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We introduce a new general composite iterative scheme for finding a common fixed point of
nonexpansive semigroups in the framework of Banach spaces which admit a weakly continuous
duality mapping. A strong convergence theorem of the purposed iterative approximation method
is established under some certain control conditions. Our results improve and extend announced
by many others.

1. Introduction

Throughout this paper we denoted by � and �+ the set of all positive integers and all positive
real numbers, respectively. Let X be a real Banach space, and let C be a nonempty closed
convex subset ofX. Amapping T ofC into itself is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for each x, y ∈ C. We denote by F(T) the set of fixed points of T . We know that F(T) is
nonempty ifC is bounded; for more detail see [1]. A one-parameter familyS = {T(t) : t ∈ �+}
from C of X into itself is said to be a nonexpansive semigroup on C if it satisfies the following
conditions:

(i) T(0)x = x for all x ∈ C;

(ii) T(s + t) = T(s) ◦ T(t) for all s, t ∈ �+ ;

(iii) for each x ∈ C the mapping t �→ T(t)x is continuous;

(iv) ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t ∈ �+ .

We denote by F(S) the set of all common fixed points of S, that is, F(S) := ∩t∈�+F(T(t)) =
{x ∈ C : T(t)x = x}. We know that F(S) is nonempty if C is bounded; see [2]. Recall that
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a self-mapping f : C → C is a contraction if there exists a constant α ∈ (0, 1) such that
‖f(x) − f(y)‖ ≤ α‖x − y‖ for each x, y ∈ C. As in [3], we use the notation

∏
C to denote the

collection of all contractions on C, that is,
∏

C = {f : C → C a contraction}. Note that each
f ∈ ∏

C has a unique fixed point in C.
In the last ten years, the iterative methods for nonexpansive mappings have recently

been applied to solve convex minimization problems; see, for example, [3–5]. LetH be a real
Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let
A be a strongly positive bounded linear operator on H : that is, there is a constant γ > 0 with
property

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.1)

A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert spaceH :

min
x∈F

1
2
〈Ax, x〉 − 〈x, b〉, (1.2)

where C is the fixed point set of a nonexpansive mapping T onH and b is a given point inH .
In 2003, Xu [3] proved that the sequence {xn} generated by

x0 ∈ C chosen arbitrarily,

xn+1 = (I − αnA)Txn + αnu, ∀n ≥ 0,
(1.3)

converges strongly to the unique solution of the minimization problem (1.2) provided that
the sequence {αn} satisfies certain conditions. Using the viscosity approximation method,
Moudafi [6] introduced the iterative process for nonexpansive mappings (see [3, 7] for
further developments in both Hilbert and Banach spaces) and proved that if H is a real
Hilbert space, the sequence {xn} generated by the following algorithm:

x0 ∈ C chosen arbitrarily,

xn+1 = αnf(xn) + (1 − αn)Txn, ∀n ≥ 0,
(1.4)

where f : C → C is a contraction mapping with constant α ∈ (0, 1) and {αn} ⊂ (0, 1) satisfies
certain conditions, converges strongly to a fixed point of T in C which is unique solution x∗

of the variational inequality:

〈(
f − I

)
x∗, y − x∗〉 ≤ 0, ∀y ∈ F(T). (1.5)

In 2006, Marino and Xu [8] combined the iterative method (1.3) with the viscosity
approximation method (1.4) considering the following general iterative process:

x0 ∈ C chosen arbitrarily,

xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0,
(1.6)
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where 0 < γ < γ/α. They proved that the sequence {xn} generated by (1.6) converges strongly
to a unique solution x∗ of the variational inequality:

〈(
γf −A

)
x∗, y − x∗〉 ≤ 0, ∀y ∈ F(T), (1.7)

which is the optimality condition for the minimization problem:

min
x∈C

1
2
〈Ax, x〉 − h(x), (1.8)

where C is the fixed point set of a nonexpansive mapping T and h is a potential function for
γf (i.e., h′(x) = γf(x) for x ∈ H). Kim and Xu [9] studied the sequence generated by the
following algorithm:

x1 ∈ C chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

xn+1 = βnu +
(
1 − βn

)
yn, ∀n ≥ 0,

(1.9)

and proved strong convergence of scheme (1.9) in the framework of uniformly smooth
Banach spaces. Later, yao, et al. [10] introduced a new iteration process by combining the
modified Mann iteration [9] and the viscosity approximation method introduced byMoudafi
[6]. Let C be a closed convex subset of a Banach space, and let T : C → C be a nonexpansive
mapping such that F(T)/= ∅ and f ∈ ∏

C. Define {xn} in the following way:

x1 ∈ C chosen arbitrarily;

yn = αnxn + (1 − αn)Txn;

xn+1 = βnf(xn) +
(
1 − βn

)
yn, ∀n ≥ 0,

(1.10)

where {αn} and {βn} are two sequences in (0, 1). They proved under certain different control
conditions on the sequences {αn} and {βn} that {xn} converges strongly to a fixed point of T .
Recently, Chen and Song [11] studied the sequence generated by the algorithm in a uniformly
convex Banach space, as follows:

x1 ∈ C chosen arbitrarily;

xn+1 = αnf(xn) + (1 − αn)
1
tn

∫ tn

0
T(s)xnds, ∀n ∈ �,

(1.11)

and they proved that the sequence {xn} defined by (1.11) converges strongly to the unique
solution of the variational inequality:

〈(
f − I

)
x∗, J

(
y − x∗)〉 ≤ 0, ∀y ∈ F(T). (1.12)
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In 2010, Sunthrayuth and Kumam [12] introduced the a general iterative scheme generated
by

x0 ∈ C chosen arbitrarily;

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)xnds, ∀n ≥ 0,

(1.13)

for the approximation of common fixed point of a one-parameter nonexpansive semigroup in
a Banach space under some appropriate control conditions. They proved strong convergence
theorems of the iterative scheme which solve some variational inequality. Very recently,
Kumam and Wattanawitoon [13] studied and introduced a new composite explicit viscosity
iteration method of fixed point solutions of variational inequalities for nonexpansive
semigroups in Hilbert spaces. They proved strong convergence theorems of the composite
iterative schemes which solve some variational inequalities under some appropriate con-
ditions. In the same year, Sunthrayuth et al. [14] introduced a general composite iterative
scheme for nonexpansive semigroups in Banach spaces. They established some strong con-
vergence theorems of the general iteration scheme under different control conditions.

In this paper, motivated by Yao et al. [10], Sunthrayuth, and Kumam [12] and Kumam
and Wattanawitoon [13] we introduce a new general iterative algorithm (3.23) for finding
a common point of the set of solution of some variational inequality for nonexpansive
semigroups in Banach spaces which admit a weakly continuous duality mapping and then
proved the strong convergence theorem generated by the proposed iterative scheme. The
results presented in this paper improve and extend some others fromHilbert spaces to Banach
spaces and some others as special cases.

2. Preliminaries

Throughout this paper, we write xn ⇀ x (resp., xn⇀∗x) to indicate that the sequence {xn}
weakly (resp., weak∗) converges to x; as usual xn → x will symbolize strong convergence;
also, a mapping I denote the identity mapping. Let X be a real Banach space, and let X∗ be
its dual space. Let U = {x ∈ X : ‖x‖ = 1}. A Banach space X is said to be uniformly convex
if, for each ε ∈ (0, 2], there exists a δ > 0 such that for each x, y ∈ U, ‖x − y‖ ≥ ε implies
‖x + y‖/2 ≤ 1 − δ. It is known that a uniformly convex Banach space is reflexive and strictly
convex (see also [15]). A Banach space is said to be smooth if the limit limt→ 0‖x + ty‖ − ‖x‖/t
exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U.

Let ϕ : [0,∞) := �
+ → �

+ be a continuous strictly increasing function such that
ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. This function ϕ is called a gauge function . The duality
mapping Jϕ : X → 2X

∗
associated with a gauge function ϕ is defined by

Jϕ(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖ϕ(‖x‖),∥∥f∗∥∥ = ϕ(‖x‖), ∀x ∈ X

}
, (2.1)

where 〈·, ·〉 denotes the generalized duality paring. In particular, the duality mapping with
the gauge function ϕ(t) = t, denoted by J , is referred to as the normalized duality mapping.
Clearly, there holds the relation Jϕ(x) = (ϕ(‖x‖)/‖x‖)J(x) for each x /= 0 (see [16]).
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Browder [16] initiated the study of certain classes of nonlinear operators by means of
the duality mapping Jϕ. Following Browder [16], we say that Banach space X has a weakly
continuous duality mapping if there exists a gauge function ϕ for which the duality mapping
Jϕ(x) is single-valued and continuous from the weak topology to the weak∗ topology; that
is, for each {xn} with xn ⇀ x, the sequence {J(xn)} converges weakly∗ to Jϕ(x). It is known
that lp has a weakly continuous duality mapping with a gauge function ϕ(t) = tp−1 for all
1 < p < ∞. Set Φ(t) =

∫ t
0 ϕ(τ)dτ , for all t ≥ 0; then Jϕ(x) = ∂Φ(‖x‖), where ∂ denotes the

subdifferential in the sense of convex analysis (recall that the subdifferential of the convex
function φ : X → � at x ∈ X is the set ∂φ(x) = {x∗ ∈ X;φ(y) ≥ φ(x) + 〈x∗, y − x〉, for all y ∈
X}).

In a Banach space having a weakly continuous duality mapping Jϕ with a gauge
function ϕ, we defined an operator A is to be strongly positive (see [17]) if there exists a
constant γ > 0 with the property

〈
Ax, Jϕ(x)

〉 ≥ γ‖x‖ϕ(‖x‖), (2.2)

‖aI − bA‖ = sup
‖x‖≤1

∣
∣
〈
(aI − bA)x, Jϕ(x)

〉∣
∣, a ∈ [0, 1], b ∈ [−1, 1]. (2.3)

If X := H is a real Hilbert space, then the inequality (2.2) reduces to (1.1).
The first part of the next lemma is an immediate consequence of the subdifferential

inequality and the proof of the second part can be found in [18].

Lemma 2.1 (see [18]). Assume that a Banach space X has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ X, the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈

y, Jϕ
(
x + y

)〉
. (2.4)

In particular, for all x, y ∈ X,

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, J

(
x + y

)〉
. (2.5)

(ii) Assume that a sequence {xn} in X converges weakly to a point x ∈ X. Then the following
identity holds:

lim sup
n→∞

Φ
(∥
∥xn − y

∥
∥
)
= lim sup

n→∞
Φ(‖xn − x‖) + Φ

(∥
∥y − x

∥
∥
)
, ∀x, y ∈ X. (2.6)

Lemma 2.2 (see [17]). Assume that a Banach space X has a weakly continuous duality mapping Jϕ
with gauge ϕ. Let A be a strongly positive linear bounded operator on X with a coefficient γ > 0 and
0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ).
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Lemma 2.3 (see [11]). Let C be a closed convex subset of a uniformly convex Banach space X and
let S = {T(t) : t ∈ �

+} be a nonexpansive semigroup on C such that F(S)/= ∅. Then, for each r > 0
and h ≥ 0,

lim
t→∞

sup
x∈C∩Br

∥
∥
∥
∥
∥

1
t

∫ t

0
T(s)x ds − T(h)

(
1
t

∫ t

0
T(s)x ds

)∥
∥
∥
∥
∥
= 0. (2.7)

Lemma 2.4 (see [19]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − μn

)
an + δn, (2.8)

where {μn} is a sequence in (0, 1) and {δn} is a sequence in � such that

(i)
∑∞

n=0 μn = ∞;

(ii) lim supn→∞(δn/μn) ≤ 0 or
∑∞

n=0 |δn| < ∞.

Then, limn→∞an = 0.

3. Main Results

Let X be a Banach space which admits a weakly continuous duality mapping Jϕ with gauge
ϕ such that ϕ is invariant on [0, 1], and let C be a nonempty closed convex subset of X such
that C ± C ⊂ C. Let S = {T(t) : t ∈ �

+} be a nonexpansive semigroup from C into itself, let
f be a contraction mapping with a coefficient α ∈ (0, 1), let A be a strongly positive linear
bounded operator with a coefficient γ > 0 such that 0 < γ < γϕ(1)/α, and let t ∈ (0, 1) such
that t ≤ ϕ(1)‖A‖−1 which satisfies t → 0. Define the mapping T

f
t : C → C by

T
f
t := tγf + (I − tA)

1
λt

∫λt

0
T(s)ds (3.1)

to be a contraction mapping. Indeed, for each x, y ∈ C,

∥
∥
∥T

f
t x − T

f
t y

∥
∥
∥ =

∥
∥
∥
∥
∥
tγ
(
f(x) − f

(
y
))

+ (I − tA)

(
1
λt

∫λt

0

(
T(s)x − T(s)y

)
ds

)∥
∥
∥
∥
∥

≤ tγ
∥
∥f(x) − f

(
y
)∥
∥ + ‖I − tA‖

(
1
λt

∫λt

0

∥
∥T(s)x − T(s)y

∥
∥ds

)

≤ tγα
∥
∥x − y

∥
∥ + ϕ(1)

(
1 − tγ

)∥
∥x − y

∥
∥

≤ (
1 − t

(
ϕ(1)γ − γα

))∥
∥x − y

∥
∥.

(3.2)

Thus, by Banach contraction mapping principle, there exists a unique fixed point xt ∈ C, that
is,

xt = tγf(xt) + (I − tA)
1
λt

∫λt

0
T(s)xt ds. (3.3)
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Remark 3.1. We note that space lp has a weakly continuous duality mapping with a gauge
function ϕ(t) = tp−1 for all 1 < p < ∞. This shows that ϕ is invariant on [0, 1].

Lemma 3.2. Let X be a uniformly convex Banach space which admits a weakly continuous duality
mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1], and let C be a nonempty closed convex
subset of X such that C ± C ⊂ C. Let S = {T(t) : t ∈ �

+} be a nonexpansive semigroup from C
into itself such that F(S)/= ∅, let f be a contraction mapping with a coefficient α ∈ (0, 1), let A be a
strongly positive linear bounded operator with a coefficient γ > 0 such that 0 < γ < γϕ(1)/α, and let
t ∈ (0, 1) such that t ≤ ϕ(1)‖A‖−1 which satisfies t → 0. Then the net {xt} defined by (3.3) with
{λt}0<t<1 is a positive real divergent sequence, converges strongly as t → 0 to a common fixed point
x∗, in which x∗ ∈ F(S), and is the unique solution of the variational inequality:

〈
γf(x∗) −Ax∗, Jϕ(x − x∗)

〉 ≤ 0, ∀x ∈ F(S). (3.4)

Proof. Firstly, we show the uniqueness of a solution of the variational inequality (3.4).
Suppose that x̃, x∗ ∈ F(S) are solutions of (3.4); then

〈
γf(x∗) −Ax∗, Jϕ(x̃ − x∗)

〉 ≤ 0,
〈
γf(x̃) −Ax̃, Jϕ(x∗ − x̃)

〉 ≤ 0.
(3.5)

Adding up (3.5), we obtain

0 ≥ 〈(
γf(x∗) −Ax∗) − (

γf(x̃) −Ax̃
)
, Jϕ(x̃ − x∗)

〉

=
〈
A(x̃ − x∗), Jϕ(x̃ − x∗)

〉 − γ
〈
f(x̃) − f(x∗), Jϕ(x̃ − x∗)

〉

≥ γ‖x̃ − x∗‖ϕ‖x̃ − x∗‖ − γ
∥
∥f(x̃) − f(x∗)

∥
∥
∥
∥Jϕ(x̃ − x∗)

∥
∥

≥ γΦ(‖x̃ − x∗‖) − γαΦ(‖x̃ − x∗‖)
=
(
γ − γα

)
Φ(‖x̃ − x∗‖)

≥ (
ϕ(1)γ − γα

)
Φ(‖x̃ − x∗‖),

(3.6)

which is a contradiction, we must have x̃ = x∗, and the uniqueness is proved. Here in after,
we use x̃ to denote the unique solution of the variational inequality (3.4).

Next, we show that {xt} is bounded. Indeed, for each p ∈ F(S), we have

∥
∥xt − p

∥
∥ =

∥
∥
∥
∥
∥
t
(
γf(xt) −Ap

)
+ (I − tA)

(
1
λt

∫λt

0

(
T(s)xt − p

)
ds

)∥
∥
∥
∥
∥

≤ t
∥
∥γf(xt) −Ap

∥
∥ + ‖I − tA‖ 1

λt

∫λt

0

∥
∥T(s)xt − p

∥
∥ds

≤ tγ
∥
∥f(xt) − f

(
p
)∥
∥ + t

∥
∥γf

(
p
) −Ap

∥
∥ + ϕ(1)

(
1 − tγ

)∥
∥xt − p

∥
∥

≤ (
1 − t

(
ϕ(1)γ − γα

))∥
∥xt − p

∥
∥ + t

∥
∥γf

(
p
) −Ap

∥
∥.

(3.7)
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It follows that

∥
∥xt − p

∥
∥ ≤ 1

ϕ(1)γ − γα

∥
∥γf

(
p
) −Ap

∥
∥. (3.8)

Hence, {xt} is bounded, so are {f(xt)} and {A((1/λt)
∫λt
0 T(s)xtds)}.

Next, we show that ‖xt − T(h)xt‖ → 0 as t → 0. We note that

∥
∥
∥
∥
∥
xt − 1

λt

∫λt

0
T(s)xt ds

∥
∥
∥
∥
∥
= t

∥
∥
∥
∥
∥
γf(xt) −A

(
1
λt

∫λt

0
T(s)xt ds

)∥
∥
∥
∥
∥
. (3.9)

Moreover, we note that

‖xt − T(h)xt‖ ≤
∥
∥
∥
∥
∥
xt − 1

λt

∫λt

0
T(s)xt ds

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
λt

∫λt

0
T(s)xt ds − T(h)

(
1
λt

∫λt

0
T(s)xt ds

)∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
T(h)

(
1
λt

∫λt

0
T(s)xt ds

)

− T(h)xt

∥
∥
∥
∥
∥

≤ 2

∥
∥
∥
∥
∥
xt − 1

λt

∫λt

0
T(s)xt ds

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
λt

∫λt

0
T(s)xt ds − T(h)

(
1
λt

∫λt

0
T(s)xt ds

)∥
∥
∥
∥
∥
,

(3.10)

for all h ≥ 0. Define the set K = {z ∈ C : ‖z − p‖ ≤ ‖γf(p) − Ap‖/(ϕ(1)γ − γα)}; then K is a
nonempty bounded closed convex subset of C which is T(s)-invariant for each h ≥ 0. Since
{xt} ⊂ K and K is bounded, there exists r > 0 such that K ⊂ Br , and it follows by Lemma 2.3
that

lim
λt →∞

∥
∥
∥
∥
∥

1
λt

∫λt

0
T(s)xt ds − T(h)

(
1
λt

∫λt

0
T(s)xt ds

)∥
∥
∥
∥
∥
= 0, (3.11)

for each h ≥ 0. From (3.9)-(3.10), letting t → 0 and noting (3.11) then, for each h ≥ 0, we
obtain

‖xt − T(h)xt‖ −→ 0. (3.12)

Assume that {tn}∞n=1 ⊂ (0, 1) is such that tn → 0 as n → ∞. Put xn := xtn and λn := λtn . We
will show that {xn} contains a subsequence converging strongly to x̃ ∈ F(S). Since {xn} is
bounded sequence and Banach space X is a uniformly convex, hence it is reflexive, and there
exists a subsequence {xnj} of {xn} which converges weakly to some x̃ ∈ C as j → ∞. Again,
since Jϕ is weakly sequentially continuous, we have by Lemma 2.1 that

lim sup
j→∞

Φ
(∥
∥
∥xnj − z

∥
∥
∥
)
= lim sup

j→∞
Φ
(∥
∥
∥xnj − x̃

∥
∥
∥
)
+ Φ(‖z − x̃‖). (3.13)

Let H(z) = lim supj→∞Φ(‖xnj − z‖), for all z ∈ C.
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It follows that H(z) = H(x̃) + Φ(‖z − x̃‖), for all z ∈ C. From (3.12), we have

H(T(h)x̃) = lim sup
j→∞

Φ
(∥
∥
∥xnj − T(h)x̃

∥
∥
∥
)

= lim sup
j→∞

Φ
(∥
∥
∥T(h)xnj − T(h)x̃

∥
∥
∥
)

≤ lim sup
j→∞

Φ
(∥
∥
∥xnj − x̃

∥
∥
∥
)
= H(x̃).

(3.14)

On the other hand, we note that

H(T(h)x̃) = lim sup
j→∞

Φ
(∥
∥
∥xnj − x̃

∥
∥
∥
)
+ Φ(‖T(h)x̃ − x̃‖)

= H(x̃) + Φ(‖T(h)x̃ − x̃‖).
(3.15)

Combining (3.14) with (3.15), we obtain Φ(‖T(h)x̃ − x̃‖) ≤ 0. This implies that T(h)x̃ = x̃,
that is, x̃ ∈ F(S). In fact, since Φ(t) =

∫ t
0 ϕ(τ)dτ , for all t ≥ 0 and ϕ : �+ → �

+ is the gauge
function, then for 1 ≥ k ≥ 0, ϕ(ky) ≤ ϕ(y) and

Φ(kt) =
∫kt

0
ϕ(τ)dτ = k

∫ t

0
ϕ
(
ky

)
dy ≤ k

∫ t

0
ϕ
(
y
)
dy = kΦ(t). (3.16)

By Lemma 2.1, we have

Φ(‖xn − x̃‖) = Φ

(∥
∥
∥
∥
∥
tn
(
γf(xn) −Ax̃

)
+ (I − tA)

(
1
λn

∫λt

0
T(s)xn ds − x̃

)∥
∥
∥
∥
∥

)

≤ Φ

(∥
∥
∥
∥
∥
(I − tnA)

(
1
λn

∫λn

0
(T(s)xn − x̃)ds

)∥
∥
∥
∥
∥

)

+ tn
〈
γf(xn) −Ax̃, Jϕ(xn − x̃)

〉

≤ Φ
(
ϕ(1)

(
1 − tnγ

)
(‖xn − x̃‖)) + tn

〈
γf(xn) − γf(x̃), Jϕ(xn − x̃)

〉

+ tn
〈
γf(x̃) −Ax̃, Jϕ(xn − x̃)

〉

≤ ϕ(1)
(
1 − tnγ

)
Φ(‖xn − x̃‖) + tnγα‖xn − x̃‖∥∥Jϕ(xn − x̃)

∥
∥

+ tn
〈
γf(x̃) −Ax̃, Jϕ(xn − x̃)

〉

= ϕ(1)
(
1 − tnγ

)
Φ(‖xn − x̃‖) + tnγαΦ(‖xn − x̃‖) + tn

〈
γf(x̃) −Ax̃, Jϕ(xn − x̃)

〉

≤ (
1 − tn

(
ϕ(1)γ − γα

))
Φ(‖xn − x̃‖) + tn

〈
γf(x̃) −Ax̃, Jϕ(xn − x̃)

〉
.

(3.17)
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This implies that

Φ(‖xn − x̃‖) ≤ 1
ϕ(1)γ − γα

〈
γf(x̃) −Ax̃, Jϕ(xn − x̃)

〉
. (3.18)

In particular, we have

Φ
(∥
∥
∥xnj − x̃

∥
∥
∥
)
≤ 1

ϕ(1)γ − γα

〈
γf(x̃) −Ax̃, Jϕ

(
xnj − x̃

)〉
. (3.19)

Since the mapping Jϕ is single-valued and weakly continuous, it follows from (3.19) that
Φ(‖xnj − x̃‖) → 0 as j → ∞. This implies that xnj → x̃ as j → ∞.

Next, we show that x̃ solves the variational inequality (3.4), for each x ∈ F(S). From
(3.3), we derive that

(
γf −A

)
xt = −1

t
(I − tA)

(
1
λt

∫λt

0
T(s)xt ds − xt

)

. (3.20)

Now, we observe that

〈
1
λt

∫λt

0
(I − T(s))xds − 1

λt

∫λt

0
(I − T(s))xt ds, Jϕ(x − xt)

〉

=
〈
x − xt, Jϕ(x − xt)

〉 −
〈

1
λt

∫λt

0
(T(s)x − T(s)xt)ds, Jϕ(x − xt)

〉

≥ ‖x − xt‖
∥
∥Jϕ(x − xt)

∥
∥ − 1

λt

∫λt

0
‖T(s) x − T(s)xt‖ds

∥
∥Jϕ(x − xt)

∥
∥

≥ Φ(‖x − xt‖) − ‖x − xt‖
∥
∥Jϕ(x − xt)

∥
∥

= Φ(‖x − xt‖) −Φ(‖x − xt‖) = 0.

(3.21)
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It follows from (3.20) that

〈(
γf −A

)
xt, Jϕ(x − xt)

〉
= −1

t

〈

(I − tA)

(
1
λt

∫λt

0
T(s)xt ds − xt

)

, Jϕ(x − xt)

〉

= −1
t

〈

(I − tA)

(
1
λt

∫λt

0
T(s)xt ds − 1

λt

∫λt

0
xt ds

)

, Jϕ(x − xt)

〉

= −1
t

〈
1
λt

∫λt

0
(I − T(s))xds − 1

λt

∫λt

0
(I − T(s))xt ds, Jϕ(x − xt)

〉

+

〈

A

(
1
λt

∫λt

0
(T(s) − I)xt ds

)

, Jϕ(x − xt)

〉

≤
〈

A

(
1
λt

∫λt

0
(T(s) − I))xt ds

)

, Jϕ(x − xt)

〉

.

(3.22)

Now, replacing t and λt with tnj and λnj , respectively, in (3.22), and letting j → ∞, and we
notice that (T(s)−I)xnj → (T(s)−I)x̃ = 0 for x̃ ∈ F(S), we obtain that 〈(γf−A)x̃, Jϕ(x−x̃)〉 ≤
0. That is, x̃ is a solution of the variational inequality (3.4). By uniqueness, as x̃ = x∗, we have
shown that each cluster point of the net {xt} is equal to x∗. Then, we conclude that xt → x∗

as t → 0. This proof is complete.

Theorem 3.3. Let X be a uniformly convex Banach space which admits a weakly continuous duality
mapping Jϕ with the gauge function ϕ such thatϕ is invariant in [0, 1], and letC be a nonempty closed
convex subset of X such that C ± C ⊂ C. Let S = {T(t) : t ∈ �+} be a nonexpansive semigroup from
C into itself such that F(S)/= ∅, let f be a contraction mapping with a coefficient α ∈ (0, 1), and let
A be a strongly positive linear bounded operator with a coefficient γ > 0 such that 0 < γ < γϕ(1)/α.
Let {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 be the sequences in (0, 1) and let {tn}∞n=0 be a positive real divergent
sequence. Assume that the following conditions hold:

(C1) limn→∞α n = 0 and
∑∞

n=0 αn = ∞,

(C2) limn→∞γn = 0,

(C3) βn = o(αn),

Then the sequence {xn} defined by

x0 ∈ C chosen arbitrarily;

zn = γnxn +
(
1 − γn

) 1
tn

∫ tn

0
T(s)xn ds;

yn = αnγf(zn) + (I − αnA)zn;

xn+1 = βnxn +
(
1 − βn

)
yn, ∀n ≥ 0,

(3.23)

converges strongly to the common fixed point x∗ that is obtained in Lemma 3.2.
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Proof. From the condition (C1), we may assume, with no loss of generality, that αn ≤
ϕ(1)‖A‖−1 for each n ≥ 0. From Lemma 2.2, we have ‖I − αnA‖ ≤ ϕ(1)(1 − αnγ).

Firstly, we show that {xn} is bounded. Let p ∈ F(S); we get

∥
∥zn − p

∥
∥ =

∥
∥
∥
∥
∥
γn
(
xn − p

)
+
(
1 − γn

) 1
tn

∫ tn

0

(
T(s)xn − p

)
ds

∥
∥
∥
∥
∥

≤ γn
∥
∥xn − p

∥
∥ +

(
1 − γn

) 1
tn

∫ tn

0

∥
∥T(s)xn − p

∥
∥ds

≤ γn
∥
∥xn − p

∥
∥ +

(
1 − γn

)∥
∥xn − p

∥
∥

=
∥
∥xn − p

∥
∥,

∥
∥yn − p

∥
∥ =

∥
∥αn

(
γf(zn) −Ap

)
+ (I − αnA)

(
zn − p

)∥
∥

≤ αnγ
∥
∥f(zn) − f

(
p
)∥
∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥ + ‖I − αnA‖∥∥zn − p

∥
∥

≤ (
1 − αn

(
ϕ(1)γ − γα

))∥
∥xn − p

∥
∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥.

(3.24)

It follows that

∥
∥xn+1 − p

∥
∥ =

∥
∥βn

(
xn − p

)
+
(
1 − βn

)(
yn − p

)∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(
1 − βn

)∥
∥yn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(
1 − βn

)((
1 − αn

(
ϕ(1)γ − γα

))∥
∥xn − p

∥
∥ + αn

∥
∥γf

(
p
) −Ap

∥
∥
)

=
(
1 − αn

(
ϕ(1)γ − γα

)(
1 − βn

))∥
∥xn − p

∥
∥ + αn

(
ϕ(1)γ − γα

)(
1 − βn

)
∥
∥γf

(
p
) −Ap

∥
∥

ϕ(1)γ − γα

≤ max

{
∥
∥xn − p

∥
∥,

∥
∥γf

(
p
) −Ap

∥
∥

ϕ(1)γ − γα

}

.

(3.25)

By induction on n, we have

∥
∥xn − p

∥
∥ ≤ max

{
∥
∥x0 − p

∥
∥,

∥
∥γf

(
p
) −Ap

∥
∥

ϕ(1)γ − γα

}

, ∀n ≥ 0. (3.26)

Thus, {xn} is bounded. Since {xn} is bounded, then ‖(1/tn)
∫ tn
0 T(s)xn ds − p‖ ≤ ‖xn − p‖ and

{A((1/tn)
∫ tn
0 T(s)xn ds)} and {f(zn)} are also bounded.
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Next, we show that limn→∞‖xn − T(h)xn‖ = 0, for all h ≥ 0. From (3.23), we note that

∥
∥
∥
∥
∥
xn+1 − 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥
≤ ∥
∥xn+1 − yn

∥
∥ +

∥
∥yn − zn

∥
∥ +

∥
∥
∥
∥
∥
zn − 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥

≤ βn
∥
∥xn − yn

∥
∥ + αn

∥
∥γf(zn) −Azn

∥
∥ + γn

∥
∥
∥
∥
∥
xn − 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥
.

(3.27)

By the conditions (C1)–(C3), then (3.27), we obtain

lim
n→∞

∥
∥
∥
∥
∥
xn+1 − 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥
= 0. (3.28)

Moreover, we note that

‖xn+1 − T(h)xn+1‖ ≤
∥
∥
∥
∥
∥
xn+1 − 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xn ds − T(h)

(
1
tn

∫ tn

0
T(s)xn ds

)∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
T(h)

(
1
tn

∫ tn

0
T(s)xn ds

)

− T(h)xn+1

∥
∥
∥
∥
∥

≤ 2

∥
∥
∥
∥
∥
xn+1− 1

tn

∫ tn

0
T(s)xn ds

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xn ds−T(h)

(
1
tn

∫ tn

0
T(s)xn ds

)∥
∥
∥
∥
∥
.

(3.29)

Define the set K = {z ∈ C : ‖z − p‖ ≤ ‖x0 − p‖ + ‖γf(p) − Ap‖/(ϕ(1)γ − γα)}. Then K is a
nonempty bounded closed convex subset of C, which is T(s)—invariant for each s ≥ 0 and
contains {xn}; it follows from Lemma 2.3 that

lim
n→∞

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xn ds − T(h)

(
1
tn

∫ tn

0
T(s)xn ds

)∥
∥
∥
∥
∥
= 0, ∀h ≥ 0. (3.30)

Then, for all h ≥ 0, from (3.28) and (3.30), into (3.29), we obtain limn→∞‖xn+1 −T(h)xn+1‖ = 0,
and hence

lim
n→∞

‖xn − T(h)xn‖ = 0, ∀h ≥ 0. (3.31)

Next, we show that lim supn→∞〈γf(x∗) − Ax∗, Jϕ(xn − x∗)〉 ≤ 0. We can take subsequence
{xnj } ⊂ {xn} such that

lim
j→∞

〈
γf(x∗) −Ax∗, Jϕ

(
xnj − x∗

)〉
= lim sup

n→∞

〈
γf(x∗) −Ax∗, Jϕ(xn − x∗)

〉
. (3.32)
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By the assumption thatX is uniformly convex, hence it is reflexive and {xn} is bounded; then
there exists a subsequence {xnj} which converges weakly to some x ∈ C as j → ∞. Since Jϕ
is weakly continuous, from Lemma 2.1, we have

lim sup
j→∞

Φ
(∥
∥
∥xnj − z

∥
∥
∥
)
= lim sup

j→∞
Φ
(∥
∥
∥xnj − x

∥
∥
∥
)
+ Φ(‖z − x‖), ∀z ∈ C. (3.33)

Let H(z) = lim supj→∞Φ(‖xnj − z‖), for all z ∈ C.
It follows that H(z) = H(x) + Φ(‖z − x‖), for all z ∈ C.
From (3.31), we have

H(T(h)x) = lim sup
j→∞

Φ
(∥
∥
∥xnj − T(h)x

∥
∥
∥
)

= lim sup
j→∞

Φ
(∥
∥
∥T(h)xnj − T(h)x

∥
∥
∥
)

≤ lim sup
j→∞

Φ
(∥
∥
∥xnj − x

∥
∥
∥
)
= H(x).

(3.34)

On the other hand, we note that

H(T(h)x) = lim sup
j→∞

Φ
(∥
∥
∥xnj − x

∥
∥
∥
)
+ Φ(‖T(h)x − x‖)

= H(x) + Φ(‖T(h)x − x‖).
(3.35)

Combining (3.34) with (3.35), we obtain Φ(‖T(h)x − x‖) ≤ 0.
This implies that T(h)x = x; that is, x ∈ F(S).
Since the duality map Jϕ is single-valued and weakly continuous, we get that

lim sup
n→∞

〈
γf(x∗) −Ax∗, Jϕ(xn − x∗)

〉
= lim

j→∞

〈
γf(x∗) −Ax∗, Jϕ

(
xnj − x∗

)〉

=
〈
γf(x∗) −Ax∗, Jϕ(x − x∗)

〉 ≤ 0,
(3.36)

as required. Hence,

lim sup
n→∞

〈
γf(x∗) −Ax∗, Jϕ(xn+1 − x∗)

〉 ≤ 0. (3.37)

Since ‖xn+1 − yn‖ = βn‖xn − yn‖, by condition (C3), we obtain that limn→∞‖xn+1 − yn‖ = 0. It
follows from (3.37), that

lim sup
n→∞

〈
γf(x∗) −Ax∗, Jϕ

(
yn − x∗)〉 ≤ 0. (3.38)
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Finally, we show that xn → x∗ as n → ∞. Now, from Lemma 2.1, we have

Φ
(∥
∥yn − x∗∥∥) = Φ

(∥
∥αn

(
γf(zn) −Ax∗) + (I − αnA)(zn − x∗)

∥
∥
)

= Φ
(∥
∥αn

(
γf(zn) − γf(x∗)

)
+ αn

(
γf(x∗) −Ax∗) + (I − αnA)(zn − x∗)

∥
∥
)

≤ Φ
(∥
∥αn

(
γf(zn) − γf(x∗)

)
+ (I − αnA)(zn − x∗)

∥
∥
)

+ αn

〈
γf(x∗) −Ax∗, Jϕ

(
yn − x∗)〉

≤ (
1 − αn

(
ϕ(1)γ − γα

))
Φ(‖xn − x∗‖) + αn

〈
γf(x∗) −Ax∗, Jϕ

(
yn − x∗)〉.

(3.39)

On the other hand, we note that

Φ(‖xn+1 − x∗‖) = Φ
(∥
∥βn(xn − x∗) +

(
1 − βn

)(
yn − x∗)∥∥)

≤ (
1 − βn

)
Φ
(∥
∥yn − x∗∥∥) + βn

〈
xn − x∗, Jϕ(xn+1 − x∗)

〉
.

(3.40)

It follows from (3.40) that

Φ(‖xn+1 − x∗‖) ≤ (
1 − αn

(
ϕ(1)γ − γα

))
Φ(‖xn − x∗‖) + αn

〈
γf(x∗) −Ax∗, Jϕ

(
yn − x∗)〉

+ βn
〈
xn − x∗, Jϕ(xn+1 − x∗)

〉

≤ (
1−αn

(
ϕ(1)γ−γα))Φ(‖xn−x∗‖)+αn

[
〈
γf(x∗)−Ax∗, Jϕ

(
yn−x∗)〉+

βn
αn

M

]

,

(3.41)

where M = supn≥0{‖xn − x∗‖ϕ(‖xn+1 − x∗‖)}.
Put μn := αn(ϕ(1)γ − γα) and δn := αn[〈γf(x∗) − Ax∗, Jϕ(yn − x∗)〉 + (βn/αn)M].

Then (3.41) reduces to formula Φ(‖xn+1 − x∗‖) ≤ (1 − μn)Φ(‖xn − x∗‖) + δn. By conditions
(C1) and (C3) and noting (3.38), it is easy to see that

∑∞
n=0 μn = ∞ and lim supn→∞(δn/μn) =

lim supn→∞(1/ϕ(1)γ−γα)[〈γf(x∗)−Ax∗, Jϕ(yn−x∗)〉+(βn/αn)M] ≤ 0. Applying Lemma 2.4,
we obtain Φ(‖xn − x∗‖) → 0 as n → ∞ this implies that xn → x∗ as n → ∞. This completes
the proof.

Taking γn = 0 in (3.23), we can get the following corollary easily.

Corollary 3.4. Let X be a uniformly convex Banach space which admits a weakly continuous duality
mapping Jϕ with the gauge function ϕ such that ϕ invariant in [0, 1], C be a nonempty closed convex
subset of X such that C ± C ⊂ C. Let S = {T(t) : t ∈ �

+} be a nonexpansive semigroup from C
into itself such that F(S)/= ∅, f be a contraction mapping with a coefficient α ∈ (0, 1) and A be a
strongly positive linear bounded operator with a coefficient γ > 0 such that 0 < γ < γϕ(1)/α. Let
{αn}∞n=0, {βn}∞n=0 be the sequences in (0, 1) and {tn}∞n=0 be a positive real divergent sequence. Assume
the following conditions are hold:

(C1) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(C2) βn = o(αn).



16 International Journal of Mathematics and Mathematical Sciences

Then the sequence {xn} defined by

x0 ∈ C chosen arbitrarily,

yn = αnγf

(
1
tn

∫ tn

0
T(s)xn ds

)

+ (I − αnA)
1
tn

∫ tn

0
T(s)xn ds,

xn+1 = βnxn +
(
1 − βn

)
yn, ∀n ≥ 0,

(3.42)

converges strongly to the common fixed point x∗, in which x∗ ∈ F(S) is the unique solution of the
variational inequality:

〈
γf(x∗) −Ax∗, Jϕ(x − x∗)

〉 ≤ 0, ∀x ∈ F(S). (3.43)

A strong mean convergence theorem for nonexpansive mapping was first established
by Baillon [20] and it was generalized to that for nonlinear semigroups by Reich et al. [21–
23]. It is clear that Theorem 3.3 are valid for nonexpansive mappings. Thus, we have the
following mean ergodic theorem of viscosity iteration process for nonexpansive mappings in
Hilbert spaces.

Corollary 3.5. Let H be a real Hilbert space, and letC be a nonempty closed convex subset of H
such that C ± C ⊂ C. Let T be a nonexpansive mapping from C into itself such that F(T)/= ∅, f be
a contraction mapping with a coefficient α ∈ (0, 1), and let A be a strongly positive linear bounded
operator with a coefficient γ > 0 such that 0 < γ < γϕ(1)/α. Let {αn}∞n=0, {βn}∞n=0, and{γn}∞n=0 be
the sequences in (0, 1) and let {tn}∞n=0 be a positive real divergent sequence. Assume that the following
conditions are hold:

(C1) limn→∞αn = 0 and
∑∞

n=0 αn = ∞;

(C2) limn→∞γn = 0;

(C3) βn = o(αn).

Then the sequence {xn} defined by

x0 ∈ C chosen arbitrarily,

zn = γnxn +
(
1 − γn

) 1
n + 1

n∑

j=0

Tjxn,

yn = αnγf(zn) + (I − αnA)zn,

xn+1 = βnxn +
(
1 − βn

)
yn, ∀n ≥ 0,

(3.44)

converges strongly to the common fixed point x∗, in which x∗ ∈ F(T) is the unique solution of the
variational inequality:

〈γf(x∗) −Ax∗, x − x∗〉 ≤ 0, ∀x ∈ F(T). (3.45)
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