F(T) ⊂ Cn ∩Qn and
Cn ∩Qn is nonempty closed and convex for all n ≥ 0. Moreover, {xn} is well defined.

Secondly, we show that {xn} is a Cauchy sequence and bounded. Since

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0, ∀z ∈ Qn, (3.6)

it follows that xn = projfQn
(x0). Therefore, by xn+1 = projfCn∩Qn

(x0) ∈ Qn,

Df(xn, x0) ≤ Df(xn+1, x0). (3.7)

Taking p ∈ F(T) arbitrarily. From Lemma 2.19, it yields that

Df

(
p,projfQn

(x0)
)
+Df

(
projfQn

(x0), x0

)
≤ Df

(
p, x0

)
. (3.8)

Moreover, one has

Df(xn, x0) ≤ Df

(
p, x0

) −Df

(
p, xn

) ≤ Df

(
p, x0

)
. (3.9)
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Hence, {Df(xn, x0)} is bounded and so {xn}, {yn}, and {zn} are also bounded. From (3.7),
it shows that limn→∞Df(xn, x0) exists. In the light of xm ∈ Qm−1 ⊂ Qn for any m > n, by
Lemma 2.19,

Df

(
xm,proj

f

Qn
(x0)
)
+Df

(
projfQn

(x0), x0

)
≤ Df(xm, x0), (3.10)

that is,

Df(xm, xn) ≤ Df(xm, x0) −Df(xn, x0). (3.11)

Consequently, one has

lim
n→∞

Df(xm, xn) = 0. (3.12)

Since f is totally convex on bounded subsets of E, by Lemma 2.12 and (3.12), we have

lim
n→∞

‖xm − xn‖ = 0. (3.13)

Thus, {xn} is a Cauchy sequence, and so,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.14)

Since en → 0 as n → ∞, one has

lim
n→∞

‖(xn+1 + en+1) − (xn + en)‖ = 0, lim
n→∞

‖xn+1 − (xn + en)‖ = 0. (3.15)

Let xn → ω ∈ C. Then, xn + en → ω.
Thirdly, we show that {xn} converges strongly to a point of F(T). Since f is uniformly

Fréchet differentiable on bounded subsets of E, from Lemma 2.12, ∇f is norm-to-norm
uniformly continuous on bounded subsets of E. So, by (3.15),

lim
n→∞

∥∥∇f(xn+1) − ∇f(xn + en)
∥∥ = 0. (3.16)

It follows from xn+1 ∈ Cn that

Df

(
xn+1, yn

) ≤ Df(xn+1, xn + en). (3.17)

By the uniformly Fréchet differentiable of f on bounded subsets of E, f is also uniformly
continuous on bounded subsets of E. Hence, from (3.12) and limn→∞en = 0,

lim
n→∞

Df(xn+1, xn + en) = lim
n→∞

(
f(xn+1) − f(xn + en) −

〈∇f(xn + en), xn+1 − (xn + en)
〉)

= 0.

(3.18)
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As a consequence, limn→∞Df(xn+1, yn) = 0 and so, limn→∞‖xn+1 −yn‖ = 0. Moreover, one has

lim
n→∞

∥
∥∇f(xn+1) − ∇f

(
yn

)∥∥ = 0. (3.19)

Since ‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖, ‖xn − yn‖ → 0 and yn → ω as n → ∞. Noticing
that

∥
∥∇f(xn+1) − ∇f

(
yn

)∥∥

=
∥
∥∇f(xn+1) −

(
αn∇f(xn + en) + (1 − αn)∇f(zn)

)∥∥

≥ (1 − αn)
∥
∥∇f(xn+1) − ∇f(zn)

∥
∥ − αn

∥
∥∇f(xn+1) − ∇f(xn + en)

∥
∥

= (1 − αn)
∥
∥∇f(xn+1) −

(
βn∇f(T(xn + en)) +

(
1 − βn

)∇f(xn + en)
)∥∥

− αn

∥∥∇f(xn+1) − ∇f(xn + en)
∥∥

≥ −αn

∥∥∇f(xn+1) − ∇f(xn + en)
∥∥ + (1 − αn)βn

∥∥∇f(xn+1) − ∇f(T(xn + en))
∥∥

− (1 − αn)
(
1 − βn

)∥∥∇f(xn+1) − ∇f(xn + en)
∥∥.

(3.20)

Therefore,

(1 − αn)βn‖∇f(xn+1) − ∇f(T(xn + en))‖
≤ ‖∇f(xn+1) − ∇f

(
yn

)‖ + αn‖∇f(xn+1) − ∇f(xn + en)‖
+ (1 − αn)

(
1 − βn

)‖∇f(xn+1) − ∇f(xn + en)‖.
(3.21)

In view of lim infn→∞(1 − αn)βn > 0 and from both (3.16) and (3.19), one has

lim
n→∞

∥∥∇f(xn+1) − ∇f(T(xn + en))
∥∥ = 0. (3.22)

Furthermore, we have

lim
n→∞

‖xn+1 − T(xn + en)‖ = 0, (3.23)

and so, by (3.14),

lim
n→∞

‖(xn + en) − T(xn + en)‖ = 0. (3.24)

Since xn → ω and en → 0, we get ω ∈ F̃(T) = F(T).
Finally, we show ω = projf

F(T)(x0). Since proj
f

F(T)(x0) ∈ F(T) ⊂ Cn ∩Qn, it follows from

xn+1 = projf(Cn∩Qn)
(x0) that Df(xn+1, x0) ≤ Df(proj

f

F(T)(x0), x0). By Lemma 2.15, xn →
projf

F(T)(x0) as n → ∞. Therefore, {xn} and {yn} converge strongly to projf
F(T)(x0). This

completes the proof.



16 International Journal of Mathematics and Mathematical Sciences

Theorem 3.2. Let C be a nonempty closed convex subset of a real reflexive Banach space E and f :
E → R a Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex
on bounded subset of E, and let T : C → C be a Bregman relatively nonexpansive mapping such
that F(T)/= ∅. Assume that {αn}, {βn} ⊂ [0, 1] such that lim infn→∞(1 − αn)βn > 0, and {en} is an
error sequence in E with en → 0 as n → ∞. Then, the sequences {xn} and {yn} generated by (3.1)
converge strongly to the point projf

F(T)(x0), where proj
f

F(T)(x0) is the Bregman projection of C onto
F(T).

Proof. As in the proof of Theorem 3.1, we know that the sequences {xn} and {yn} converge
strongly to ω ∈ C, and so,

lim
n→∞

‖(xn + en) − T(xn + en)‖ = 0. (3.25)

Then, for any subsequence {xnk} of {xn} converges weakly to ω,

lim
k→∞

‖(xnk + enk) − T(xnk + enk)‖ = 0. (3.26)

Therefore,ω ∈ F̂(T) = F(T). By the similar proof of Theorem 3.2, the sequences {xn} and {yn}
converge strongly to projf

F(T)(x0). This completes the proof.

If αn ≡ 0, en ≡ 0, and f(x) = (1/2)‖x‖2 for all x ∈ E, n ≥ 0, then from Remark 2.4 and
Theorem 3.1, we have the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real reflexive, smooth, and strictly
convex Banach space E, and let T : C → C be a relatively nonexpansive mapping such that F(T)/= ∅.
Define a sequence {xn} in C by the following algorithm:

x0 ∈ C, Q0 = C,

yn = J−1
(
βnJ(T(xn)) +

(
1 − βn

)
J(xn)

)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ

(
z, yn

) ≤ φ(z, xn)
}
,

C0 =
{
z ∈ C : φ

(
z, y0

) ≤ φ(z, x0)
}
,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈J(x0) − J(xn), z − xn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0, ∀n ≥ 0,

(3.27)

where J is the duality mapping on E, {βn} ⊂ [0, 1] such that lim infn→∞βn > 0. Then, the sequences
{xn} and {yn} converge strongly to the pointΠF(T)(x0), whereΠF(T)(x0) is the generalized projection
(see, e.g., [2, 3, 28]) of C onto F(T).

In [27], Matsushita and Takahashi proved the following result.

TheoremMT (see [27, Theorem 3.1]). LetC be a nonempty closed convex subset of a real uniformly
convex and uniformly smooth Banach space E, and let T : C → C be a relatively nonexpansive
mapping such that F(T)/= ∅. Assume that {αn} is a sequence of real numbers such that 0 ≤ αn < 1
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and lim supn→∞αn < 1. Then, the sequence {xn} generated by (1.3) converges strongly to the point
ΠF(T)(x0), where ΠF(T)(x0) is the generalized projection (see, e.g., [2, 3, 28]) of C onto F(T).

Remark 3.4. Corollary 3.3 extends Theorem MT [27] from uniformly convex and uniformly
smooth Banach spaces to reflexive, smooth, and strictly convex Banach space.

Now, we investigate convergence theorems for Halpern-type iterative algorithms with
errors.

Theorem 3.5. Let C be a nonempty closed convex subset of a real reflexive Banach space E and f :
E → R a Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex on
bounded subset of E, and let T : C → C be a weak Bregman relatively nonexpansive mapping such
that F(T)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C, Q0 = C,

zn = ∇f∗(βn∇f(x0) +
(
1 − βn

)∇f(T(xn + en))
)
,

yn = ∇f∗(αn∇f(zn) + (1 − αn)∇f(xn + en)
)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : Df

(
z, yn

) ≤ (1 − αnβn
)
Df(z, xn + en) + αnβnDf(z, x0)

}
,

C0 =
{
z ∈ C : Df

(
z, y0

) ≤ Df(z, x0)
}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projf(Cn∩Qn)
x0, ∀n ≥ 0,

(3.28)

where {αn}, {βn} ⊂ [0, 1] such that lim infn→∞αn > 0 and limn→∞βn = 0, and {en} is an error
sequence in E with en → 0 as n → ∞. Then, the sequences {xn} and {yn} converge strongly to the
point projf

F(T)(x0), where proj
f

F(T)(x0) is the Bregman projection of C onto F(T).

Proof. By Proposition 2.17, it follows that F(T) is a nonempty closed and convex subset of E.
It is easy to see that Cn is closed and Qn is closed and convex for all n ≥ 0. For any z ∈ Cn,
n ≥ 1,

Df

(
z, yn

) ≤ (1 − αnβn
)
Df(z, xn + en) + αnβnDf(z, x0)

⇐⇒ f(z) − f
(
yn

) − 〈∇f
(
yn

)
, z − yn

〉

≤ (1 − αnβn
)(
f(z) − f(xn + en) −

〈∇f(xn + en), z − xn − en
〉)

+ αnβn
(
f(z) − f(x0) −

〈∇f(x0), z − x0
〉)

⇐⇒ (1 − αnβn
)
f(xn + en) + αnβnf(x0) − f

(
yn

)

≤ 〈∇f
(
yn

)
, z − yn

〉 − (1 − αnβn
)〈∇f(xn + en), z − xn − en

〉 − αnβn
〈∇f(x0), z − x0

〉
,

(3.29)
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which implies that Cn is closed and convex for all n ≥ 1. Since, for any z ∈ C0,

Df

(
z, y0

) ≤ Df(z, x0)

⇐⇒ f(z) − f
(
y0
) − 〈∇f

(
y0
)
, z − y0

〉 ≤ f(z) − f(x0) −
〈∇f(x0), z − x0

〉

⇐⇒ 〈∇f(x0), z − x0
〉 − 〈∇f

(
y0
)
, z − y0

〉 ≤ f
(
y0
) − f(x0)

⇐⇒ 〈∇f(x0), z − x0
〉 − 〈∇f

(
y0
)
, z − x0 + x0 − y0

〉 ≤ f
(
y0
) − f(x0)

⇐⇒ 〈∇f(x0) − ∇f
(
y0
)
, z − x0

〉
+Df

(
x0, y0

) ≤ 0,

(3.30)

which shows that C0 is closed and convex. As a consequence, Cn is closed and convex for all
n ≥ 0. Taking p ∈ F(T) arbitrarily, by Lemma 2.18,

Df

(
p, yn

)
= Df

(
p,∇f∗(αn∇f(zn) + (1 − αn)∇f(xn + en)

))

≤ αnDf

(
p, zn

)
+ (1 − αn)Df

(
p, xn + en

)

= (1 − αn)Df

(
p, xn + en

)
+ αnDf

(
p,∇f∗(βn∇f(x0) +

(
1 − βn

)∇f(T(xn + en))
))

≤ (1 − αn)Df

(
p, xn + en

)
+ αnβnDf

(
p, x0

)
+ αn

(
1 − βn

)
Df

(
p, T(xn + en)

)

≤ (1 − αn)Df

(
p, xn + en

)
+ αnβnDf

(
p, x0

)
+ αn

(
1 − βn

)
Df

(
p, xn + en

)

=
(
1 − αnβn

)
Df

(
p, xn + en

)
+ αnβnDf

(
p, x0

)
,

(3.31)

that is, p ∈ Cn, and so, F(T) ⊂ Cn for all n ≥ 0. As in the proof of Theorem 3.1, we get
F(T) ⊂ Qn for all n ≥ 0, {xn} is a Cauchy sequence, {xn}, {yn}, and {zn} are also bounded,
and thus,

lim
n→∞

Df(xn+1, xn + en) = 0, lim
n→∞

‖(xn+1 + en+1) − (xn + en)‖ = 0, (3.32)

lim
n→∞

‖xn+1 − (xn + en)‖ = 0. (3.33)

Consequently, F(T) ⊂ Cn ∩ Qn and Cn ∩ Qn is nonempty closed and convex for all n ≥ 0.
Moreover, {xn} is well defined. Set xn → ω ∈ C.

Secondly, we show that {xn} converges strongly to a point of F(T). Since f is uniformly
Fréchet differentiable on bounded subsets of E, from Lemma 2.12, ∇f is norm-to-norm
uniformly continuous on bounded subsets of E. So, by (3.33),

lim
n→∞

∥∥∇f(xn+1) − ∇f(xn + en)
∥∥ = 0. (3.34)

In view of xn+1 = projf(Cn∩Qn)
(x0) ∈ Cn, we have

Df

(
xn+1, yn

) ≤ (1 − αnβn
)
Df(xn+1, xn + en) + αnβnDf(xn+1, x0). (3.35)
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Due to limn→∞βn = 0, from (3.32), one has

lim
n→∞

Df

(
xn+1, yn

)
= 0. (3.36)

Therefore, limn→∞‖xn+1 − yn‖ = 0. Moreover, one has

lim
n→∞

∥
∥∇f(xn+1) − ∇f

(
yn

)∥∥ = 0. (3.37)

Since ‖xn − yn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖, by (3.32) and (3.33),

lim
n→∞

∥
∥xn − yn

∥
∥ = 0, (3.38)

and thus, yn → ω as n → ∞. Noticing that

∥∥∇f(xn+1) − ∇f
(
yn

)∥∥

=
∥∥∇f(xn+1) −

(
αn∇f(zn) + (1 − αn)∇f(xn + en)

)∥∥

≥ αn

∥∥∇f(xn+1) − ∇f(zn)
∥∥ − (1 − αn)

∥∥∇f(xn+1) − ∇f(xn + en)
∥∥

= αn

∥∥∇f(xn+1) −
(
βn∇f(x0) +

(
1 − βn

)∇f(Tn(xn + en))
)∥∥

− (1 − αn)
∥∥∇f(xn+1) − ∇f(xn + en)

∥∥

≥ αn

(
1 − βn

)∥∥∇f(xn+1) − ∇f(Tn(xn + en))
∥∥ − αnβn

∥∥∇f(xn+1) − ∇f(x0)
∥∥

− (1 − αn)
∥∥∇f(xn+1) − ∇f(xn + en)

∥∥.

(3.39)

That is,

αn

(
1 − βn

)‖∇f(xn+1) − ∇f(T(xn + en))‖
≤ ∥∥∇f(xn+1) − ∇f

(
yn

)∥∥ + αnβn
∥∥∇f(xn+1) − ∇f(x0)

∥∥

+ (1 − αn)
∥∥∇f(xn+1) − ∇f(xn + en)

∥∥.

(3.40)

Together with lim infn→∞αn > 0, limn→∞βn = 0, and (3.37), this yields that

lim
n→∞

∥∥∇f(xn+1) − ∇f(T(xn + en))
∥∥ = 0. (3.41)

Since f is uniformly Fréchet differentiable on bounded subsets of E, from Lemma 2.12, ∇f is
norm-to-norm uniformly continuous on bounded subsets of E and so is ∇f∗. Then, by (3.41),
we get

lim
n→∞

‖xn+1 − T(xn + en)‖ = 0. (3.42)
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From ‖(xn+en)−T(xn+en)‖ ≤ ‖(xn+en)−(xn+1+en+1)‖+‖(xn+1+en+1)−T(xn+en)‖, it follows
that limn→∞‖(xn + en) − T(xn+1 + en+1)‖ = 0. So, ω ∈ F̃(T) = F(T). By the same argument of
Theorem 3.1, we know that {xn} and {yn} converge strongly to projf

F(T)(x0). This completes
the proof.

If αn ≡ 1 and en ≡ 0 for all n ≥ 0, then from Theorem 3.5, we have the following result.

Corollary 3.6. Let C be a nonempty closed convex subset of a real reflexive Banach space E and f :
E → R a Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex on
bounded subset of E, and let T be a weak Bregman relatively nonexpansive mapping from C into itself
such that F(T)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C, Q0 = C,

yn = ∇f∗(βn∇f(x0) +
(
1 − βn

)∇f(Txn)
)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : Df

(
z, yn

) ≤ (1 − βn
)
Df(z, xn) + βnDf(z, x0)

}
,

C0 =
{
z ∈ C : Df

(
z, y0

) ≤ Df(z, x0)
}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0,

(3.43)

where {βn} ⊂ [0, 1] such that limn→∞βn = 0 and {en} is an error sequence in E with en → 0 as
n → ∞. Then, the sequences {xn} and {yn} converges strongly to the point projf

F(T)(x0), where

projf
F(T)(x0) is the Bregman projection of C onto F(T).

Now, we develop a strong convergence theorem for a Bregman relatively nonexpan-
sive mapping.

Theorem 3.7. Let C be a nonempty closed convex subset of a real reflexive Banach space E and f :
E → R a Legendre function which is bounded, uniformly Fréchet differentiable, and totally convex
on bounded subset of E, and let T : C → C be a Bregman relatively nonexpansive mapping such that
F(T)/= ∅. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C, Q0 = C,

zn = ∇f∗(βn∇f(x0) +
(
1 − βn

)∇f(T(xn + en))
)
,

yn = ∇f∗(αn∇f(zn) + (1 − αn)∇f(xn + en)
)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : Df

(
z, yn

) ≤ (1 − αnβn
)
Df(z, xn + en) + αnβnDf(z, x0)

}
,

C0 =
{
z ∈ C : Df

(
z, y0

) ≤ Df(z, x0)
}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0,

(3.44)
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where {αn}, {βn} ⊂ [0, 1] such that lim infn→∞αn > 0 and limn→∞βn = 0 and {en} is an error
sequence in E with en → 0 as n → ∞. Then, the sequences {xn} and {yn} converges strongly to the
point projf

F(T)(x0), where proj
f

F(T)(x0) is the Bregman projection of C onto F(T).

Proof. The proof is similar to Theorem 3.5 and so is omitted. This completes the proof.

If αn ≡ 1 and en ≡ 0 for all n ≥ 0, then from Theorem 3.7, we get the following corollary.

Corollary 3.8. Let E be a real reflexive Banach space and f : E → R a Legendre function which
is bounded, uniformly Fréchet differentiable, and totally convex on bounded subset of E, and let T :
E → E be a Bregman relatively nonexpansive mapping such that F(T)/= ∅. Assume that {βn} is a real
sequence in [0, 1] such that limn→∞βn = 0. Define a sequence {xn} by the following algorithm:

x0 ∈ C, Q0 = C,

yn = ∇f∗(βn∇f(x0) +
(
1 − βn

)∇f(Txn)
)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : Df

(
z, yn

) ≤ (1 − αnβn
)
Df(z, xn) + αnβnDf(z, x0)

}
,

C0 =
{
z ∈ C : Df

(
z, y0

) ≤ Df(z, x0)
}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈∇f(x0) − ∇f(xn), z − xn

〉 ≤ 0
}
,

xn+1 = projfCn∩Qn
x0, ∀n ≥ 0.

(3.45)

Then, the sequences {xn} and {yn} converge strongly to the point projfF(T)(x0), where proj
f

F(T)(x0) is
the Bregman projection of C onto F(T).

In [30], Qin and Su obtained the following.

Theorem QS (see [30, Theorem 2.2]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth Banach space E, and let T : C → C be a relatively nonexpansive map-
ping such that F(T)/= ∅. Assume that {βn} is a real sequence in [0, 1) such that limn→∞βn = 0. Then,
the sequence {xn} generated by (1.5) converges strongly to ΠF(T)x0, where ΠF(T) is the generalized
projection (see, e.g., [2, 3]) from E onto F(T).

Remark 3.9. Corollary 3.8 extends Theorems QS [30] from uniformly convex and uniformly
smooth Banach spaces to reflexive Banach spaces.

4. Conclusions

In this paper, we introduce a conception of weak Bregman relatively nonexpansive mapping
in reflexive Banach space and give an example to illustrate the existence of weak Bregman
relatively nonexpansive mapping and the difference between weak Bregman relatively non-
expansive mapping and Bregman relatively nonexpansive mapping which enlarge the Breg-
man operator theory. Secondly, by using projection techniques, we construct several modifi-
cation of Mann-type iterative algorithms with errors and Halpern-type iterative algorithms
with errors to find fixed points of weak Bregman relatively nonexpansive mappings and
Bregman relatively nonexpansive mappings in Banach spaces. Thirdly, strong convergence
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theorems for weak Bregman relatively nonexpansive mappings and Bregman relatively non-
expansive mappings are derived under some suitable assumptions. By further research, on
the one hand, we may apply our algorithms to find zeros of finite families of maximal
monotone operators, solutions of system of convex minization problems, solutions of system
of variational inequalities, equilibrium, and equation operators (see, e.g., [24]). On the other
hand, onemay give some numerical experiments to verify the theoretical assertions and show
how to compute the generalized projections. These topics will be done in the future.
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