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We consider an equivalent condition to the property of Supercyclicity Criterion, and then we
investigate this property for the adjoint of weighted composition operators acting on Hilbert
spaces of analytic functions.

1. Introduction

Let T be a bounded linear operator onH. For x ∈ H, the orbit of x under T is the set of images
of x under the successive iterates of T :

orb(T, x) =
{
x, Tx, T2x, . . .

}
. (1.1)

The vector x is called supercyclic for T ifC orb(T, x) is dense inH. Also a supercyclic operator
is one that has a supercyclic vector. For some sources on these topics, see [1–16].

Let H be a separable Hilbert space of functions analytic on a plane domain G such
that, for each λ in G, the linear functional of evaluation at λ given by f → f(λ) is a bounded
linear functional on H. By the Riesz representation theorem, there is a vector Kλ in H such
that f(λ) = 〈f,Kλ〉. We call Kλ the reproducing kernel at λ.

A complex-valued function ϕ on G is called a multiplier ofH if ϕH ⊂ H. The operator
of multiplication by ϕ is denoted byMϕ and is given by f → ϕf .

If ϕ is a multiplier ofH and ψ is a mapping from G into G, then Cϕ,ψ : H → H by

Cϕ,ψ

(
f
)
(z) = ϕ(z)f

(
ψ(z)

)
(1.2)

for every f ∈ H and z ∈ G is called a weighted composition operators.
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The holomorphic self-maps of the open unit disk D are divided into classes of elliptic
and nonelliptic. The elliptic type is an automorphism and has a fixed point in D. It is well
known that this map is conjugate to a rotation z → λz for some complex number λ with
|λ| = 1. The maps of those which are not elliptic are called of non-elliptic type. The iterate of
a non-elliptic map can be characterized by the Denjoy-Wolff Iteration theorem.

2. Main Results

We will investigate the property of Hypercyclicity Criterion for a linear operator and in the
special case, we will give sufficient conditions for the adjoint of a weighted composition
operator associated with elliptic composition function which satisfies the Supercyclicity
Criterion.

Theorem 2.1 (Supercyclicity Criterion). LetH be a separable Hilbert space and T is a continuous
linear mapping on H. Suppose that there exist two dense subsets Y and Z in H, a sequence {nk} of
positive integers, and also there exist mappings Snk : Z → H such that

(1) TnkSnkz → z for every z ∈ Z,
(2) ||Tnky||||Snkz|| → 0 for every y ∈ Y and every z ∈ Z.

Then, T is supercyclic.

If an operator T holds in the assumptions of Theorem 2.1, then one says that T satisfies
the Supercyclicity Criterion.

Definition 2.2. Let T be a bounded linear operator on a Hilbert space H. We refer to⋃
n≥1 Ker(T

n) as the generalized kernel of T .

Theorem 2.3. Let T be a bounded linear operator on a separable Hilbert space H with dense
generalized kernel. Then, the following conditions are equivalent:

(1) T has a dense range,

(2) T is supercyclic,

(3) T satisfies the Supercyclicity Criterion.

Proof. See [2, Corollary 3.3].

Remark 2.4. In [2], for the proof of implication (1) → (3) of Theorem 2.3, it has been shown
that T

⊕
T is supercyclic which implies (by using Lemma 3.1 in [2]) that T satisfies the

Supercyclicity Criterion. This implication can be proved directly without using Lemma 3.1
in [2], as follows: If T is a bounded linear operator on a separable Hilbert spaceH with dense
range and dense generalized kernel, then it follows that T is supercyclic [1, Exercise 1.3]. Now
suppose that h0 is a supercyclic vector of T . Set X0 = C orb(T, h0) and Y0 = the generalized
kernel of T . Since T is supercyclic, there exist sequences {nj}j ⊂ N, {αj}j ⊂ C and {fj}j ⊂ H

such that fj → 0 and αjTnj fj → h0. Define Snk : X0 → H by

Snk(αT
mh0) = ααkTmfk. (2.1)
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Then, clearly, TnkSnk → IX0 pointwise on X0 and

∥∥Tnky∥∥‖Snkx‖ −→ 0 (2.2)

for every y ∈ Y0 and every x ∈ X0. Hence, T satisfies the Supercyclicity Criterion.
From now on let H be a Hilbert space of analytic functions on the open unit disc D

such that H contains constants and the functional of evaluation at λ is bounded for all λ in
D. Also let ϕ : D → C be a nonconstant multiplier of H and let ψ be an analytic map from
D into D such that the composition operator Cψ is bounded on H. We define the iterates
ψn = ψ ◦ ψ ◦ · · · ◦ ψ (n times). By ψ−1

n or ψ−n we mean the nth iterate of ψ−1, hence ψmn = ψmn
form = −1, 1.

Definition 2.5. We say that {zn}n≥0 is a B-sequence for ψ if ψ(zk) = zk−1 for all k ≥ 1.

Corollary 2.6. Suppose that {zn}n≥0 ⊂ D is a B -sequence for ψ and has limit point in D. If ϕ(z0) = 0,
then C∗

ϕ,ψ satisfies the Supercyclicity Criterion.

Proof. PutA = Cϕ,ψ . Since ϕ(z0) = 0, we getKzi ∈ Ker (A∗)n for all i = 0, ..., n−1. HenceA∗ has
dense generalized kernel. Now let 〈f,A∗Kzn〉 = 0 for all n, thus ϕ(zn) · f ◦ ψ(zn) = 0 for all
n. This implies that f is the zero constant function, because ϕ is nonconstant and {zn}n≥0 has
limit point in D . Thus, A∗ has dense range and, by Theorem 2.3, the proof is complete.

Example 2.7. Let ψ(z) = e−
√
2πiz, ϕ(z) = z − (1/2), and define zn = (1/2)e

√
2nπi for all n ≥ 0.

Now by Corollary 2.6, the operator C∗
ϕ,ψ satisfies the Supercyclicity Criterion.

Theorem 2.8. Let ψ be an elliptic automorphism with interior fixed point p and ϕ : D → C satisfies
the inequality |ϕ(p)| < 1 ≤ |ϕ(z)| for all z in a neighborhood of the unit circle. Then, the operator C∗

ϕ,ψ

satisfies the Supercyclicity Criterion.

Proof. Put Ψ = αp ◦ ψ ◦ αp and Φ = ϕ ◦ αp where

αp(z) =
p − z
1 − pz . (2.3)

SinceΨ is an automorphism withΨ(0) = 0, thusΨ is a rotation z → eiθz for some θ ∈ [0, 2π]
and every z ∈ U. Set T = C∗

Φ,Ψ and S = C∗
ϕ,ψ . Then, clearly S

∗ = CαpT
∗C−1

αp , thus T is similar
to S which implies that S satisfies the Supercyclicity Criterion if and only if T satisfies the
Supercyclicity Criterion. Since |αp(z)| → 1− when |z| → 1−, so |Φ(0)| < 1 ≤ |Φ(z)| for all
z in a neighborhood of the unit circle. So, without loss of generality, we suppose that ψ is
a rotation z → eiθz and |ϕ(0)| < 1 ≤ |ϕ(z)| for all z in a neighborhood of the unit circle.
Therefore, there exist a constant λ and a positive number δ < 1 such that |ϕ(z)| < λ < 1 when
|z| < δ, and |ϕ(z)| ≥ 1 when |z| > 1 − δ. Set U1 = {z : |z| < δ} and U2 = {z : |z| > 1 − δ}. Also,
consider the sets

H1 = span{Kz : z ∈ U1},

H2 = span{Kz : z ∈ U2},
(2.4)
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where span {·} is the set of finite linear combinations of {·}. By using the Hahn-Banach
theorem, H1 and H2 are dense subsets of H. Since ψ is a rotation, the sequence {ψmn (λ)}n
is a subset of the compact set {z : |z| = λ} for each λ in D and m = −1, 1. Now by, using the
Banach-Steinhaus theorem, the sequence {Kψmn (λ)}n is bounded for each λ in D andm = −1, 1.
Note that, for each Z, |z| = |ψn(z)|. So, if z ∈ U1, then |ϕ(ψi(z))| < λ < 1 and if z ∈ U2, then
|ϕ(ψ−1

i (z))| ≥ 1 for each positive integer i. Also, note that

Sn(Kz) =

[
n−1∏
i=0

ϕ
(
ψi(z)

)]
Kψn(z) (2.5)

for every positive integer n and z ∈ D (see [12]). Now, if z ∈ U1, then SnKz → 0 as n → ∞.
Therefore the sequence {Sn} converges pointwise to zero on the dense subset H1. Define a
sequence of linear mapsWn : H2 → H2 by extending the definition

WnKz =

[
n∏
i=1

(
ϕ
(
ψ−1
i (z)

))−1
]
Kψ−1

n (z) (2.6)

(z ∈ U2) linearly to H2. Note that, for all z ∈ U2, the sequence {WnKz}n is bounded and
SnWnKz = Kz onH2 which implies that SnWn is identity on the dense subsetH2. Hence,

∥∥Snf∥∥∥∥Wng
∥∥ −→ 0 (2.7)

for every f ∈ H1 and every g ∈ H2. Now, by Theorem 2.1, the proof is complete.

Corollary 2.9. Under the conditions of Theorem 2.8, C∗
ϕ,ψ

⊕
C∗
ϕ,ψ is supercyclic.

Proof. It is clear since C∗
ϕ,ψ satisfies the Supercyclicity Criterion.

Example 2.10. Let ϕ(z) = (3/2)z and ψ(z) = eiθz. Then, the operator C∗
ϕ,ψ satisfies the

Supercyclicity Criterion, because 0 is an interior fixed point of ψ, and ϕ(0) < 1 ≤ |ϕ(z)| for
|z| > 2/3.
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