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Let L be the space of complex-valued functions f on the set of vertices T of an infinite tree
rooted at o such that the difference of the values of f at neighboring vertices remains bounded
throughout the tree, and let Lw be the set of functions f ∈ L such that |f(v) − f(v−)| = O(|v|−1),
where |v| is the distance between o and v and v− is the neighbor of v closest to o. In this paper,
we characterize the bounded and the compact multiplication operators between L and Lw and
provide operator norm and essential norm estimates. Furthermore, we characterize the bounded
and compact multiplication operators between Lw and the space L∞ of bounded functions on
T and determine their operator norm and their essential norm. We establish that there are no
isometries among the multiplication operators between these spaces.

1. Introduction

LetX and Y be complex Banach spaces of functions defined on a setΩ. For a complex-valued
function ψ defined on Ω, the multiplication operator with symbol ψ fromX to Y is defined as

Mψf = ψf, ∀f ∈ X. (1.1)

A fundamental objective in the study of the operators with symbol is to tie the properties of
the operator to the function theoretic properties of the symbol.
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When Ω is taken to be the open unit disk � in the complex plane, an important space
of functions to study is the Bloch space, defined as the set B of analytic functions f : � → �

for which

βf = sup
z∈�

(
1 − |z|2

)∣∣f ′(z)
∣∣ < ∞. (1.2)

The Bloch space can also be described as the set consisting of the Lipschitz functions
between metric spaces from � endowed with the Poincaré distance ρ to � endowed with the
Euclidean distance, a fact that was proved by the second author in [1] (see also [2]). In fact,
f ∈ B if and only if there exist β > 0 such that for all z,w ∈ �

∣∣f(z) − f(w)
∣∣ ≤ βρ(z,w),

βf = sup
z/=w

∣∣f(z) − f(w)
∣∣

ρ(z,w)
.

(1.3)

More recently, considerable research has been carried out in the field of operator theory
when the set Ω is taken to be a discrete structure, such as a discrete group or a graph. In this
paper, we consider the case when Ω is taken to be an infinite tree.

By a tree T we mean a locally finite, connected, and simplyconnected graph, which, as
a set, we identify with the collection of its vertices. Two vertices u and v are called neighbors
if there is an edge connecting them, and we use the notation u ∼ v. A vertex is called terminal
if it has a unique neighbor. A path is a finite or infinite sequence of vertices [v0, v1, . . .] such
that vk ∼ vk+1 and vk−1 /=vk+1, for all k.

Given a tree T rooted at o and a vertex u ∈ T , a vertex v is called a descendant of u if u
lies in the unique path from o to v. The vertex u is then called an ancestor of v. Given a vertex
v /= o, we denote by v− the unique neighbor which is an ancestor of v. For v ∈ T , the set Sv
consisting of v and all its descendants is called the sector determined by v.

Define the length of a finite path [u = u0, u1, . . . , v = un] (with uk ∼ uk+1 for k = 0, . . . , n)
to be the number n of edges connecting u to v. The distance, d(u, v), between vertices u and v
is the length of the path connecting u to v. The tree T is a metric space under the distance d.
Fixing o as the root of the tree, we define the length of a vertex v by |v| = d(o, v). By a function
on a treewe mean a complex-valued function on the set of its vertices.

In this paper, the tree will be assumed to be rooted at a vertex o and without terminal
vertices (and hence infinite).

Infinite trees are discrete structures which exhibit significant geometric and potential
theoretic characteristics that are present in the Poincaré disk � . For instance, they have
a boundary, which is defined as the set of equivalence classes of paths which differ by finitely
many vertices. The union of the boundary with the tree yields a compact space. A useful
resource for the potential theory on trees illustrating the commonalities with the disk is [3].
In [4] it was shown that, if the tree has the property that all its vertices have the same number
of neighbors, then there is a natural embedding of the tree in the unit disk such that the edges
of the tree are arcs of geodesics in � with the same hyperbolic length and the set of cluster
points of the vertices is the entire unit circle.

In [5], the last two authors defined the Lipschitz spaceL on a tree T as the set consisting
of the functions f : T → � which are Lipschitz with respect to the distance d on T and the
Euclidean distance on � . For this reason, the Lipschitz space L can be viewed as a discrete
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analogue of the Bloch space B. It was also shown that the Lipschitz functions on T are pre-
cisely the functions for which

∥∥Df∥∥∞ = sup
v∈T ∗

Df(v) <∞, (1.4)

where Df(v) = |f(v) − f(v−)| and T∗ = T \ {o}. Under the norm

∥∥f∥∥L =
∣∣f(o)∣∣ + ∥∥Df∥∥∞, (1.5)

L is a Banach space containing the space L∞ of the bounded functions on T . Furthermore, for
f ∈ L∞, ‖f‖L ≤ 2‖f‖∞.

The little Lipschitz space is defined as

L0 =
{
f ∈ L : lim

|v| →∞
Df(v) = 0

}
(1.6)

andwas proven to be a separable closed subspace ofL. We state the following results that will
be useful in the present paper.

Lemma 1.1 (see [5, Lemma 3.4]). (a) If f ∈ L and v ∈ T , then
∣∣f(v)∣∣ ≤ ∣∣f(o)∣∣ + |v|∥∥Df∥∥∞. (1.7)

In particular, if ‖f‖L ≤ 1, then |f(v)| ≤ |v| for each v ∈ T∗.
(b) If f ∈ L0, then

lim
|v|→∞

f(v)
|v| = 0. (1.8)

Lemma 1.2 (see [5, Proposition 2.4]). Let {fn} be a sequence of functions in L0 converging to 0
pointwise in T such that {‖fn‖L} is bounded. Then fn → 0 weakly in L0.

In [6], we introduced the weighted Lipschitz space on a tree T as the set Lw of the func-
tions f : T → � such that

sup
v∈T ∗

|v|Df(v) < ∞. (1.9)

The interest in this space is due to its connection to the bounded multiplication operators
on L. Specifically, it was shown in [5] that the bounded multiplication operators on L are
precisely those operators Mψ whose symbol ψ is a bounded function in Lw. The space Lw

was shown to be a Banach space under the norm

∥∥f∥∥w =
∣∣f(o)∣∣ + sup

v∈T ∗
|v|Df(v). (1.10)
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The little weighted Lipschitz space was defined as

Lw,0 =
{
f ∈ Lw : lim

|v|→∞
|v|Df(v) = 0

}
(1.11)

and was shown to be a closed separable subspace of Lw.
In this paper, we will make repeated use of the following results proved in [6].

Lemma 1.3 (see [6, Propositions 2.1 and 2.6]). (a) If f ∈ Lw, and v ∈ T∗, then

∣∣f(v)∣∣ ≤ (1 + log|v|)∥∥f∥∥w. (1.12)

(b) If f ∈ Lw,0, then

lim
|v| →∞

f(v)
log|v| = 0. (1.13)

Lemma 1.4 (see [6, Proposition 2.7]). Let {fn} be a sequence of functions in Lw,0 converging to 0
pointwise in T such that {‖fn‖w} is bounded. Then fn → 0 weakly in Lw,0.

In this paper, we consider the multiplication operators between L and Lw, as well as
between Lw and L∞. The multiplication operators between L and L∞ were studied by the
last two authors in [7].

1.1. Organization of the Paper

In Sections 2 and 3, we study the multiplication operators betweenLw andL. We characterize
the bounded and the compact operators and give estimates on their operator norm and their
essential norm. We also prove that no isometric multiplication operators exist between the
respective spaces.

In Section 4, we characterize the bounded operators and the compact operators from
Lw to L∞ and determine their operator norm and their essential norm. As was the case in
Sections 2 and 3, we show that no isometries exist amongst such operators. In addition, we
characterize the multiplication operators that are bounded from below.

Finally, in Section 5, we characterize the bounded and the compact multiplication
operators from L∞ to Lw. We also determine their operator norm and their essential norm.
As with all the other cases, we show that there are no isometries amongst such operators.

2. Multiplication Operators from Lw to L
We begin the section with the study of the bounded multiplication operatorsMψ : Lw → L
andMψ : Lw,0 → L0.
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2.1. Boundedness and Operator Norm Estimates

Let ψ be a function on the tree T . Define

τψ = sup
v∈T ∗

Dψ(v) log(1 + |v|),

σψ = sup
v∈T

∣∣ψ(v)∣∣
|v| + 1

.

(2.1)

In the following theorem, we give a boundedness criterion in terms of the quantities τψ and
σψ .

Theorem 2.1. For a function ψ on T , the following statements are equivalent:
(a) Mψ : Lw → L is bounded.
(b) Mψ : Lw,0 → L0 is bounded.
(c) τψ and σψ are finite.

Furthermore, under these conditions, we have

max
{
τψ, σψ

} ≤ ‖Mψ‖ ≤ τψ + σψ. (2.2)

Proof. (a)⇒(c) AssumeMψ : Lw → L is bounded. ApplyingMψ to the constant function 1,
we have ψ ∈ L, so that, by Lemma 1.1, we have σψ < ∞. Next, consider the function f on T
defined by f(v) = log(1 + |v|). Then f(o) = 0; for v /= o, a straightforward calculation shows
that

|v|Df(v) = |v|(log(1 + |v|) − log|v|) ≤ 1 (2.3)

and lim|v|→∞|v|Df(v) = 1. Thus, ‖f‖w = 1 and so ‖Mψf‖L ≤ ‖Mψ‖. Therefore, for v ∈ T∗,
noting that

D
(
ψf
)
(v) = Dψ(v)f(v) + ψ

(
v−
)
Df(v), (2.4)

one has

Dψ(v)
∣∣f(v)∣∣ ≤ D(ψf)(v) + ∣∣ψ(v−)∣∣Df(v)

≤ ∥∥Mψf
∥∥
L + σψ |v|Df(v) ≤

∥∥Mψ

∥∥ + σψ.
(2.5)

Hence τψ <∞.
(c)⇒(a) Assume τψ and σψ are finite. Then, by Lemma 1.3, for f ∈ Lw and v ∈ T∗, we

have

D
(
ψf
)
(v) ≤ Dψ(v)∣∣f(v)∣∣ + ∣∣ψ(v−)∣∣Df(v)

≤ Dψ(v)(1 + log|v|)∥∥f∥∥w + |v|σψDf(v)
≤ τψ
∥∥f∥∥w + σψ

(∥∥f∥∥w − ∣∣f(o)∣∣).
(2.6)
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Since |ψ(o)| ≤ σψ , we obtain

∥∥Mψf
∥∥
L ≤ ∣∣ψ(o)∣∣∣∣f(o)∣∣ + τψ

∥∥f∥∥w + σψ
(∥∥f∥∥w − ∣∣f(o)∣∣)

=
(
τψ + σψ

)∥∥f∥∥w +
(∣∣ψ(o)∣∣ − σψ

)∣∣f(o)∣∣

≤ (τψ + σψ
)∥∥f∥∥w,

(2.7)

proving the boundedness ofMψ : Lw → L and the upper estimate.
(b)⇒(c) SupposeMψ : Lw,0 → L0 is bounded. The finiteness of σψ follows again from

the fact that ψ = Mψ1 ∈ L0 and from Lemma 1.1. To prove that τψ < ∞, let 0 < α < 1 and,
for v ∈ T , define fα(v) = (log(1 + |v|))α. Then fα(o) = 0 and |v|Dfa(v) → 0 as |v| → ∞; so
fα ∈ Lw,0. Since for 0 < α < 1, the function x �→ x − xα is increasing for x ≥ 1, the function
Dfα(v) is increasing in α, andDfα(v) ≤ Df(v) for v ∈ T∗, where f(v) = log(1+ |v|), for v ∈ T .
Thus, ‖fα‖w ≤ ‖f‖w = 1. Therefore, for v ∈ T∗, we have

Dψ(v)
∣∣fα(v)

∣∣ ≤ D(ψfα
)
(v) +
∣∣ψ(v−)∣∣Dfα(v)

≤ ∥∥Mψfα
∥∥ + σψ |v|Dfα(v) ≤

∥∥Mψ

∥∥ + σψ.
(2.8)

Letting α → 1, we obtain

Dψ(v) log(1 + |v|) ≤
∥∥Mψ

∥∥ + σψ. (2.9)

Hence τψ <∞.
(c)⇒(b)Assume σψ and τψ are finite, and let f ∈ Lw,0. Then, by Lemma 1.3, for v ∈ T∗,

we have

D
(
ψf
)
(v) ≤ Dψ(v)∣∣f(v)∣∣ + ∣∣ψ(v−)∣∣Df(v)

≤ Dψ(v) log(1 + |v|)
∣∣f(v)∣∣

log(1 + |v|) +
∣∣ψ(v−)∣∣

|v| |v|Df(v)

≤ τψ
∣∣f(v)∣∣

log(1 + |v|) + σψ |v|Df(v) −→ 0

(2.10)

as |v| → ∞. Thus, ψf ∈ L0. The boundedness ofMψ and the estimate ‖Mψf‖L ≤ τψ + σψ can
be shown as in the proof of (c)⇒(a).

Finally we show that, under boundedness assumptions onMψ , ‖Mψ‖ ≥ max{τψ, σψ}.
For v ∈ T∗, let fv = 1/(|v| + 1)χv, where χv denotes the characteristic function of {v}. Then
‖fv‖w = 1 and

∥∥ψfv
∥∥
L =

∣∣ψ(v)∣∣
|v| + 1

. (2.11)

Furthermore, letting fo = (1/2)χo, we see that ‖fo‖w = 1 and ‖ψfo‖L = |ψ(o)|. Therefore, we
deduce that ‖Mψ‖ ≥ σψ .
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Next, fix v ∈ T∗ and forw ∈ T , define

gv(w) =

⎧
⎨
⎩
log(1 + |w|) if |w| < |v|,
log(1 + |v|) if |w| ≥ |v|.

(2.12)

Then, gv ∈ Lw and

lim
|v| →∞

∥∥gv
∥∥
w = lim

|v| →∞
|v|[log(1 + |v|) − log|v|] = 1. (2.13)

Observe that, for w ∈ T∗, we have

D
(
ψgv
)
(w) =

⎧
⎨
⎩

∣∣ψ(w) log(1 + |w|) − ψ(w−) log|w|
∣∣ if |w| < |v|,

Dψ(w) log(1 + |v|) if |w| ≥ |v|.
(2.14)

Hence

sup
w∈T ∗

D
(
ψgv
)
(w) ≥ sup

|w|≥|v|
Dψ(w) log(1 + |v|) ≥ Dψ(v) log(1 + |v|). (2.15)

Define fv = gv/‖gv‖w. Then ‖fv‖w = 1 and

∥∥Mψ

∥∥ ≥ ∥∥Mψfv
∥∥
L =

∥∥D(ψgv
)∥∥

∞∥∥gv
∥∥
w

≥ Dψ(v) log(1 + |v|)∥∥gv
∥∥
w

. (2.16)

Taking the limit as |v| → ∞, we obtain ‖Mψ‖ ≥ τψ . Therefore, ‖Mψ‖ ≥ max{τψ, σψ}.

2.2. Isometries

In this section, we show there are no isometric multiplication operatorsMψ from the spaces
Lw or Lw,0 to the spaces L or L0, respectively.

AssumeMψ : Lw → L is an isometry. Then ‖ψ‖L = ‖Mψ1‖L = 1. On the other hand,
|ψ(o)| = (1/2)‖Mψχo‖L = (1/2)‖χo‖w = 1. Thus supv∈T ∗Dψ(v) = ‖ψ‖L − |ψ(o)| = 0, which
implies that ψ is a constant of modulus 1. Yet, for v ∈ T∗, letting fv = (1/(|v| + 1))χv, we see
that

1 =
∥∥fv
∥∥
w =
∥∥Mψfv

∥∥
L =

1
|v| + 1

, (2.17)

which yields a contradiction. Therefore, we obtain the following result.

Theorem 2.2. There are no isometriesMψ from Lw to L or Lw,0 to L0, respectively.
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2.3. Compactness and Essential Norm Estimates

In this section, we characterize the compact multiplication operators. As with many classical
spaces, the characterization of the compact operators is a “little-oh” condition corresponding
the the “big-oh” condition for boundedness. We first collect some useful results about com-
pact operators from Lw or Lw,0 to L.

Lemma 2.3. A bounded multiplication operatorMψ from Lw to L is compact if and only if for every
bounded sequence {fn} in Lw converging to 0 pointwise, the sequence {‖ψfn‖L} → 0 as n → ∞.

Proof. Assume Mψ is compact, and let {fn} be a bounded sequence in Lw converging to 0
pointwise. Without loss of generality, we may assume ‖fn‖w ≤ 1 for all n ∈ �. Then the
sequence {Mψfn} = {ψfn} has a subsequence {ψfnk}which converges in theL-norm to some
function f ∈ L. Clearly ψ(o)fnk (o) → ψ(o)f(o), and by part (a) of Lemma 1.1, for v ∈ T∗, we
have

∣∣ψ(v)fnk (v) − f(v)
∣∣ ≤ ∣∣ψ(o)fnk(o) − f(o)

∣∣ + |v|∥∥D(ψfnk − f
)∥∥

∞

≤ (1 + |v|)∥∥ψfnk − f
∥∥
L.

(2.18)

Thus, ψfnk → f pointwise on T . Since fn → 0 pointwise, it follows that f must be identically
0, which implies that ‖ψfnk‖L → 0. With 0 being the only limit point of {ψfn} in L, it follows
that ‖ψfn‖L → 0 as n → ∞.

Conversely, assume every bounded sequence {fn} in Lw converging to 0 pointwise
has the property that ‖ψfn‖L → 0 as n → ∞. Let {gn} be a sequence in Lw with ‖gn‖w ≤ 1
for all n ∈ �. Then |gn(o)| ≤ 1 for all n ∈ �, and by part (a) of Lemma 1.2, for v ∈ T∗, we
obtain

∣∣gn(v)
∣∣ ≤ (1 + log|v|)∥∥gn

∥∥
w ≤ 1 + log|v|. (2.19)

Thus, {gn} is uniformly bounded on finite subsets of T . So some subsequence {gnk} converges
pointwise to some function g. Fix v ∈ T∗ and ε > 0. Then for k sufficiently large, we have

∣∣g(v) − gnk(v)
∣∣ < ε

2|v| ,
∣∣gnk
(
v−
) − g(v−)∣∣ < ε

2|v| . (2.20)

We deduce

|v|Dg(v) ≤ |v|∣∣g(v) − gnk (v) + gnk
(
v−
) − g(v−)∣∣ + |v|Dgnk(v)

≤ |v|∣∣g(v) − gnk (v)
∣∣ + |v|∣∣gnk

(
v−
) − g(v−)∣∣ + |v|Dgnk (v)

< ε + |v|Dgnk (v) ≤ ε + 1,

(2.21)

for all k sufficiently large. So g ∈ Lw. The sequence defined by fk = gnk − g is bounded in
Lw and converges to 0 pointwise. Thus by hypothesis, we obtain ‖ψfk‖L → 0 as k → ∞. It
follows thatMψgnk = ψgnk → ψg in the L-norm, thus proving the compactness ofMψ .
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By an analogous argument, we obtain the corresponding compactness criterion forMψ

from Lw,0 to L0.

Lemma 2.4. A bounded multiplication operator Mψ from Lw,0 to L0 is compact if and only if for
every bounded sequence {fn} in Lw,0 converging to 0 pointwise, the sequence {‖ψfn‖L} → 0 as
n → ∞.

The following result is a variant of Lemma 1.3(a), which will be needed to prove a
char-
acterization of the compact multiplication operators from Lw to L and from Lw,0 to L0

(Theorem 2.6).

Lemma 2.5. For f ∈ Lw and v ∈ T

∣∣f(v)∣∣ ≤ ∣∣f(o)∣∣ + 2 log(1 + |v|)sw
(
f
)
, (2.22)

where sw(f) = supw∈T ∗ |w|Df(w).

Proof. Fix v ∈ T and argue by induction on n = |v|. For n = 0, inequality (2.22) is obvious. So
assume |v| = n > 0 and |f(u)| ≤ |f(o)| + 2 log(1 + |u|)sw(f) for all vertices u such that |u| < n.
Then

∣∣f(v)∣∣ ≤ ∣∣f(v) − f(v−)∣∣ + ∣∣f(v−)∣∣

≤ 1
|v|sw
(
f
)
+
∣∣f(o)∣∣ + 2 log|v|sw

(
f
)

=
∣∣f(o)∣∣ +

(
1
|v| + 2 log|v|

)
sw
(
f
)
.

(2.23)

Next, observe that 1/(|v| + 1)≤ log((|v| + 1)/|v|), so

1
|v| ≤

2
|v| + 1

≤ 2 log
( |v| + 1

|v|
)
. (2.24)

Hence

1
|v| + 2 log|v| ≤ 2 log(|v| + 1). (2.25)

Inequality (2.22) now follows immediately from (2.23) and (2.25).

Theorem 2.6. LetMψ be a bounded multiplication operator fromLw toL (or equivalently fromLw,0

to L0). Then the following statements are equivalent:
(a) Mψ : Lw → L is compact.
(b) Mψ : Lw,0 → L0 is compact.
(c) lim|v| →∞|ψ(v)|/(|v| + 1) = 0 and lim|v|→∞Dψ(v) log |v| = 0.
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Proof. We first prove (a)⇒(c). Assume Mψ : Lw → L is compact. It suffices to show that,
for any sequence {vn} in T such that 2 ≤ |vn| → ∞, we have limn→∞|ψ(vn)|/(|vn| + 1) = 0
and limn→∞Dψ(vn) log |vn| = 0. Let {vn} be such a sequence, and for each n ∈ �, define
fn = (1/(|vn| + 1))χvn . Then fn(o) = 0, fn → 0 pointwise as n → ∞, and ‖fn‖w = 1. By
Lemma 2.3, it follows that ‖ψfn‖L → 0 as n → ∞. Furthermore

∥∥ψfn
∥∥
L = sup

v∈T ∗

∣∣ψ(v)fn(v) − ψ(v−)fn(v−)
∣∣ = ∣∣ψ(vn)fn(vn)

∣∣ =
∣∣ψ(vn)

∣∣
|vn| + 1

. (2.26)

Thus limn→∞|ψ(vn)|/(|vn| + 1) = 0.
Next, for each n ∈ � and v ∈ T , define

gn(v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |v| <
√
|vn|,

2 log|v| − log|vn| if
√
|vn| ≤ |v| < |vn| − 1,

log|vn| if |v| ≥ |vn| − 1.

(2.27)

Then Dgn(v) = 0 if |v| ≤
√
|vn| or |v| > |vn| − 1. In addition, if

√
|vn| < |v| ≤ |vn| − 1, then

|v|Dgn(v) < 4. Indeed, there are two possibilities. Either
√
|vn| ≤ |v| − 1, in which case

|v|Dgn(v) = 2|v|(log|v| − log(|v| − 1)
) ≤ 2|v|

|v| − 1
≤ 3, (2.28)

or |v| − 1 <
√
|vn| < |v|, in which case

|v|Dgn(v) = |v|(2 log|v| − log|vn|
)

≤
(√

|vn| + 1
)
log

(√
|vn| + 1

)2

|vn|

≤
2
(√

|vn| + 1
)

√
|vn|

≤ 2
(
1 +

1√
2

)
< 4.

(2.29)

Thus {‖gn‖w} is bounded, and {gn} converges to 0 pointwise. By Lemma 2.3, it follows that
‖ψgn‖L → 0 as n → ∞. Moreover

∥∥ψgn
∥∥
L ≥ ∣∣ψ(vn)gn(vn) − ψ(v−n)gn(v−n)

∣∣ = Dψ(vn) log|vn|. (2.30)

Therefore limn→∞Dψ(vn) log |vn| = 0.
To prove the implication (c)⇒(a), suppose lim|v| →∞Dψ(v) log |v| = 0 and

lim|v| →∞|ψ(v)|/(|v| + 1) = 0. Clearly, if ψ is identically 0, then Mψ is compact. So assume
Mψ : Lw → L is bounded with ψ not identically 0. By Lemma 2.3, it suffices to show that if
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{fn} is bounded in Lw converging to 0 pointwise, then ‖ψfn‖L → 0 as n → ∞. Let {fn} be
such a sequence, s = supn∈�‖fn‖w, and fix ε > 0. Note that

lim
|v| →∞

Dψ(v) log(1 + |v|) = lim
|v| →∞

Dψ(v) log|v| log(1 + |v|)
log|v| = 0. (2.31)

Thus there exists anM ∈ � such that

∣∣fn(o)
∣∣ < ε

3s
∥∥ψ∥∥L

, Dψ(v) log(1 + |v|) < ε

6s
,

∣∣ψ(v)∣∣
|v| + 1

<
ε

3s
, (2.32)

for |v| ≥ M. Using Lemma 2.5, for |v| > M, we have

D
(
ψfn
)
(v) ≤ Dψ(v)∣∣fn(v)

∣∣ +Dfn
(
v−
)∣∣ψ(v−)∣∣

≤ Dψ(v)(∣∣fn(o)
∣∣ + 2 log(|v| + 1)

)∥∥fn
∥∥
w +
∥∥fn
∥∥
w

∣∣ψ(v−)∣∣
|v|

≤
(∥∥ψ∥∥L

∣∣fn(o)
∣∣ + 2Dψ(v) log(|v| + 1) +

∣∣ψ(v−)∣∣
|v|

)∥∥fn
∥∥
w

< ε.

(2.33)

On the other hand, on the set BM = {v ∈ T : |v| ≤ M}, {fn} converges to 0 uniformly,
and thus Dfn does as well. Moreover

D
(
ψfn
)
(v) ≤ Dψ(v)∣∣fn(v)

∣∣ + ∣∣ψ(v−)∣∣Dfn(v)
≤ ∥∥ψ∥∥L

∣∣fn(v)
∣∣ + max

|w|≤M

∣∣ψ(w)
∣∣Dfn(v) −→ 0,

(2.34)

uniformly on BM. Therefore D(ψfn) → 0 uniformly on T . Furthermore, the sequence
{(ψfn)(o)} converges to 0 as n → ∞. Hence ‖ψfn‖L → 0 as n → ∞, proving that Mψ is
compact.

Finally, note that the functions fn and gn defined in the proof of (a)⇒(c) are in Lw,0. So
the equivalence of (b) and (c) is proved analogously.

Recall the essential norm of a bounded operator S between Banach spaces X and Y is
defined as

‖S‖e = inf
{‖S −K‖ : K is compact from X to Y}. (2.35)
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For ψ a function on T , define the quantities

A
(
ψ
)
= lim

n→∞
sup
|v|≥n

∣∣ψ(v)∣∣
|v| + 1

,

B
(
ψ
)
= lim

n→∞
sup
|v|≥n

Dψ(v) log|v|.
(2.36)

Theorem 2.7. LetMψ be a bounded multiplication operator from Lw to L. Then

∥∥Mψ

∥∥
e
≥ max

{
A
(
ψ
)
, B
(
ψ
)}
. (2.37)

Proof. For each n ∈ �, define fn = (1/(n + 1))χn, where χn denotes the characteristic function
of the set {v ∈ T : |v| = n}. Then fn ∈ Lw,0, ‖fn‖w = 1, and fn → 0 pointwise. Thus, by
Lemma 1.4, {fn} converges to 0 weakly in Lw,0. Let K be the set of compact operators from
Lw,0 to L0, and let K ∈ K. Then K is completely continuous [8], and so ‖Kfn‖L → 0 as
n → ∞. Thus

‖Mψ −K‖ ≥ lim sup
n→∞

∥∥(Mψ −K)fn
∥∥
L ≥ lim sup

n→∞

∥∥Mψfn
∥∥
L. (2.38)

Now note that

∥∥Mψfn
∥∥
L = sup

|v|=n

∣∣ψ(v)∣∣
n + 1

. (2.39)

Hence

∥∥Mψ

∥∥
e
≥ inf
{∥∥Mψ −K∥∥ : K ∈ K}

≥ lim sup
n→∞

∥∥Mψfn
∥∥
L

= lim
n→∞

sup
|v|≥n

∣∣ψ(v)∣∣
|v| + 1

= A
(
ψ
)
.

(2.40)

We will now show that ‖Mψ‖e ≥ B(ψ). This estimate is clearly true if B(ψ) = 0. So assume
{vn} is a sequence in T such that 2 ≤ |vn| → ∞ as n → ∞ and

lim
n→∞

Dψ(vn) log|vn| = B
(
ψ
)
. (2.41)
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For n ∈ � and v ∈ T , define

hn(v) =

⎧
⎪⎨
⎪⎩

[
log(|v| + 1)

]2
log|vn| if 0 ≤ |v| < |vn|,

log|vn| if |v| ≥ |vn|.
(2.42)

Then hn(o) = 0, hn(vn) = hn(v−n) = log |vn|, and

|v|Dhn(v) =

⎧
⎪⎨
⎪⎩

|v|
log|vn| log

( |v| + 1
|v|
)
log[|v|(|v| + 1)] if 1 ≤ |v| < |vn|,

0 if |v| ≥ |vn|.
(2.43)

The supremum of |v|Dhn(v) is attained at the vertices of length |vn| −1 and is given by

sn = sup
v∈T ∗

|v|Dhn(v) = (|vn| − 1) log
( |vn|
|vn| − 1

) log[(|vn| − 1)|vn|]
log|vn| . (2.44)

Since (|vn| − 1) log(|vn|/(|vn| − 1)) ≤ 1, we have

(
log 2
)2

log|vn| ≤ ‖hn‖w = sn ≤ log[(|vn| − 1)|vn|]
log|vn| < 2. (2.45)

By letting gn = hn/‖hn‖w, we have gn ∈ Lw,0, ‖gn‖w = 1, and gn → 0 pointwise. By
Lemma 1.4, the sequence {gn} converges to 0 weakly in Lw,0. Thus ‖Kgn‖L → 0 as n → ∞.
Therefore,

∥∥Mψ −K∥∥ ≥ lim sup
n→∞

∥∥(Mψ −K)gn
∥∥
L ≥ lim sup

n→∞

∥∥ψgn
∥∥
L. (2.46)

For each n ∈ �, we have gn(vn) = gn(v−n) = log |vn|/sn. So

D
(
ψgn
)
(vn) =

1
sn
Dψ(vn) log|vn|. (2.47)

Since limn→∞sn = 1, we have

∥∥Mψ

∥∥
e
≥ inf
{∥∥Mψ −K∥∥ : K ∈ K}

≥ lim sup
n→∞

sup
v∈T ∗

D
(
ψgn
)
(v)

≥ lim
n→∞

1
sn
Dψ(vn) log|vn|

= B
(
ψ
)
.

(2.48)

Therefore, ‖Mψ‖e ≥ max{A(ψ), B(ψ)}.
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We now derive an upper estimate on the essential norm.

Theorem 2.8. LetMψ be a bounded multiplication operator from Lw to L. Then

∥∥Mψ

∥∥
e
≤ A(ψ) + B(ψ). (2.49)

Proof. For n ∈ �, define the operatorKn on Lw by

(
Knf
)
(v) =

⎧
⎨
⎩
f(v) if |v| ≤ n,
f(vn) if |v| > n,

(2.50)

where f ∈ Lw and vn is the ancestor of v of length n. For f ∈ Lw, (Knf)(o) = f(o), and
Knf ∈ Lw,0. Let Bn = {v ∈ T : |v| ≤ n}, and note that Knf attains finitely many values,
whose number does not exceed the cardinality of Bn. Let {gk} be a sequence in Lw such that
‖gk‖w ≤ 1 for each k ∈ �. Then a = supk∈�|gk(o)| ≤ 1, and |Kngk(o)| ≤ a. Furthermore, by part
(a) of Lemma 1.3, for each v ∈ T∗ and for each k ∈ �, we have |Kngk(v)| ≤ 1+log n. Thus, some
subsequence of {Kngk}k∈� must converge to a function g on T attaining constant values on
the sectors determined by the vertices of length n. It follows that this subsequence converges
to g in Lw as well, proving that Kn is a compact operator on Lw. SinceMψ is bounded as an
operator from Lw to L, it follows thatMψKn : Lw → L is compact for all n ∈ �.

Define the operator Jn = I − Kn, where I denotes the identity operator on Lw. Then
Jnf(o) = 0, and for v ∈ T∗, we have

|v|D(Jnf
)
(v) = |v|∣∣(Jnf

)
(v) − (Jnf

)(
v−
)∣∣ ≤ |v|Df(v) ≤ ∥∥f∥∥w. (2.51)

By part (a) of Lemma 1.3, we see that

∣∣(Jnf
)
(v)
∣∣ ≤ (1 + log|v|)∥∥f∥∥w. (2.52)
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Using (2.51) and (2.52), we obtain

∥∥(Mψ −MψKn

)
f
∥∥
L =
∥∥(ψJnf)

∥∥
L

= sup
|v|>n

∣∣ψ(v)(Jnf
)
(v) − ψ(v−)(Jnf

)(
v−
)∣∣

≤ sup
|v|>n

[∣∣(Jnf
)
(v)
∣∣Dψ(v) + ∣∣ψ(v−)∣∣D(Jnf

)
(v)
]

= sup
|v|>n

[∣∣(Jnf
)
(v)
∣∣Dψ(v) +

∣∣ψ(v−)∣∣
|v| |v|D(Jnf

)
(v)

]

≤ sup
|v|≥n

[
(
1 + log|v|)Dψ(v) +

∣∣ψ(v)∣∣
|v| + 1

]∥∥f∥∥w

≤ sup
|v|≥n

[
log|v|Dψ(v)1 + log|v|

log|v| +

∣∣ψ(v)∣∣
|v| + 1

]∥∥f∥∥w

≤
[
sup
|v|≥n

log|v|Dψ(v)1 + log n
log n

+ sup
|v|≥n

∣∣ψ(v)∣∣
|v| + 1

]∥∥f∥∥w.

(2.53)

Since

∥∥Mψ

∥∥
e
≤ lim sup

n→∞

∥∥Mψ −MψKn

∥∥ = lim sup
n→∞

sup
‖f‖w=1

∥∥(Mψ −MψKn

)
f
∥∥
L, (2.54)

taking the limit as n → ∞, we obtain

∥∥Mψ

∥∥
e
≤ B(ψ) +A(ψ), (2.55)

as desired.

3. Multiplication Operators from L to Lw

We begin this sectionwith a boundedness criterion for the multiplication operators fromMψ :
L → Lw andMψ : L0 → Lw,0.

3.1. Boundedness and Operator Norm Estimates

Let ψ be a function on the tree T . Define the quantities

θψ = sup
v∈T ∗

|v|2Dψ(v),

ωψ = sup
v∈T

(|v| + 1)
∣∣ψ(v)∣∣.

(3.1)
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Theorem 3.1. For a function ψ on T , the following statements are equivalent:
(a) Mψ : L → Lw is bounded.
(b) Mψ : L0 → Lw,0 is bounded.
(c) θψ and ωψ are finite.

Furthermore, under the above conditions, one has

max
{
θψ, ωψ

} ≤ ∥∥Mψ

∥∥ ≤ θψ +ωψ. (3.2)

Proof. (a)⇒(c) Assume Mψ is bounded from L to Lw. The function fo = (1/2)χo ∈ L and
‖fo‖L = 1. Thus

∣∣ψ(o)∣∣ = ‖ψfo‖w ≤ ‖Mψ‖. (3.3)

Next, fix v ∈ T∗. Then χv ∈ L and ‖χv‖L = 1; so

(|v| + 1)
∣∣ψ(v)∣∣ = ∥∥ψχv

∥∥
w ≤ ∥∥Mψ

∥∥. (3.4)

Taking the supremum over all v ∈ T , from (3.3) and (3.4) we see that ωψ is finite and

ωψ ≤ ∥∥Mψ

∥∥. (3.5)

With v ∈ T∗, we now define

fv(w) =

⎧
⎨
⎩
|w| if |w| < |v|,
|v| if |w| ≥ |v|.

(3.6)

Then fv ∈ L, fv(o) = 0 and ‖fv‖L = 1. By the boundedness ofMψ we obtain

∥∥Mψ

∥∥ ≥ ∥∥Mψfv
∥∥
w

≥ sup
1≤|w|≤|v|

|w|∣∣ψ(w)|w| − ψ(w−)(|w| − 1)
∣∣

≥ sup
1≤|w|≤|v|

|w|2Dψ(w) − sup
1≤|w|≤|v|

|w|∣∣ψ(w−)∣∣.

(3.7)
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Therefore,

|v|2Dψ(v) ≤ sup
1≤|w|≤|v|

|w|2Dψ(w) ≤ ∥∥Mψ

∥∥ +ωψ. (3.8)

Taking the supremum over all v ∈ T∗, we obtain θψ < ∞. From this and (3.5), we deduce the
lower estimate

∥∥Mψ

∥∥ ≥ max
{
θψ, ωψ

}
. (3.9)

(c)⇒(a)Assume θψ andωψ are finite. Then, ψ ∈ Lw, and by Lemma 1.1, for f ∈ Lwith
‖f‖L = 1 and v ∈ T∗, we have

|v|D(ψf)(v) ≤ |v|Dψ(v)∣∣f(v)∣∣ + |v|∣∣ψ(v−)∣∣Df(v)

≤ |v|Dψ(v)∣∣f(o)∣∣ + |v|2Dψ(v)∥∥Df∥∥∞ +ωψ

∥∥Df∥∥∞
≤ |v|Dψ(v)∣∣f(o)∣∣ + (θψ +ωψ

)∥∥Df∥∥∞.
(3.10)

Thus, ψf ∈ Lw. Note that |f(o)| + ‖Df‖∞ = 1 and

∥∥ψ∥∥w =
∣∣ψ(o)∣∣ + sup

v∈T ∗
|v|Dψ(v) ≤ ωψ + sup

v∈T ∗
|v|2Dψ(v) = ωψ + θψ. (3.11)

From this, we have

∥∥ψf∥∥w ≤ ∥∥ψ∥∥w
∣∣f(o)∣∣ + (θψ +ωψ

)∥∥Df∥∥∞ ≤ θψ +ωψ, (3.12)

proving the boundedness ofMψ : L → Lw and the upper estimate

∥∥Mψ

∥∥ ≤ θψ +ωψ. (3.13)

(b)⇒(c) The proof is the same as for (a)⇒(c); since for v ∈ T∗, the functions χv and fv
used there belong to L0.

(c)⇒(b) Assume θψ and ωψ are finite, and let f ∈ L0. Then, by Lemma 1.1, for v ∈ T∗,
we have

|v|D(ψf)(v) ≤ |v|Dψ(v)∣∣f(v)∣∣ + |v|∣∣ψ(v−)∣∣Df(v)

≤ |v|2Dψ(v)
∣∣f(v)∣∣
|v| + |v|∣∣ψ(v−)∣∣Df(v)

≤ θψ
∣∣f(v)∣∣
|v| +ωψDf(v) −→ 0

(3.14)

as |v| → ∞. Thus, ψf ∈ Lw,0. The proof of the boundedness of Mψ is similar to that in
(c)⇒(a).
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3.2. Isometries

In this section, we show there are no isometric multiplication operatorsMψ from the spaceL
to Lw or from L0 to Lw,0.

SupposeMψ : L → Lw is an isometry. Then ‖ψ‖w = ‖Mψ1‖w = 1. On the other hand,

∣∣ψ(o)∣∣ = 1
2
∥∥ψχo
∥∥
w =

1
2
∥∥χo
∥∥
L = 1. (3.15)

Thus supv∈T ∗ |v|Dψ(v) = ‖ψ‖w − |ψ(o)| = 0, which implies that ψ is a constant of modulus 1.
Now observe that, for v ∈ T∗, we have

1 =
∥∥χv
∥∥
L =
∥∥Mψχ

∥∥
w = (|v| + 1)

∣∣ψ(v)∣∣ = |v| + 1, (3.16)

which is a contradiction. Since χv ∈ L0 for all v ∈ T , ifMψ : L0 → Lw,0 is an isometry, then
the above argument yields again a contradiction. Thus, we proved the following result.

Theorem 3.2. There are no isometriesMψ from L to Lw or from L0 to Lw,0.

3.3. Compactness and Essential Norm

We now characterize the compact multiplication operators, but first we give a useful com-
pactness criterion for multiplication operators from L to Lw or from L0 to Lw,0.

Lemma 3.3. A bounded multiplication operator Mψ from L to Lw (L0 to Lw,0) is compact if and
only if for every bounded sequence {fn} in L (L0) converging to 0 pointwise, the sequence ‖ψfn‖w
converges to 0 as n → ∞.

Proof. SupposeMψ is compact fromL toLw and {fn} is a bounded sequence inL converging
to 0 pointwise. Without loss of generality, we may assume ‖fn‖L ≤ 1 for all n ∈ �. SinceMψ

is compact, the sequence {ψfn} has a subsequence {ψfnk} that converges in the Lw-norm to
some function f ∈ Lw.

By Lemma 1.3, for v ∈ T∗ we have

∣∣ψ(v)fnk (v) − f(v)
∣∣ ≤ (1 + log|v|)∥∥ψfnk − f

∥∥
w. (3.17)

Thus, ψfnk → f pointwise on T∗. Furthermore, since |ψ(o)fnk (o) − f(o)| ≤ ‖ψfnk − f‖w,
ψ(0)fnk (0) → f(0) as k → ∞. Thus ψfnk → f pointwise on T . Since by assumption, fn → 0
pointwise, it follows that f is identically 0, and thus ‖ψfnk‖w → 0. Since 0 is the only limit
point in Lw of the sequence {ψfn}, we deduce that ‖ψfn‖w → 0 as n → ∞.

Conversely, suppose that every bounded sequence {fn} in L that converges to 0
pointwise has the property that ‖ψfn‖w → 0 as n → ∞. Let {gn} be a sequence inL such that
‖gn‖L ≤ 1 for all n ∈ �. Then |gn(o)| ≤ 1, and by part (a) of Lemma 1.1, for v ∈ T∗ we have
|gn(v)| ≤ |v|. So {gn} is uniformly bounded on finite subsets of T . Thus there is a subsequence
{gnk}, which converges pointwise to some function g.
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Fix ε > 0 and v ∈ T∗. Then |gnk(v) − g(v)| < ε/2 as well as |gnk(v−) − g(v−)| < ε/2 for k
sufficiently large. Therefore, for all k sufficiently large, we have

Dg(v) ≤ ∣∣g(v) − gnk (v)
∣∣ + ∣∣gnk

(
v−
) − g(v−)∣∣ +Dgnk (v) < ε +Dgnk (v). (3.18)

Thus g ∈ L. The sequence fnk = gnk − g is bounded in L and converges to 0 pointwise. So
‖ψfnk‖w → 0 as k → ∞. Thus ψgnk → ψg in the Lw-norm. Therefore,Mψ is compact.

The proof for the case ofMψ : L0 → Lw,0 is similar.

Theorem 3.4. LetMψ be a bounded multiplication operator from L to Lw (or equivalently from L0

to Lw,0). Then the following are equivalent:
(a) Mψ : L → Lw is compact.
(b) Mψ : L0 → Lw,0 is compact.
(c) lim|v| →∞|v|2Dψ(v) = 0 and lim|v| →∞(|v| + 1)|ψ(v)| = 0.

Proof. (a)⇒(c) Suppose Mψ : L → Lw is compact. We need to show that if {vn} is
a sequence in T such that 2 ≤ |vn| increasing unboundedly, then limn→∞|vn|2Dψ(vn) = 0
and limn→∞(|vn| + 1)|ψ(vn)| = 0. Let {vn} be such a sequence, and for n ∈ � define
fn = ((|vn| + 1)/|vn|)χvn . Clearly fn → 0 pointwise, and ‖fn‖L ≤ 3/2. Using Lemma 3.3,
we see that

∥∥ψfn
∥∥
w −→ 0 as n −→ ∞. (3.19)

On the other hand, since fn(o) = 0 for all n ∈ �, we have

∥∥ψfn
∥∥
w = sup

v∈T ∗
|v|D(ψfn

)
(v) ≥ |vn|

( |vn| + 1
|vn|
)∣∣ψ(vn)

∣∣ = (|vn| + 1)
∣∣ψ(vn)

∣∣. (3.20)

Hence limn→∞(|vn| + 1)|ψ(vn)| = 0.
Next, for n ∈ �, define

gn(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |v| <
⌊ |vn|

2

⌋
,

2|v| − |vn| + 2 if
⌊ |vn|

2

⌋
≤ |v| < |vn|,

|vn| if |v| ≥ |vn|,

(3.21)

where �x� denotes the largest integer less than or equal to x. Then gn → 0 pointwise, and
‖gn‖L = 2. Since gn(vn) = gn(v−n) = |vn|, we have

∥∥ψgn
∥∥
w
≥ |vn|
∣∣ψ(vn)gn(vn) − ψ

(
v−n
)
gn
(
v−n
)∣∣ = |vn|2Dψ(vn). (3.22)

By Lemma 3.3 we obtain limn→∞|vn|2Dψ(vn) ≤ limn→∞‖ψgn‖w = 0.
(c)⇒(a) Suppose lim|v| →∞|v|2Dψ(v) = 0 and lim|v|→∞(|v| + 1)|ψ(v)| = 0. Assume ψ is

not identically zero, otherwise Mψ is trivially compact. By Lemma 3.3, to prove that Mψ is
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compact, it suffices to show that if {fn} is a bounded sequence inL converging to 0 pointwise,
then ‖ψfn‖w → 0 as n → ∞. Let {fn} be such a bounded sequence, s = supn∈�‖fn‖L, and fix
ε > 0. There existsM ∈ � such that (|v| + 1)|ψ(v)| < ε/2s and |v|2Dψ(v) < ε/2s for |v| ≥ M.
For v ∈ T∗ and by Lemma 1.1, we have

|v|D(ψfn
)
(v) ≤ |v|∣∣ψ(v)∣∣Dfn(v) + |v|Dψ(v)∣∣fn

(
v−
)∣∣

≤ |v|∣∣ψ(v)∣∣Dfn(v) + |v|Dψ(v)(∣∣fn(o)
∣∣ + |v|∥∥Dfn

∥∥
∞
)

≤ (|v| + 1)
∣∣ψ(v)∣∣Dfn(v) + |v|2Dψ(v)(∣∣fn(o)

∣∣ + ∥∥Dfn
∥∥
∞
)

= (|v| + 1)
∣∣ψ(v)∣∣Dfn(v) + |v|2Dψ(v)∥∥fn

∥∥
L.

(3.23)

Since fn → 0 uniformly on {v ∈ T : |v| ≤ M} as n → ∞, so does Dfn. So, on the set {v ∈ T :
|v| ≤M}, |v|D(ψfn)(v) → 0 as n → ∞. On the other hand, on {v ∈ T : |v| ≥M}, we have

|v|D(ψfn
)
(v) ≤ (|v| + 1)

∣∣ψ(v)∣∣Dfn(v) + |v|2Dψ(v)∥∥fn
∥∥
L < ε. (3.24)

So |v|D(ψfn)(v) → 0 as n → ∞. Since fn → 0 pointwise, ψ(o)fn(o) → 0 as n → ∞. Thus
‖ψfn‖w → 0 as n → ∞. The compactness ofMψ follows at once from Lemma 3.3.

The proof of the equivalence of (b) and (c) is analogous.

For ψ a function on T , define

A(ψ) = lim
n→∞

sup
|v|≥n

|v|∣∣ψ(v)∣∣,

B(ψ) = lim
n→∞

sup
|v|≥n

|v|2Dψ(v).
(3.25)

Theorem 3.5. LetMψ be a bounded multiplication operator from L to Lw. Then

∥∥Mψ

∥∥
e
≥ max

{
A(ψ), 1

2
B(ψ)
}
. (3.26)

Proof. Fix k ∈ �, and for each n ∈ �, consider the sets

En,k = {v ∈ T : n ≤ |v| ≤ kn, |v| even},
On,k = {v ∈ T : n ≤ |v| ≤ kn, |v| odd}.

(3.27)

Define the functions fn,k = χEn,k and gn,k = χOn,k . Then fn,k, gn,k ∈ L0, ‖fn,k‖L = ‖gn,k‖L = 1,
and fn,k and gn,k approach 0 pointwise as n → ∞. By Lemma 1.2, the sequences {fn,k} and
{gn,k} approach 0 weakly in L0 as n → ∞. Let K0 be the set of compact operators from L0

to Lw,0, and note that every operator in K0 is completely continuous. Thus, if K ∈ K0, then
‖Kfn,k‖w → 0 and ‖Kgn,k‖w → 0, as n → ∞.
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Therefore, if K ∈ K0, then

∥∥Mψ −K∥∥ ≥ lim sup
n→∞

∥∥(Mψ −K)fn,k
∥∥
w

≥ lim sup
n→∞

∥∥Mψfn,k
∥∥
w

≥ lim sup
n→∞

sup
v∈En,k

(|v| + 1)
∣∣ψ(v)∣∣.

(3.28)

Similarly,

∥∥Mψ −K∥∥ ≥ lim sup
n→∞

sup
v∈On,k

(|v| + 1)
∣∣ψ(v)∣∣. (3.29)

Therefore, combining (3.28) and (3.29), we obtain

∥∥Mψ

∥∥
e
= inf
{∥∥Mψ −K∥∥ : K ∈ K0

}

≥ lim sup
n→∞

sup
kn≥|v|≥n

(|v| + 1)
∣∣ψ(v)∣∣

≥ lim sup
n→∞

sup
kn≥|v|≥n

|v|∣∣ψ(v)∣∣.

(3.30)

Letting k → ∞, we obtain ‖Mψ‖e ≥ A(ψ).
Next, we wish to show that ‖Mψ‖e ≥ (1/2)B(ψ). The result is clearly true if B(ψ) = 0.

So assume there exists a sequence {vn} in T such that 2 < |vn| → ∞ as n → ∞ and

lim
n→∞

|vn|2Dψ(vn) = B(ψ). (3.31)

For n ∈ �, define

hn(v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v = o,

(|v| + 1)2

|vn| if 1 ≤ |v| < |vn|,
|vn| if |v| ≥ |vn|.

(3.32)

Clearly, hn(o) = 0, hn(vn) = hn(v−n) = |vn|, and

Dhn(v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4
|vn| if |v| = 1,

2|v| + 1
|vn| if 1 < |v| < |vn|,

0 if |v| ≥ |vn|.

(3.33)
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The supremum of Dhn(v) is attained on the set {v ∈ T : |v| = |vn| − 1}. Thus ‖hn‖L = (2|vn| −
1)/|vn| < 2. Define gn = hn/‖hn‖L, and observe that gn ∈ L0, ‖gn‖L = 1, and gn → 0 pointwise
on T . By Lemma 1.2, gn → 0 weakly in L0. Thus ‖Kgn‖w → 0 as n → ∞ for any K ∈ K0.

For each n ∈ �, gn(vn) = gn(v−n) = |vn|2/(2|vn| − 1). Thus

|vn|D
(
ψgn
)
(vn) = |vn|

∣∣ψ(vn)gn(vn) − ψ
(
v−n
)
gn
(
v−n
)∣∣

=
|vn|

2|vn| − 1
|vn|2Dψ(vn).

(3.34)

We deduce that

∥∥Mψ

∥∥
e
= inf
{∥∥Mψ −K∥∥ : K ∈ K0

}

≥ lim sup
n→∞

∥∥(Mψ −K)gn
∥∥
w

≥ lim sup
n→∞

∥∥Mψgn
∥∥
w

≥ lim
n→∞

sup
v∈T ∗

|v|D(ψgn
)
(v)

≥ lim
n→∞

|vn|D
(
ψgn
)
(vn)

= lim
n→∞

|vn|
2|vn| − 1

|vn|2Dψ(vn) ≥ 1
2
B(ψ).

(3.35)

Therefore,

∥∥Mψ

∥∥
e
≥ max

{
A(ψ), 1

2
B(ψ)
}
. (3.36)

We next derive an upper estimate on the essential norm.

Theorem 3.6. LetMψ be a bounded multiplication operator from L to Lw. Then

∥∥Mψ

∥∥
e
≤ A(ψ) + B(ψ). (3.37)

Proof. For each n ∈ �, consider the operatorKn defined by

(
Knf
)
(v) =

⎧
⎨
⎩
f(v) if |v| ≤ n,
f(vn) if |v| > n,

(3.38)

for f ∈ L, where vn is the ancestor of v of length n. Then (Knf)(o) = f(o), and Knf ∈ Lw,0.
Arguing as in the proof of Theorem 2.8, by the boundedness of Mψ , it follows thatMψKn is
a compact operator from L to Lw.
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Define the operator Jn = I −Kn, where I is the identity operator I on L. Then,

D
(
Jnf
)
(v) ≤ Df(v) ≤ ∥∥f∥∥L. (3.39)

Since (Jnf)(v) = 0 for |v| ≤ n, by Lemma 1.1, we obtain

∣∣(Jnf
)
(v)
∣∣ ≤ |v|∥∥f∥∥L. (3.40)

From these two estimates, we arrive at

∥∥MψJnf
∥∥
w = sup

|v|>n
|v|∣∣ψ(v)(Jnf

)
(v) − ψ(v−)(Jnf

)(
v−
)∣∣

≤ sup
|v|>n

[|v|Dψ(v)∣∣(Jnf
)
(v)
∣∣ + |v|∣∣ψ(v−)∣∣D(Jnf

)
(v)
]

≤ sup
|v|>n

|v|2Dψ(v)
∣∣(Jnf
)
(v)
∣∣

|v| + sup
|v|>n

|v|∣∣ψ(v−)∣∣D(Jnf
)
(v)

≤ sup
|v|>n

|v|2Dψ(v)
∥∥f∥∥L + sup

|v|>n
|v|
∣∣ψ(v−)∣∣∥∥f∥∥L.

(3.41)

Since

∥∥Mψ

∥∥
e
≤ lim sup

n→∞

∥∥Mψ −MψKn

∥∥

= lim sup
n→∞

sup
‖f‖L=1

∥∥(Mψ −MψKn

)
f
∥∥
w

= lim sup
n→∞

sup
‖f‖L=1

∥∥MψJnf
∥∥
w,

(3.42)

from (3.41), taking the limit as n → ∞, we obtain

∥∥Mψ

∥∥
e
≤ B(ψ) +A(ψ), (3.43)

as desired.

4. Multiplication Operators from Lw or Lw,0 to L∞

In this section, we study the multiplication operatorsMψ from the weighted Lipschitz space
or the little weighted Lipschitz space into L∞. We begin by characterizing the bounded
operators and determining their operator norm. In addition, we characterize the bounded
operators that are bounded from below and show that there are no isometries among them.
Finally, we characterize the compact multiplication operators and determine the essential
norm.
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4.1. Boundedness and Operator Norm

For a function ψ on T , define

γψ = max

{∣∣ψ(o)∣∣, sup
v∈T ∗

(
1 + log|v|)∣∣ψ(v)∣∣

}
. (4.1)

Theorem 4.1. For a function ψ on T , the following statements are equivalent:
(a) Mψ : Lw → L∞ is bounded.
(b) Mψ : Lw,0 → L∞ is bounded.
(c) supv∈T ∗ log |v‖ψ(v)| is finite.

Furthermore, under the above conditions, one has ‖Mψ‖ = γψ .

Proof. The implication (a)⇒(b) is obvious.
(b)⇒(a)We begin by showing that, for each f ∈ Lw, the function ψf is bounded. Since

Mψ is bounded on Lw,0, ψ = Mψ1 ∈ L∞. Thus, if f is constant, then ψf ∈ L∞. Fix f ∈ Lw, f
nonconstant, v ∈ T, and set n = |v|. For w ∈ T , define

fn(w) =

⎧
⎨
⎩
f(w) if |w| ≤ n,
f(wn) if |w| > n,

(4.2)

wherewn is the ancestor ofw of length n. Then fn ∈ Lw,0, and ‖fn‖w ≤ ‖f‖w. Thus, ψfn ∈ L∞

and

∥∥ψfn
∥∥
∞ ≤ ∥∥Mψ

∥∥∥∥f∥∥w. (4.3)

So |ψ(v)f(v)| = |ψ(v)fn(v)| ≤ ‖Mψ‖‖f‖w. Therefore, ψf ∈ L∞ and

∥∥ψf∥∥∞ ≤ ∥∥Mψ

∥∥∥∥f∥∥w, (4.4)

proving the boundedness ofMψ as an operator from Lw to L∞.
(a)⇒(c) AssumeMψ : Lw → L∞ is bounded. Then ψ =Mψ1 ∈ L∞, and

∥∥Mψ

∥∥ ≥ ∥∥ψ∥∥∞ ≥ ∣∣ψ(o)∣∣. (4.5)

For v ∈ T , define f(v) = log(1 + |v|). Then f(o) = 0, and since for x ≥ 1 the function x �→
x log((x + 1)/x) is increasing and has limit 1 as x → ∞, f ∈ Lw and ‖f‖w = 1. Thus

∥∥Mψ

∥∥ ≥ ∥∥ψf∥∥∞ = sup
v∈T ∗

log(1 + |v|)∣∣ψ(v)∣∣, (4.6)

proving (c). Furthermore, from (4.5) and (4.6), we obtain

∥∥Mψ

∥∥ ≥ γψ. (4.7)
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(c)⇒(a) Assume supv∈T ∗ log |v||ψ(v)| < ∞. Let f ∈ Lw such that ‖f‖w = 1. Then
|ψ(o)f(o)| ≤ |ψ(o)|, and by Lemma 1.3, for v ∈ T∗, we have

∣∣ψ(v)f(v)∣∣ ≤ (1 + log|v|)∣∣ψ(v)∣∣ ≤ γψ. (4.8)

Thus, ψf ∈ L∞ and

∥∥ψf∥∥∞ ≤ γψ, (4.9)

proving the boundedness ofMψ as an operator fromLw to L∞. Taking the supremumover all
functions f ∈ Lw such that ‖f‖w = 1, from (4.9) we obtain ‖Mψ‖ ≤ γψ . Therefore, from (4.7)
we conclude that ‖Mψ‖ = γψ .

4.2. Boundedness from Below

Recall that an operator S from a Banach spaceX to a Banach space Y is bounded below if there
exists a constant C > 0 such that for all x ∈ X

‖Sx‖ ≥ C‖x‖. (4.10)

Theorem 4.2. A bounded multiplication operator Mψ from Lw or Lw,0 to L∞ is bounded below if
and only if

inf
v∈T

∣∣ψ(v)∣∣
|v| + 1

> 0. (4.11)

Proof. AssumeMψ is bounded below, and, arguing by contradiction, assume there exists v ∈
T such that ψ(v) = 0. Then Mψχv is identically 0. Since operators that are bounded below
are necessarily injective [8], it follows that Mψ is not bounded below. Therefore, if Mψ is
bounded below, then ψ is nonvanishing.

Next assume ψ is nonvanishing and infv∈T |ψ(v)|/(|v| + 1) = 0. Then, there exists
a sequence {vn} in T with 1 ≤ |vn| → ∞, such that |ψ(vn)|/(|vn| + 1)→ 0 as n → ∞. For
n ∈ �, define fn = (1/(|vn| + 1))χvn . Then ‖fn‖w = 1, but

‖ψfn‖∞ =

∣∣ψ(vn)
∣∣

|vn| + 1
−→ 0. (4.12)

Thus,Mψ is not bounded below.
Conversely, assume infv∈T |ψ(v)|/(|v| + 1) = c > 0 and thatMψ is not bounded below.

Then, for each n ∈ �, there exists fn ∈ Lw such that ‖fn‖w = 1 and ‖ψfn‖∞ < 1/n. Then, for
each v ∈ T , we have

c(|v| + 1)
∣∣fn(v)

∣∣ ≤ ∣∣ψ(v)fn(v)
∣∣ < 1

n
, (4.13)
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so that the sequence {gn} defined by gn(v) = (|v| + 1)fn(v) converges to 0 uniformly.
On the other hand, for v ∈ T∗, we have

|v|Dfn(v) =
∣∣∣∣

|v|
|v| + 1

gn(v) − gn
(
v−
)∣∣∣∣

≤ ∣∣gn(v)
∣∣ + ∣∣gn

(
v−
)∣∣ −→ 0

(4.14)

uniformly as n → ∞. Since |ψ(o)fn(o)| < 1/n, yet ‖fn‖w = 1, this yields a contradiction.

4.3. Isometries

In this section, we show there are no isometries among the multiplication operators from the
spaces Lw or Lw,0 into L∞.

Suppose Mψ is an isometry from Lw or Lw,0 to L∞. Then, for v ∈ T the function fv =
(1/(|v| + 1))χv is in Lw,0, ‖fv‖w = 1, and

1
|v| + 1

∣∣ψ(v)∣∣ = ∥∥Mψfv
∥∥
∞ =
∥∥fv
∥∥
w = 1. (4.15)

Thus, |ψ(v)| = |v| + 1. On the other hand, since Mψ is bounded, by Theorem 4.1, we have
supv∈T ∗ log |v||ψ(v)| < ∞; so ψ(v) → 0 as |v| → ∞, which yields a contradiction. Thus, we
proved the following result.

Theorem 4.3. There are no isometric multiplication operatorsMψ from Lw or Lw,0 to L∞.

4.4. Compactness and Essential Norm

We begin by giving a useful compactness criterion for the bounded operators from Lw or
Lw,0 into L∞.

Lemma 4.4. A bounded multiplication operatorMψ fromLw to L∞ is compact if and only if for every
bounded sequence {fn} in Lw converging to 0 pointwise, the sequence ‖ψfn‖∞ approaches 0 as n →
∞.

Proof. AssumeMψ is compact on Lw, and let {fn} be a bounded sequence in Lw converging
to 0 pointwise. By rescaling the sequence, if necessary, wemay assume ‖fn‖w ≤ 1 for all n ∈ �.
By the compactness of Mψ , {fn} has a subsequence {fnk} such that {ψfnk} converges in the
norm to some function f ∈ L∞. In particular,ψfnk → f pointwise. Since by assumption, fn →
0 pointwise, it follows that f must be identically 0. Thus, the only limit point of sequence
{ψfn} in L∞ is 0. Hence ‖ψfn‖∞ → 0.

Conversely, assume that for every bounded sequence {fn} in Lw converging to 0
pointwise, the sequence ‖ψfn‖∞ approaches 0 as n → ∞. Let {gn} be a sequence in Lw

with ‖gn‖w ≤ 1. Fix w ∈ T , and, by replacing gn with gn − gn(w), assume gn(w) = 0
for all n ∈ �. Then, for each v ∈ T , |gn(v)| = |gn(v) − gn(w)| ≤ d(v,w). Therefore, gn
is uniformly bounded on finite subsets of T , and so some subsequence {gnk}k∈� converges
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pointwise to some function g on T . Fix ε > 0 and v ∈ T∗. Then, |g(o) − gnk(o)| < ε/2,
|gnk (v) − g(v)| < ε/(2|v|), and |gnk(v−) − g(v−)| < ε/(2|v|) for all k sufficiently large. Thus,

|v|Dg(v) ≤ |v|∣∣g(v) − g(v−) − (gnk (v) − gnk
(
v−
))∣∣ + |v|Dgnk (v)

< ε + |v|Dgnk (v),
(4.16)

for k sufficiently large. Consequently, g ∈ Lw, we have

∥∥g∥∥w =
∣∣g(o)∣∣ + sup

v∈T ∗
|v|Dg(v)

≤ ∣∣g(o) − gnk (o)
∣∣ + ∣∣gnk (o)

∣∣ + ε + sup
v∈T ∗

Dgnk (v)

< 2ε +
∥∥gnk
∥∥
w ≤ 2ε + 1.

(4.17)

Since ε was arbitrary, it follows that ‖g‖w ≤ 1. Therefore, the sequence {fk} defined by fk =
gnk −g is bounded inLw and converges to 0 pointwise, hence, by the hypothesis, ‖ψfk‖∞ → 0
as n → ∞. We conclude that ψgnk → ψg in L∞, proving the compactness ofMψ .

By an analogous argument, we obtain the corresponding compactness criterion for
Mψ : Lw,0 → L∞.

Lemma 4.5. A bounded multiplication operator Mψ from Lw,0 to L∞ is compact if and only if for
every bounded sequence {fn} in Lw,0 converging to 0 pointwise, the sequence ‖ψfn‖∞ approaches 0
as n → ∞.

Theorem 4.6. For a bounded operator Mψ from Lw to L∞ (or equivalently from Lw,0 to L∞) the
following statements are equivalent:

(a) Mψ : Lw → L∞ is compact.
(b) Mψ : Lw,0 → L∞ is compact.
(c) lim|v| →∞ log |v||ψ(v)| = 0.

Proof. (a)⇒(b) is trivial.
(b)⇒(c): Let {vn} be a sequence of vertices such that 1 ≤ |vn| → ∞ as n → ∞. We need

to show that

lim
n→∞

log|vn|
∣∣ψ(vn)

∣∣ = 0. (4.18)

For n ∈ � define

fn(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v = o,

(
log|v|)2
log|vn| if 1 ≤ |v| < |vn|,

log|vn| if |v| ≥ |vn|.

(4.19)



28 International Journal of Mathematics and Mathematical Sciences

Then {fn} converges to 0 pointwise. Using the fact that (|v| − 1)(log |v| − log(|v| − 1)) ≤ 1 for
any choice of v in T∗ with |v| > 1, we have

|v|Dfn(v) = |v|
|v| − 1

(|v| − 1)
[(
log|v|)2 − (log(|v| − 1)

)2]

log|vn| ≤ 2
(
log|v| + log(|v| − 1)

)

log|vn| ≤ 4, (4.20)

for 2 ≤ |v| ≤ |vn|. Moreover, |v|Dfn(v) = 0 for |v| = 1 and for |v| > |vn|. Thus, fn ∈ Lw,0,
and {‖fn‖w} is bounded. By the compactness of Mψ as an operator from Lw,0 to L∞ and by
Lemma 4.5, we deduce

log|vn|
∣∣ψ(vn)

∣∣ ≤ ∥∥ψfn
∥∥
∞ −→ 0 (4.21)

as n → ∞.
(c)⇒(a) Assume {fn} is a sequence in Lw converging to 0 pointwise and such that a =

supn∈�‖fn‖w <∞. By Lemma 1.3, for all v ∈ T∗ and all n ∈ �, we have

∣∣ψ(v)fn(v)
∣∣ ≤ a(1 + log|v|)∣∣ψ(v)∣∣. (4.22)

Fix ε > 0. There existsN ∈ � such thatN ≥ 3, and for |v| ≥ N, log |v||ψ(v)| < ε/2a. Thus, for
|v| ≥ N and for all n ∈ �, |ψ(v)fn(v)| ≤ 2a log |v||ψ(v)| < ε. On the other hand, since fn → 0
pointwise, for each vertex v such that |v| < N and ψ(v)/= 0, we obtain |fn(v)| < ε/|ψ(v)| for all
n sufficiently large. Hence |ψ(v)fn(v)| < ε for all v ∈ T and all n sufficiently large. Therefore,
‖Mψfn‖∞ → 0 as n → ∞, which, by Lemma 4.4, proves the compactness ofMψ .

Next, we determine the essential norm of the bounded multiplication operators Mψ

from Lw or Lw,0 to L∞.

Theorem 4.7. LetMψ be a bounded multiplication operator from Lw or Lw,0 to L∞. Then

∥∥Mψ

∥∥
e
= lim

n→∞
sup
|v|≥n

log|v|∣∣ψ(v)∣∣. (4.23)

Proof. Define A(ψ) = limn→∞sup|v|≥n log |v||ψ(v)|. If A(ψ) = 0, then by Theorem 4.6, Mψ is
compact, hence its essential norm is 0. So assumeA(ψ) > 0. We first show that ‖Mψ‖e ≥ A(ψ).
Let {vn} be a sequence in T such that 1 ≤ |vn| → ∞ as n → ∞ and

A
(
ψ
)
= lim

n→∞
log|vn|

∣∣ψ(vn)
∣∣. (4.24)

Fix p ∈ (0, 1), and for each n ∈ �, define

fn,p(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v = o,

(
log|v|)p+1(
log|vn|

)p if 1 ≤ |v| < |vn|,

log|vn| if |v| ≥ |vn|.

(4.25)
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Then {fn,p} converges to 0 pointwise, fn,p ∈ Lw,0, fn,p(vn) = log |vn|, and

∥∥fn,p
∥∥
w = sup

2≤|v|≤|vn|

|v|(
log|vn|

)p
[(
log|v|)p+1 − (log(|v| − 1)

)p+1]

=
|vn|(

log|vn|
)p
[(
log|vn|

)p+1 − (log(|vn| − 1)
)p+1] ≤ p + 1.

(4.26)

By Lemma 1.4, {fn,p} converges to 0 weakly in Lw,0. Let K be a compact operator from Lw,0

(or equivalently, from Lw) to L∞. Since compact operators are completely continuous, it
follows that ‖Kfn,p‖∞ → 0 as n → ∞. Thus,

∥∥Mψ −K∥∥ ≥ lim sup
n→∞

∥∥(Mψ −K)fn,p
∥∥
∞

‖fn,p‖w

≥ 1
p + 1

lim sup
n→∞

∥∥Mψfn,p
∥∥
∞

≥ 1
p + 1

lim sup
n→∞

log|vn|
∣∣ψ(vn)

∣∣.

(4.27)

Taking the infimum over all such compact operators K and passing to the limit as p ap-
proaches 0, we obtain

∥∥Mψ

∥∥
e
≥ lim

n→∞
log|vn|

∣∣ψ(vn)
∣∣ = A(ψ). (4.28)

To prove the estimate ‖Mψ‖e ≤ A(ψ), for each n ∈ � and for f ∈ Lw, define

Knf(v) =

⎧
⎨
⎩
f(v) if |v| ≤ n,
f(vn) if |v| > n,

(4.29)

where vn is the ancestor of v of length n. In the proof of Theorem 2.8, it is was shown thatKn

is a compact operator on Lw. SinceMψ : Lw → L∞ is bounded, it follows thatMψKn is also
compact as an operator from Lw to L∞.

Let v ∈ T , and let w be a vertex in the path from o to v of length k ≥ 1. Label the
vertices fromw to v by vj , j = k, . . . , |v|. Then for f ∈ Lw with ‖f‖w = 1, we have

∣∣f(v) − f(w)
∣∣ ≤

|v|∑
j=k+1

∣∣f(vj
) − f(vj−1

)∣∣ ≤
|v|∑

j=k+1

1
j
≤ log|v|. (4.30)

Thus

∥∥(Mψ −MψKn

)
f
∥∥
∞ = sup

|v|>n

∣∣ψ(v)∣∣∣∣f(v) − f(vn)
∣∣ ≤ sup

|v|>n
log|v|∣∣ψ(v)∣∣. (4.31)
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We deduce

∥∥Mψ

∥∥
e
≤ sup

‖f‖w=1

∥∥(Mψ −MψKn

)
f
∥∥
∞ ≤ sup

|v|>n
log|v|∣∣ψ(v)∣∣. (4.32)

Taking the limit as n → ∞, we obtain ‖Mψ‖e ≤ A(ψ).

5. Multiplication Operators from L∞ to Lw or Lw,0

In this last section, we study the multiplication operatorsMψ from L∞ into the weighted Lip-
schitz space or the little weighted Lipschitz space. We first characterize the bounded
operators and determine the operator norm. We also show there are no isometries among
such operators. Finally, we characterize the compact multiplication operators and determine
the essential norm.

5.1. Boundedness and Operator Norm

For a function ψ on T , define

ηψ =
∣∣ψ(o)∣∣ + sup

v∈T ∗
|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣]. (5.1)

Theorem 5.1. For a function ψ on T , the following statements are equivalent:
(a) Mψ : L∞ → Lw is bounded.
(b) supv∈T |v||ψ(v)| < ∞.

Furthermore, under these conditions, one has

∥∥Mψ

∥∥ = ηψ. (5.2)

Proof. (a)⇒(b)AssumeMψ : L∞ → Lw is bounded. Fix v ∈ T∗. Since χv ∈ L∞ and ‖χv‖∞ = 1,
the function ψχv ∈ Lw, so

|v|∣∣ψ(v)∣∣ < (|v| + 1)
∣∣ψ(v)∣∣ = sup

w∈T ∗
|w|D(ψχv

)
(w) ≤ ∥∥Mψ

∥∥. (5.3)

Thus, supv∈T |v‖ψ(v)| is finite.
(b)⇒(a) Suppose supv∈T |v||ψ(v)| <∞. Let f ∈ L∞ such that ‖f‖∞ = 1. Then

∥∥Mψf
∥∥
w ≤ ∣∣ψ(o)∣∣ + sup

v∈T ∗
|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣] < ∞. (5.4)

Thus,Mψ is bounded and ‖Mψ‖ ≤ ηψ .
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We next show that ‖Mψ‖ ≥ ηψ . The inequality is obvious if ψ is identically 0. For ψ not
identically 0 and for v ∈ T , define

f(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ψ(v) = 0,

ψ(v)∣∣ψ(v)∣∣ if ψ(v)/= 0, |v| even,

− ψ(v)∣∣ψ(v)∣∣ if ψ(v)/= 0, |v| odd.

(5.5)

Then ‖f‖∞ = 1, and for v ∈ T∗,D(ψf)(v) = |ψ(v)| + |ψ(v−)|, so that

∥∥Mψf
∥∥
w =
∣∣ψ(o)∣∣ + sup

v∈T ∗
|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣]. (5.6)

Thus, ‖Mψ‖ ≥ ηψ , completing the proof.

In the next result, we characterize the bounded multiplication operators from L∞ to
Lw,0.

Theorem 5.2. For a function ψ on T , the following statements are equivalent:
(a) Mψ : L∞ → Lw,0 is bounded.
(b) lim|v| →∞|v||ψ(v)| = 0.

Furthermore, under these conditions, one has,

∥∥Mψ

∥∥ = ηψ. (5.7)

Proof. (a)⇒(b) AssumeMψ : L∞ → Lw,0 is bounded. ApplyingMψ to the constant function
1, we obtain ψ = Mψ1 ∈ Lw,0. On the other hand, if O = {v ∈ T : |v| is odd}, then ψχO ∈ Lw,0,
so for v ∈ T∗, we have

|v|∣∣ψ(v)∣∣ = |v|∣∣ψ(v)∣∣DχO(v) ≤ |v|D(ψχO
)
(v) + |v|Dψ(v)∣∣χO

(
v−
)∣∣

≤ |v|D(ψχO
)
(v) + |v|Dψ(v) −→ 0,

(5.8)

as |v| → ∞, proving (b).
(b)⇒(a) Suppose |v||ψ(v)| → 0 as |v| → ∞. First observe that

|v|Dψ(v) ≤ |v|∣∣ψ(v)∣∣ + |v|
|v| − 1

(|v| − 1)
∣∣ψ(v−)∣∣

≤ |v|∣∣ψ(v)∣∣ + 2(|v| − 1)
∣∣ψ(v−)∣∣ −→ 0,

(5.9)

as |v| → ∞. Then for f ∈ L∞ and v ∈ T∗, we have

|v|D(ψf)(v) ≤ |v|∣∣ψ(v)∣∣Df(v) + |v|Dψ(v)∣∣f(v−)∣∣

≤ (2|v|∣∣ψ(v)∣∣ + |v|Dψ(v)) ∥∥f∥∥∞ −→ 0,
(5.10)
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as |v| → ∞. Thus, ψf ∈ Lw,0. The proof of the boundedness ofMψ and of the formula ‖Mψ‖ =
ηψ is similar to the case whenMψ : L∞ → Lw.

5.2. Isometries

As for all other multiplication operators in this paper, there are no isometries among the mul-
tiplication operators from L∞ into Lw or Lw,0.

Assume Mψ is an isometry from L∞ to Lw or Lw,0. Then, for v ∈ T the function fv =
(1/(|v|+1))χv is inLw,0 with ‖Mψχv‖w = ‖χv‖∞ = 1. In particular, it follows that |ψ(o)| = 1/2,
and for v ∈ T∗,

(|v| + 1)
∣∣ψ(v)∣∣ = 1. (5.11)

Thus, |ψ(v)| = 1/(|v| + 1). On the other hand, taking as a test function f the characteristic
function of the set {v ∈ T : |v| ≤ 1}, we obtain

1 =
∥∥f∥∥∞ =

∥∥Mψf
∥∥
w =
∣∣ψ(o)∣∣ +max

{
sup
|v|=1

∣∣ψ(v) − ψ(o)∣∣, sup
|v|=1

2
∣∣ψ(v)∣∣

}
≥ 3
2
, (5.12)

which yields a contradiction. Therefore, we obtain the following result.

Theorem 5.3. There are no isometric multiplication operatorsMψ from L∞ to Lw or Lw,0.

5.3. Compactness and Essential Norm

The following two results are compactness criteria for multiplication operators from L∞ into
Lw or Lw,0 similar to those given in the previous sections.

Lemma 5.4. A bounded multiplication operator Mψ from L∞ to Lw is compact if and only if for
every bounded sequence {fn} in L∞ converging to 0 pointwise, the sequence ‖ψfn‖w approaches 0 as
n → ∞.

Proof. Assume Mψ is compact, and let {fn} be a bounded sequence in L∞ converging to 0
pointwise. By rescaling the sequence, if necessary, we may assume ‖fn‖∞ ≤ 1 for all n ∈ �.
By the compactness of Mψ , {fn} has a subsequence {fnk} such that {ψfnk} converges in the
Lw-norm to some function f ∈ Lw. Since by Lemma 1.3, for v ∈ T∗,

∣∣ψ(v)fnk(v) − f(v)
∣∣ ≤ (1 + log|v|)∥∥ψfnk − f

∥∥
w (5.13)

and |ψ(o)fnk (o) − f(o)| ≤ ‖ψfnk − f‖w, it follows that ψfnk → f pointwise. Since by assump-
tion, fn → 0 pointwise, the function f must be identically 0. Thus, the only limit point of the
sequence {ψfn} in Lw is 0. Hence ‖ψfn‖w → 0 as n → ∞.

Conversely, suppose ‖ψfn‖w approaches 0 as n → ∞ for every bounded sequence
{fn} in L∞ converging to 0 pointwise. Let {gn} be a sequence in L∞ with ‖gn‖∞ ≤ 1. Then
some subsequence {gnk} converges to a bounded function g. Thus, the sequence fnk = gnk − g
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converges to 0 uniformly, and ‖fn‖∞ is bounded. By the hypothesis, it follows that ‖ψfnk‖w →
0 as k → ∞. Thus, ψgnk → ψg in Lw. Therefore,Mψ is compact.

By an analogous argument, we obtain the corresponding result forMψ : L∞ → Lw,0.

Lemma 5.5. A bounded multiplication operator Mψ from L∞ to Lw,0 is compact if and only if for
every bounded sequence {fn} in L∞ converging to 0 pointwise, the sequence ‖ψfn‖w approaches 0 as
n → ∞.

Theorem 5.6. For a bounded operatorMψ from L∞ to Lw, the following statements are equivalent:
(a) Mψ is compact.
(b) lim|v| →∞|v||ψ(v)| = 0.

Proof. (a)⇒(b) Assume Mψ is compact. Let {vn} be a sequence in T such that |vn| → ∞ as
n → ∞. For n ∈ �, let fn denote the characteristic function of the set {w ∈ T : |w| ≥ |vn|}.
Then ‖fn‖∞ = 1 and fn → 0 pointwise. By Lemma 5.4 and the compactness ofMψ , it follows
that

|vn|
∣∣ψ(vn)

∣∣ = |vn|D
(
ψfn
)
(vn) ≤

∥∥Mψfn
∥∥
w −→ 0 (5.14)

as n → ∞.
(b)⇒(a)Assume lim|v| →∞|v‖ψ(v)| = 0 and that ψ is not identically 0. In particular, ψ is

bounded. Let {fn} be a sequence in L∞ converging pointwise to 0 such that ‖fn‖∞ is bounded
above by some positive constant C. Then corresponding to ε > 0, there existsN ∈ � such that
|v||ψ(v)| < ε/4C for all vertices v such that |v| ≥N. Therefore, for |v| > N and n ∈ �, we have

|v|D(ψfn
)
(v) ≤ |v|∣∣ψ(v)∣∣Dfn(v) + |v|Dψ(v)∣∣fn

(
v−
)∣∣ < ε. (5.15)

Furthermore, the sequence {fn} converges to 0 uniformly on the set {v ∈ T : |v| ≤ N} so that
|fn(v)| < ε/4N‖ψ‖∞ for all n sufficiently large. Hence |v|D(ψfn)(v) < ε for all v ∈ T∗ and all
n sufficiently large. Consequently, ‖ψfn‖w → 0 as n → ∞. Using Lemma 5.4, we deduce that
Mψ is compact.

Since the above proof is also valid when Mψ is a bounded operator from L∞ to Lw,0,
through the application of Lemma 5.5, from Theorems 5.2 and 5.6 we obtain the following
result.

Corollary 5.7. For a function ψ on T , the following statements are equivalent:
(a) Mψ : L∞ → Lw is compact.
(b) Mψ : L∞ → Lw,0 is bounded.
(c) Mψ : L∞ → Lw,0 is compact.
(d) lim|v| →∞|v||ψ(v)| = 0.

We now determine the essential norm of the bounded multiplication operators from
L∞ to Lw.
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Theorem 5.8. LetMψ : L∞ → Lw be bounded. Then

∥∥Mψ

∥∥
e
= lim

n→∞
sup
|v|≥n

|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣]. (5.16)

Proof. Set B(ψ) = limn→∞sup|v|≥n|v|[|ψ(v)| + |ψ(v−)|]. In the case B(ψ) = 0, then
lim|v| →∞|v|ψ(v) = 0, so by Theorem 5.6, Mψ is compact, and thus ‖Mψ‖e = 0. So assume
B(ψ) > 0. Then there exists a sequence {vn} in T such that 1 ≤ |vn| → ∞ as n → ∞ and

B
(
ψ
)
= lim

n→∞
|vn|
[∣∣ψ(vn)

∣∣ + ∣∣ψ(v−n
)∣∣]. (5.17)

For each n ∈ � let fn be the function on T defined by

fn(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |v| < |vn| or ψ(v) = 0,

ψ(v)∣∣ψ(v)∣∣ if |v| ≥ |vn|, |v| is even, ψ(v)/= 0,

− ψ(v)∣∣ψ(v)∣∣ otherwise.

(5.18)

Then ‖fn‖∞ = 1, and {fn} converges to 0 pointwise. Thus, for any compact operator
K : L∞ → Lw, there exists a subsequence {fnk} such that ‖Kfnk‖w → 0 as k → ∞. Thus

∥∥Mψ −K∥∥ ≥ lim sup
k→∞

∥∥(Mψ −K)fnk
∥∥
w ≥ lim sup

k→∞

∥∥ψfnk
∥∥
w

= lim sup
k→∞

sup
|v|≥|vnk |

|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣] = B(ψ).
(5.19)

Therefore, ‖Mψ‖e ≥ B(ψ).
We now show that ‖Mψ‖e ≤ B(ψ). For each n ∈ �, define the operatorKn on L∞ by

Knf(v) =

⎧
⎨
⎩
f(v) if |v| ≤ n,
0 if |v| > n.

(5.20)

Then, for v ∈ T∗, we have

|v|D(Knf
)
(v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|v|Df(v) for 1 ≤ |v| ≤ n,
(n + 1)

∣∣f(v−)∣∣ for |v| = n + 1,

0 for |v| > n + 1.

(5.21)

Thus, Knf ∈ Lw with ‖Knf‖w ≤ |f(o)| + 2n‖f‖∞.
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Assume {fk} is a sequence in L∞ with ‖fk‖∞ ≤ 1. Then there exists a subsequence {fkj}
converging pointwise to some function f ∈ L∞. Thus,

∥∥∥Knfkj −Knf
∥∥∥
w

=
∣∣∣fkj (o) − f(o)

∣∣∣ +max

{
sup

1≤|v|≤n
|v|D
(
fkj − f

)
(v), sup

|v|=n+1
|v|
∣∣∣fkj
(
v−
) − f(v−)

∣∣∣
}

≤
∣∣∣fkj (o) − f(o)

∣∣∣ + 2nmax

{
sup

1≤|v|≤n
D
(
fkj − f

)
(v), sup

|v|=n+1

∣∣∣fkj
(
v−
) − f(v−)

∣∣∣
}
.

(5.22)

So ‖Knfkj −Knf‖w → 0 as j → ∞. Therefore,Kn is compact, and thus, sinceMψ is bounded,
MψKn is also compact.

For f ∈ L∞, we have

∥∥(Mψ −MψKn

)
f
∥∥
w = sup

|v|>n
|v|∣∣ψ(v)f(v) − ψ(v−)f(v−) + ψ(v−)Knf

(
v−
)∣∣

= max

{
sup

|v|=n+1
|v|∣∣ψ(v)∣∣∣∣f(v)∣∣, sup

|v|>n+1
|v|∣∣ψ(v)f(v) − ψ(v−)f(v−)∣∣

}

≤ sup
|v|>n

|v|[∣∣ψ(v)∣∣ + ∣∣ψ(v−)∣∣]∥∥f∥∥∞.

(5.23)

Therefore, we obtain

∥∥Mψ

∥∥
e
≤ lim sup

n→∞

∥∥Mψ −MψKn

∥∥

= lim sup
n→∞

sup
‖f‖∞=1

∥∥(Mψ −MψKn

)
f
∥∥
w

≤ B(ψ),

(5.24)

thus completing the proof.
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