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We present various kinds of statistical convergence and I-convergence for sequences of functions
with values in 2-normed spaces and obtain a criterion for I-convergence of sequences of functions
in 2-normed spaces. We also define the notion of I-equistatistically convergence and study I-equi-
statistically convergence of sequences of functions.

1. Introduction

The concept of ideal convergence was introduced first by Kostyrko et al. [1] as an interesting
generalization of statistical convergence [2–5].

Throughout this paper � will denote the set of positive integers. Let (X, ‖ · ‖) be a
normed space. Let K be a subset of positive integers � and j ∈ �. The quotient dj(K) =
card(K

⋂{1, . . . , j})/j is called the j’th partial density of K and dj is a probability measure on
P(�), with support {1, . . . , j} [2, 3].

The limit d(K) = limj→∞dj(K) (if exists) is called the natural density of K. Clearly,
finite subsets have natural density zero and d(Kc) = 1 − d(K) where Kc = K \ �, that is,
the complement of K. If K1 ⊆ K2 and K1, K2 have natural densities then d(K1) ≤ d(K2).
Furthermore, if d(K1) = d(K2) = 1, then d(K1 ∩K2) = 1 [6].

Recall that a sequence (xn)n∈� of elements of X is called to be statistically convergent
to x ∈ X if the setA(ε) = {n ∈ � : ‖xn − x‖ ≥ ε} has natural density zero for each ε > 0. In this
case we write st-limn→∞xn = x [2–4].

A family I ⊆ P(Y) of subsets a nonempty set Y is said to be an ideal in Y if

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A

⋃
B ∈ I,

(iii) A ∈ I, B ⊆ A implies B ∈ I,
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while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y [7, 8]. Let I ⊆ P(�)
be a nontrivial ideal in �. The sequence (xn)n∈� in X is said to be I-convergent to x ∈ X, if
for each ε > 0 the setA(ε)={n ∈ � : ‖xn − x‖ ≥ ε} belongs to I [1, 9].

2. Preliminaries

The notion of linear 2-normed spaces has been investigated by Gähler in the 60’s [10, 11] and
this has been developed extensively in different subjects by others [12–14]. Let X be a real
linear space of dimension greater than 1, and ‖·, ·‖ be a nonnegative real-valued function on
X ×X satisfying the following conditions:

(G1) ‖x, y‖ = 0 if and only if x and y are linearly dependent vectors;

(G2) ‖x, y‖ = ‖y, x‖ for all x, y in X;

(G3) ‖αx, y‖ = |α|‖x, y‖ where α is real,

(G4) ‖x + y, z‖ ≤ ‖x, z‖ + ‖y, z‖ for all x, y, z in X

‖·, ·‖ is called a 2-norm on X and the pair (X, ‖·, ·‖) is called a linear 2-normed space. In
addition, for all scalars α and all x, y, z in X, we have the following properties:

(1) ‖·, ·‖ is nonnegative;
(2) ‖x, y‖ = ‖x, y + αx‖;
(3) ‖x − y, y − z‖ = ‖x − y, x − z‖.

Some of the basic properties of 2-norm are introduced in [14]. Given a 2-normed space
(X, ‖·, ·‖), one can derive a topology for it via the following definition of the limit of a
sequence: a sequence (xn)n∈� in X is said to be convergent to x in X if limn→∞‖xn − x, z‖ = 0
for every z ∈ X. This can be written by the formula

(∀z ∈ Y) (∀ε > 0) (∃n0 ∈ �) (∀n ≥ n0) ‖xn − x, z‖ < ε. (2.1)

We write it as

xn
‖·,·‖X−−−−→ x. (2.2)

Lemma 2.1 (see [13]). Let v = {v1, . . . , vk} be a basis of X. A sequence (xn)n∈� in X is convergent
to x in X if and only if limn→∞‖xn − x, vi‖ = 0 for every i = 1, . . . , k. We can define the norm ‖ · ‖∞
on X by

‖x‖∞ := max{‖x, vi‖ : i = 1, . . . , d = k}. (2.3)

Lemma 2.2 (see [13]). A sequence (xn)n∈� in X is convergent to x in X if and only if
limn→∞‖xn − x‖∞ = 0.
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Example 2.3. Let X = �
2 be equipped with the 2-norm ‖x, y‖:= the area of the parallelogram

spanned by the vectors x and y, which may be given explicitly by the formula

∥
∥x, y

∥
∥ =
∣
∣x1y2 − x2y1

∣
∣, x = (x1, x2), y =

(
y1, y2

)
. (2.4)

Take the standard basis {i, j} for �2 .
Then, ‖x, i‖ = |x2| and ‖x, j‖ = |x1|, and so the derived norm ‖ · ‖∞ with respect to {i, j}

is

‖x‖∞ = max{|x1|, |x1|}, x = (x1, x2). (2.5)

Thus, here the derived norm ‖ · ‖∞ is exactly the same as the uniform norm on R2. Since the
derived norm is a norm, it is equivalent to the Euclidean norm on R2.

Definition 2.4. Let I ⊂ 2N be a nontrivial ideal in �. The sequence (xn)n∈� of X is said to be
I-convergent to x, if for each ε > 0 and nonzero z in X the setA(ε) = {n ∈ � : ‖xn −x, z‖ ≥ ε}
belongs to I [9].

If (xn)n∈� is I-convergent to x then we write it as

I − lim
n→∞

‖xn − x, z‖ = 0 or I − lim
n→∞

‖xn, z‖ = ‖x, z‖. (2.6)

The element x is I-limit of the sequence (xn)n∈�.

Remark 2.5. If (xn)n∈� is any sequence in X and x is any element of X, then the set

{n ∈ � : ‖xn − x, z‖ ≥ ε, ∀z ∈ X} = ∅ (2.7)

since if z = 0, ‖xn − x, z‖ = 0 < ε so the above set is empty.

Further we will give some examples of ideals and corresponding I-convergences.
Now we give an example of I-convergence in 2-normed spaces.

Example 2.6. (i) Let If be the family of all finite subsets of �. Then If is an admissible ideal
in � and If -convergence coincides with usual convergence [11].

(ii) Put Id= {A ⊂ � : d(A) = 0}. Then Id is an admissible ideal in � and Id-
convergence coincides with the statistical convergence [15].

Example 2.7. Let I = Id. Define the (xn)n∈� in 2-normed space (X, ‖·, ·‖) by

xn =

⎧
⎨

⎩

(0, n), n = k2, k ∈ �,
(0, 0), otherwise

(2.8)

and let x = (0, 0) and z = (z1, z2). Then for every ε > 0 and z ∈ X

{n ∈ � : ‖xn − x, z‖ > ε} ⊆
{
1, 4, 9, 16, . . . , n2, . . .

}
(2.9)
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we have that

d({n ∈ � : ‖xn − x, z‖ > ε}) = 0 for every ε > 0 and nonzero z ∈ X. (2.10)

This implies that Id − limn→∞‖xn, z‖ = ‖x, z‖. But, the sequence (xn)n∈� is not convergent
to x.

3. Convergence for Sequences of Functions in 2-Normed Spaces

We discuss various kinds of convergence and I-convergence for sequences of functions with
values in 2-normed spaces.

Let X, Y be 2-normed spaces and assume that functions

f : X −→ Y, fn : X −→ Y, n ∈ N (3.1)

are given.

Definition 3.1. The sequence (fn)n∈N is said to be positive convergent to f (on X) if

fn(x)
‖·,·‖Y−−−−→ f(x) for each x ∈ X. (3.2)

We write

fn
‖·,·‖Y−−−−→ f. (3.3)

This can be expressed by the formula

(∀y ∈ Y
)
(∀x ∈ X) (∀ε > 0) (∃n0 ∈ �) (∀n > n0)

∥
∥fn(x) − f(x), y

∥
∥
Y < ε. (3.4)

Remark 3.2. If functions f, fn are given as in Definition 3.1 and dimY < ∞ then (fn) is
pointwise convergent to f (on X) if and only if

(∀x ∈ X) (∀ε > 0) (∃n0 ∈ �) (∀n > n0)
∥
∥fn(x) − f(x), y

∥
∥
∞ < ε. (3.5)

We introduce uniform convergent of (fn)n∈� to f by the formula

(∀y ∈ Y
)
(∀ε > 0) (∃n0 ∈ �) (∀n > n0) (∀x ∈ X)

∥
∥fn(x) − f(x), y

∥
∥
Y
< ε (3.6)

and we write it as

fn
‖·,·‖Y−−−−−−→

uniform
f. (3.7)
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Example 3.3. If X = Y = �2 is introduced in Lemma 2.1 then define

f(x1, x2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(0, 0) if |x2| < 1,
(

0,
1
2

)

if |x2| = 1

(0, 1) if |x2| > 1

, fn(x) =

(

0,
x2n
2

1 + x2n
2

)

, (3.8)

then

fn
‖·,·‖Y−−−−−−→

uniform
f, fn

‖·,·‖Y−−−−→ f. (3.9)

Example 3.4. Let X = Y = [0, 1] × (0, 1) ⊆ �2 and define

fn(x1, x2) =
(

0,
1

nx2 + 1

)

, f(x1, x2) = (0, 0). (3.10)

Then obviously fn
‖·,·‖Y−−−−→ f . But we show that fn does not converge uniformly to f in Y . Fix

ε = 1/2 and for all n0 ∈ � put n0 = n + 1, xn=(0, 1/2n) then

∥
∥fn(x1, x2) − 0

∥
∥
∞ =

∣
∣
∣
∣

1
nx2 + 1

∣
∣
∣
∣ =

2
3
> ε. (3.11)

Definition 3.5. Let X and Y be 2-normed spaces with dimY < ∞ and let f : X → Y be a
function. The function f is said to be sequentially continuous at x0 ∈ X if for any sequence
(xn)n∈� of X converging to x0 one has

f(xn)
‖·,·‖Y−−−−→ f(x0). (3.12)

Definition 3.6. Let X and Y be two 2-normed spaces, and dimY < ∞. If fn : X → Y is a
sequence of functions, we say (fn)n∈� is equi-continuous (on X) if

(∀z ∈ X) (∀ε > 0) (∃δ > 0) (∀x, x0 ∈ X) ‖x − x0, z‖X < δ =⇒ ∥∥fn(x) − fn(x0)
∥
∥
∞ < ε.

(3.13)

Corollary 3.7. Let X and Y be two 2-normed spaces, x0 ∈ X with dimY < ∞.
If f : X → Y is a function such that satisfying the following formula

(∀z ∈ X) (∀ε > 0) (∃δ > 0) (∀x ∈ X) ‖x − x0, z‖X < δ =⇒ ∥∥f(x) − f(x0)
∥
∥
∞ < ε (3.14)

then f is sequentially continuous at x0.



6 International Journal of Mathematics and Mathematical Sciences

Proof. Let (xn)n∈� be a sequence in X such that xn
‖·,·‖X−−−−→ x0. Let ε > 0. There exists δ > 0 such

that ‖f(x) − f(x0)‖∞ < ε for every x ∈ X where ‖x − x0, z‖X ≤ δ for each z ∈ X. On the other

hand xn
‖·,·‖X−−−−→ x0 hence for all z ∈ X there exist n0 such that ‖xn − x0, z‖X < δ for all n ≥ n0.

Therefore f(xn)
‖·,·‖Y−−−−→ f(x0) and f is sequentially continuous at x0.

4. I-Convergence of Functions in 2-Normed Spaces

Let X, Y be 2-normed spaces. Fix an admissible ideal I ⊆ P(�) and assume that functions
f : X → Y, fn : X → Y, n ∈ � are given.

Definition 4.1. A sequence (fn)n∈� of functions is said to be I-pointwise convergent to f (on
X) if I- limn→∞‖fn(x) − f(x), z‖Y = 0 (in (Y, ‖·, ·‖Y )) for each x ∈ X. We Write

fn
‖·,·‖Y−−−−→I f. (4.1)

This can be expressed by the formula

(∀z ∈ Y) (∀x ∈ X) (∀ε > 0) (∃M ∈ I) (∀n ∈ � \M)
∥
∥fn(x) − f(x), z

∥
∥
Y
< ε. (4.2)

Definition 4.2. A sequence, (fn)n∈� is said to be I-uniformly convergent to f (on X) if and
only if

(∀z ∈ Y) (∀ε > 0) (∃M ∈ I) (∀n ∈ � \M)(∀x ∈ X)
∥
∥fn(x) − f(x), z

∥
∥
Y ≤ ε. (4.3)

We write fn
‖·,·‖Y−−−−→I

uniform
f .

Remark 4.3. If I = Id then
‖·,·‖Y−−−−→Id and

‖·,·‖Y−−−−→Id

uniform
will be read (respectively) as I-pointwise and

I-uniform statistically convergence. If fn
‖·,·‖Y−−−−→Idf , then for all x ∈ Xfn(x)

‖·,·‖Y−−−−→Id f(x) which
may be given by the formula

(∀x ∈ X) (∀ε > 0)
{
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

} ∈ Id (4.4)

we have by [15]

(∀x ∈ X) (∀ε, δ > 0) (∃n0 ∈ �) (∀n ≥ n0) dj

({
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

})
< δ. (4.5)

Remark 4.4. We obviously have

fn
‖·,·‖Y−−−−→I

uniform
f =⇒ fn

‖·,·‖Y−−−−→I f,

fn
‖·,·‖Y−−−−→I

uniform
f ⇐⇒ sup

x∈X

∥
∥fn(x) − f(x), z

∥
∥
Y

‖·,·‖Y−−−−→I 0 ∀z ∈ Y.

(4.6)



International Journal of Mathematics and Mathematical Sciences 7

Remark 4.5. Let I be such that I-convergence of sequences of points in (Y, ‖·, ·‖Y ) is strictly
more general than the usual convergence. Then there is a sequence (yn)n∈� ⊆ Y , such that

yn
‖·,·‖Y−−−−→I y but lim

n→∞
∥
∥yn − y, z

∥
∥
Y /= 0 for each z ∈ Y. (4.7)

Putting fn(x) = yn and f(x) = y for x ∈ X and n ∈ �, we have

fn
‖·,·‖Y−−−−→I

uniform
f but ¬fn ‖·,·‖Y−−−−−−→

uniform
f. (4.8)

Thus, in this situation, I-uniform convergence of sequences of functions is strictly more
general than the usual uniform convergence.

Theorem 4.6. Let I ⊆ P(�) be an admissible ideal and X, Y be two 2-normed spaces with dimY <

∞. Assume that fn
‖·,·‖Y−−−−→I f (on X) where functions fn : X → Y, n ∈ N are equi-continuous (on X)

and f : X → Y . Then f is sequentially continuous (on X).

Proof. Let z, x0 ∈ X and ε > 0. By equi-continuty of fn’s, there exist δ > 0 such that
‖fn(x0) − fn(x)‖∞ ≤ ε for every n ∈ � whenever ‖x − x0, z‖ < δ.

Fix x ∈ X such that ‖x − x0, z‖ < δ. Since fn
‖·,·‖Y−−−−→I f , the set

{

n ∈ N :
∥
∥fn(x0) − f(x0)

∥
∥
∞ ≥ ε

3

}

∪
{

n ∈ N :
∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

3

}

(4.9)

is in I and different from �. Hence there exists n0 ∈ N such that

‖fn0(x0) − f(x0)‖∞ <
ε

3
, ‖fn0(x) − f(x)‖∞ <

ε

3
. (4.10)

We have

∥
∥f(x0) − f(x)

∥
∥
∞ ≤ ∥∥f(x0) − fn0(x0)

∥
∥
∞ +
∥
∥fn0(x0) − fn0(x)

∥
∥
∞ +
∥
∥fn0(x) − f(x)

∥
∥
∞

≤ ε

3
+
ε

3
+
ε

3

= ε

(4.11)

and by (Corollary 3.7) f is sequentially continuous at x0 ∈ X.

5. I-Equistatistically Convergent

Let X, Y be two 2-normed spaces with dimY < ∞ and I = Id ⊆ 2X be admissible ideal on X.
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Definition 5.1. A (fn)n∈� is called I-equi-statistically convergent to f (wewrite it as fn
‖·,·‖Y
� Id f)

if for every ε > 0 the sequence (gj,ε)j∈N of functions gj,ε : X → � given by

gj,ε(x) = dj

({
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

})
, x ∈ X (5.1)

is uniformly convergent to the zero function (on X). Hence fn
‖·,·‖Y
� Id f if and only if the

following formula holds:

(∀ε, δ > 0) (∃n0 ∈ �)
(∀j ≥ n0

)
(∀x ∈ X), dj

({
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

})
< δ. (5.2)

Corollary 5.2. The following properties hold:

(i) fn
‖·,·‖Y
� Id f implies fn

‖·,·‖Y−−−−→Id f ,

(ii) fn
‖·,·‖Y−−−−→Id

uniform
f implies fn

‖·,·‖Y
� Id f .

Proof.

(i) If fn
‖·,·‖Y
� Id f by the monotonicity of operator dj , we take ε = δ in Definition 4.2.

Thus it is obvious.

(ii) Assume fn
‖·,·‖Y−−−−→Id

uniform
f and ε > 0. By Definition 4.2 there exist a set M ∈ Id such that

‖fn(x) − f(x)‖∞ < ε for all n ∈ Id \M and x ∈ X. SinceM ∈ Id. We can pick n0 ∈ N
such that dj(M) < ε for all j ≥ n0. Let x ∈ X and n ∈ �. Thus ‖fn(x) − f(x)‖∞ ≥ ε
implies n ∈ M. Hence for each j ≥ n0, we have

dj

({
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

}) ≤ dj(M) < ε (5.3)

by Definition 4.2 witnesses that fn
‖·,·‖Y
� Id f .

Example 5.3. Define f :[0, 1] × [0, 1] → �
2 , fn : [0, 1] × [0, 1] → �

2 , n ∈ �

fn(x1, x2) =

⎧
⎪⎨

⎪⎩

(

0,
1
n

)

, if x2 =
1
n
,

(0, 0), otherwise,

f(x1, x2) = (0, 0), (5.4)

Then fn
‖·,·‖Y
� Id f but ¬fn ‖·,·‖Y−−−−→Id

uniform
f . Indeed, let ε > 0 and k ∈ � such that 1/k < ε. Then for all

j ≥ k and x = (x1, x2) ∈ [0, 1] × [0, 1]we have

dj

({
n ∈ � :

∥
∥fn(x) − f(x)

∥
∥
∞ > ε

}) ≤ 1
j
≤ 1
k
≤ ε. (5.5)

Hence fn
‖·,·‖Y
� Id f .
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Suppose that fn
‖·,·‖Y−−−−→Id

uniform
f . Thus there is the setM ∈ Id such that for all n ∈ Id \M and

x ∈ [0, 1] × [0, 1]we have ‖fn(x) − f(x)‖∞ < 1.
Choose k ∈ Id \M. Then fk must be the zero function, a contradiction.

Theorem 5.4. Assume f : X → Y and fn : X → Y for n ∈ � fix x0 ∈ X. If fn
‖·,·‖Y
� Id f and all

functions fn, n ∈ �, are sequentially continuous at x0 then f is sequentially continuous at x0.

Proof. Let ε > 0. Since fn
‖·,·‖Y
� Id f , we can find n0 ∈ � such that

dn0

({

n ∈ � :
∥
∥fn(x) − f(x)

∥
∥
∞ ≥ ε

3

})

<
1
2

∀x ∈ X. (5.6)

Put E(x) = {n ≤ K : ‖fn(x) − f(x)‖∞ < ε/3}, x ∈ X. In other word dn0 is a probabilitymeasure
on P(�) with the support {1, . . . , n0}, it follows that dn0(E(x)) > 1/2 for all x ∈ X. By the
sequentially continuity of f1, . . . , fn0 at x0, there exist δ > 0 such that ‖fi(x) − fi(x0)‖∞ < ε/3
for all 1 ≤ i ≤ n0 and x ∈ X, ‖x−x0, z‖ < δ for each z ∈ X. Fix x such that x ∈ X, ‖x−x0, z‖ < δ
for each z ∈ X.

Since dn0(E(x)) > 1/2 and dn0(E(x0)) > 1/2, there exists p ∈ E(x)
⋂
E(x0) such that

∥
∥f(x) − f(x0)

∥
∥
∞ ≤ ∥∥f(x) − fp(x)

∥
∥
∞ +
∥
∥fp(x) − fp(x0)

∥
∥
∞ +
∥
∥fp(x0) − f(x0)

∥
∥
∞

≤ ε

3
+
ε

3
+
ε

3

= ε.

(5.7)

Thus we show that ‖f(x) − f(x0)‖∞ < ε for all x ∈ X, ‖x−x0, z‖ < δ for each z ∈ X.
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