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We deal with the optimization of traffic flows distribution at road junctions with an incoming
road and two outgoing ones, in order to manage special events which determine congestion
phenomena. Using a fluid-dynamic model for the description of the car densities evolution, the
attention is focused on a decentralized approach. Two cost functionals, measuring the kinetic
energy and the average travelling times, weighted with the number of cars moving on roads, are
considered. The first one is maximized with respect to the distribution coefficient, and the second
is minimized with respect to the same control parameter. The obtained results have been tested by
simulations of urban networks. Decongestion effects are also confirmed estimating the time a car
needs to cross a fixed route on the network.

1. Introduction

The vehicles congestion is one of the most important problem of modern cities, challenging
many researchers to find techniques to control it. A solution to the problem is represented
by the use of more lanes and the construction of crossings, but in many areas the solution
is not feasible, and moreover the building and expanding of roads to accommodate the
increase of vehicles is more expensive. In particular, the presence of unexpected heavy traffic
in situations such as accidents leads to delay in the arrival of the emergency services and
supplies to where they are needed. In the case of special events, escorts, closures of roads,
traffic directions, and control functions can be performed, when necessary, to ensure the safe
and efficient movement of vehicles, splitting the traffic flows at intersections in such way to
improve the viability. An example is in Figure 1, where policemen are involved to manage
traffic at junctions.
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Figure 1: Example of car flows redistribution.

In this context, using a fluid dynamic model able to foresee the traffic density evolution
on road networks (see [1–4]), we propose a strategy to redistribute in an optimal way
flows at junctions. According to the adopted model, the car densities on each road follow
a conservation law (see [5]), while dynamics at junctions is uniquely solved using the
following rules:

(A) the incoming traffic at a node is distributed to outgoing roads according to some
distribution coefficients;

(B) drivers behave so as to maximize the flux through the junction.

If a junction J is of 1 × 2 type (namely, one incoming road, 1, and two outgoing ones, 2
and 3), rule (A) is expressed by a distribution parameter α, indicating the percentage of cars
going from road 1 to road 2. Assigning initial densities for incoming and outgoing roads and
using rule (B), we finally compute the asymptotic solution as function of α.

Here, considering the distribution coefficient as control parameter, we aim to redirect
traffic at junctions of 1×2 type in order to improve urban traffic and face emergency situations.
In particular, we analyze two optimization problems over a fixed time horizon: minimizing an
objective function W1, estimating the kinetic energy; maximizing a functional W2, measuring
the average travelling time of drivers, weighted with the number of cars moving on roads.
Indeed, we prove that both functionals are optimized for the same value of α.

Some control strategies for the right of way parameters and distribution coefficients
have already been treated in [6, 7], where three cost functionals, related to average velocity,
average travelling time, and flux, have been introduced for 1 × 2 and 2 × 1 junctions. Cost
functionals W1 and W2 have been studied in [8] for the optimal control of green and red
phases of traffic lights, while in [9] parameters of 2 × 2 junctions have been optimized for the
fast transit of emergency vehicles along an assigned path in case of car accidents.

The analysis of the functionals W1 and W2 on a whole network is a very hard task,
so we follow a decentralized approach: an exact solution is found for single 1 × 2 junctions
and asymptotic W1 and W2. The global (sub)optimal solution for networks is obtained by
localization: the exact optimal solution is applied locally for each time at each junction of 1×2
type.

The analytical optimization results are then tested by simulations (for numerics, see
[10–12]), analyzing optimal and random distribution coefficients. The first ones are given
by the optimization algorithm; the second ones consider, at the beginning of the simulation
process, random values of α, kept constant during the simulation. Then effects of the
decentralized approach on the global performance of two networks have been analyzed.
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Simulation results for a symmetric topology show that, assuming random distribution
coefficients, the congestion of one road can determine high traffic densities on the whole
network, while decongestion phenomena occur when optimal α values are used. In the case
study of a portion of the Salerno urban network in Italy, characterized by an asymmetric
topology, with 1 × 2 and 2 × 1 junctions, some interesting aspects arise: random coefficients
frequently provoke hard congestions, as expected; optimal distribution coefficients allow a
local redistribution of traffic flows. While random simulation curves of the cost functional W1

are always lower than the optimal one, the optimal curve of W2 is higher than some random
ones. This is not surprising because, at 2×1 junctions, traffic densities can remain high. Hence,
for such a network, (locally) optimal solutions alleviate critical traffic situations, but the aim
of the global optimization of W1 and W2 is not achieved. Moreover, using an algorithm (see
[13]) for tracing car trajectories on a network, some simulations are run to test how the total
travelling time of a driver is influenced by distribution coefficients. As intuition suggests, the
time for covering a path of a single driver decreases when optimal α values are used.

The paper is organized as follows. Section 2 is devoted to the description of the model
for road networks and to the construction of solutions to Riemann Problems 1 × 2 junctions.
In Section 3, we define the cost functionals W1 and W2 and optimize them with respect to
the distribution coefficients at a single junction. Simulation results for complex networks are
presented in Section 4. Section 5 ends the paper through conclusions.

2. A Riemann Solver for Road Networks

A road network is described by a couple (I,J), where I represents the set of roads, modelled
by intervals [ai, bi] ⊂ � , i = 1, . . . ,N, and J is the collection of junctions.

Indicating by ρ = ρ(t, x) ∈ [0, ρmax] the density of cars, ρmax the maximal density,
f(ρ) = ρv(ρ) the flux with v(ρ) the average velocity, the traffic dynamics is described on each
road by the conservation law (Lighthill-Whitham-Richards model, [3, 4]):

∂tρ + ∂xf
(
ρ
)
= 0. (2.1)

We assume that: (F) f is a strictly concave C2 function such that f(0) = f(ρmax) = 0.
Choosing ρmax = 1 and v(ρ) = 1 − ρ, a flux function ensuring (F) is

f
(
ρ
)
= ρ

(
1 − ρ

)
, ρ ∈ [0, 1], (2.2)

which has a unique maximum σ = 1/2.
In order to capture the dynamics at a junction, we solve Riemann Problems (RPs),

Cauchy Problems with a constant initial datum for each incoming and outgoing road, the
basic ingredient for the solution of Cauchy Problems by Wave-Front-Tracking algorithms.

Consider a junction J of n ×m type, that is, with n incoming roads Iϕ, ϕ = 1, . . . , n,m
outgoing roads, Iψ , ψ = n+1, . . . , n+m, and initial datum ρ0 = (ρ1,0, . . . , ρn,0, ρn+1,0, . . . , ρn+m,0).

Definition 2.1. A Riemann Solver (RS) for the junction J is a map RS : [0, 1]n × [0, 1]m →
[0, 1]n × [0, 1]m that associates to Riemann data ρ0 = (ρ1,0, . . . , ρn,0, ρn+1,0, . . . , ρn+m,0) at J a
vector ρ̂ = (ρ̂1, . . . , ρ̂n,0, ρ̂n+1, . . . , ρ̂n+m) so that the solution on an incoming road Iϕ, ϕ = 1, . . . , n,
is the wave (ρϕ,0, ρ̂ϕ) and on an outgoing one Iψ , ψ = n + 1, . . . , n + m is the wave (ρ̂ψ , ρψ,0).
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We require the following conditions hold true: (C1) RS(RS(ρ0)) = RS(ρ0); (C2) on each
incoming road Iϕ, ϕ = 1, . . . , n, the wave (ρϕ,0, ρ̂ϕ) has negative speed, while on each outgoing
road Iψ , ψ = n + 1, . . . , n +m, has the wave (ρ̂ψ , ρψ,0) has positive speed.

If m ≥ n, a possible RS at J is defined by the following rules (see [1]):

(A) traffic is distributed at J according to some coefficients, collected in a traffic
distribution matrix A = (αj,i), i = 1, . . . , n, j = n + 1, . . . , n + m, 0 < αj,i < 1,
∑n+m

j=n+1 αj,i = 1. The ith column of A indicates the percentages of traffic that, from
the incoming road Ii, distribute to the outgoing roads;

(B) fulfilling (A), drivers maximize the flux through J .

Focus on a 1 × 2 junction J . We indicate the cars density on the incoming road 1 by
ρ1(t, x) ∈ [0, 1], (t, x) ∈ �+ × I1, and on the outgoing roads ψ, ψ = 2, 3, by ρψ(t, x) ∈ [0, 1],
(t, x) ∈ �+ × Iψ .

Consider the flux function (2.2) and let (ρ1,0, ρ2,0, ρ3,0) be the initial densities at J . The
maximal flux values on roads are defined by

γmax
1 =

⎧
⎪⎪⎨

⎪⎪⎩

f
(
ρ1,0

)
if 0 ≤ ρ1,0 ≤

1
2
,

f

(
1
2

)
if

1
2
≤ ρ1,0 ≤ 1,

γmax
ψ =

⎧
⎪⎪⎨

⎪⎪⎩

f

(
1
2

)
if 0 ≤ ρψ,0 ≤

1
2
, ψ = 2, 3,

f
(
ρψ,0

)
if

1
2
≤ ρψ,0 ≤ 1, ψ = 2, 3.

(2.3)

If α ∈ ]0, 1[ and 1 − α indicate, respectively, the percentage of cars that, from road 1, goes to
the outgoing roads 2 and 3, the fluxes solution to the RP at J are

γ̂ =
(
γ̂1, αγ̂1, (1 − α)γ̂1

)
, (2.4)

where

γ̂1 = min
{
γmax

1 ,
γmax

2

α
,
γmax

3

1 − α

}
. (2.5)

Hence, ρ̂ = f−1(γ̂) is found as follows (see [1, 2]):

ρ̂1 ∈

⎧
⎪⎪⎨

⎪⎪⎩

{
ρ1,0

}
∪
]
τ
(
ρ1,0

)
, 1
]

if 0 ≤ ρ1,0 ≤
1
2
,

[
1
2
, 1
]

if
1
2
≤ ρ1,0 ≤ 1,

ρ̂ψ ∈

⎧
⎪⎪⎨

⎪⎪⎩

[
0,

1
2

]
if 0 ≤ ρψ,0 ≤

1
2
, ψ = 2, 3,

{
ρψ,0

}
∪
[
0, τ

(
ρψ,0

)[
if

1
2
≤ ρψ,0 ≤ 1, ψ = 2, 3,

(2.6)
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where τ : [0, 1] → [0, 1] is the map such that f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1] and τ(ρ)/= ρ
for every ρ ∈ [0, 1] \ {1/2}.

Finally, on the incoming road 1, the solution is given by the wave (ρ1,0, ρ̂1), while on
the outgoing road ψ, ψ = 2, 3, the solution is represented by the wave (ρ̂ψ , ρψ,0).

3. Distribution Parameters Optimization

Fix a 1 × 2 junction J and an initial datum (ρ1,0, ρ2,0, ρ3,0). We define the cost functional W1(t)
and W2(t), which measure, respectively, the kinetic energy and the average travelling time
weighted with the number of cars moving on roads:

W1(t) =
3∑

k=1

∫

Ik

f
(
ρk(t, x)

)
v
(
ρk(t, x)

)
dx,

W2(t) =
3∑

k=1

∫

Ik

ρk(t, x)
v
(
ρk(t, x)

)dx.

(3.1)

For a fixed time horizon [0, T], with T sufficiently big, consider the traffic distribution
coefficient α as control. We aim to maximize W1(T) and to minimize W2(T) separately. The
functionals assume the form:

W1(T) =
3∑

i=1

f
(
ρ̂i
)
v
(
ρ̂i
)
=

1
2

3∑

i=1

γ̂i

(
1 − si

√
1 − 4γ̂i

)
,

W2(T) =
3∑

i=1

ρ̂i

v
(
ρ̂i
) =

3∑

i=1

1 + si
√

1 − 4γ̂i

1 − si
√

1 − 4γ̂i
,

(3.2)

where s1 and sψ , ψ = 2, 3, are given by

s1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1 if ρ1,0 ≥
1
2
,

or ρ1,0 <
1
2

and γmax
1 > min

{
γmax

2

α
,
γmax

3

1 − α

}
,

−1 if ρ1,0 <
1
2

and γmax
1 ≤ min

{
γmax

2

α
,
γmax

3

1 − α

}
,

sψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1 if ρψ,0 >
1
2

and
γmax
ψ

αψ
≤ min

{

γmax
1 ,

γmax
ψ′

αψ′

}

, ψ ′ /=ψ,

−1 if ρψ,0 ≤
1
2
,

or ρψ,0 >
1
2

and
γmax
ψ

αψ
> min

{

γmax
1 ,

γmax
ψ′

αψ′

}

, ψ ′ /=ψ,

(3.3)
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with

αψ =

⎧
⎨

⎩

α if ψ = 2,

1 − α if ψ = 3.
(3.4)

According to the solution of the RP at J , we have

W1(T) =
γ̂1

2

(
1 − s1

√
1 − 4γ̂1

)
+
αγ̂1

2

(
1 − s2

√
1 − 4αγ̂1

)
+
(1 − α)γ̂1

2

(
1 − s3

√
1 − 4(1 − α)γ̂1

)
,

W2(T) =
1 + s1

√
1 − 4γ̂1

1 − s1

√
1 − 4γ̂1

+
1 + s2

√
1 − 4αγ̂1

1 − s2

√
1 − 4αγ̂1

+
1 + s3

√
1 − 4(1 − α)γ̂1

1 − s3

√
1 − 4(1 − α)γ̂1

,

(3.5)

where γ̂1 is given by (2.5). The values of α, which optimize W1(T) and W2(T), are reported in
the following theorem (for the sketch of the proof, see the appendix).

Theorem 3.1. Fix a 1×2 junction J . Assuming T sufficiently big, the cost functionalsW1(T)(W2(T))
is maximized (minimized) for α = 1/2, with the exception of the following cases (for some of them, the
optimal control does not exist but it is approximated):

(a) if γmax
3 ≤ γmax

1 /2 < γmax
1 ≤ γmax

2 , α = α1 + ε;

(b) if γmax
2 < γmax

1 /2 < γmax
1 ≤ γmax

3 , α = α2;

(c) if γmax
2 < γmax

3 < γmax
1 , we distinguish three subcases:

(c1) if γmax
1 − γmax

3 ≥ γmax
2 , α = α3;

(c2) if γmax
1 − γmax

3 < γmax
2 = γmax

1 /2, α = (1/2) − ε;
(c3) if γmax

1 − γmax
3 < γmax

2 ≤ γmax
1 /2, α = α2 − ε;

(d) if γmax
3 < γmax

2 < γmax
1 , we distinguish two subcases:

(d1) if γmax
1 − γmax

3 ≥ γmax
2 , α = α3 + ε;

(d2) if (1/2)γmax
1 ≤ γmax

1 − γmax
3 < γmax

2 , α = α1 − ε,

where α1 = (γmax
1 − γmax

3 )/γmax
1 , α2 = γmax

2 /γmax
1 , α3 = γmax

2 /(γmax
2 + γmax

3 ) and ε is small and
positive.

Example 1. Discuss the optimal solution for the following initial conditions:

(A) ρ1,0 = 0.35, ρ2,0 = 0.2, ρ3,0 = 0.9;

(B) ρ1,0 = 0.45, ρ2,0 = 0.75, ρ3,0 = 0.15;

(C) ρ1,0 = 0.3, ρ2,0 = 0.9, ρ3,0 = 0.8.

In case (A), we get

γmax
1 = 0.2275, γmax

2 = 0.25, γmax
3 = 0.09, (3.6)
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α1 1
α

(a)

W2(T)

α1 1
α

(b)

Figure 2: Case (A): behaviour of W1 and W2 for sufficiently big.

so condition γmax
3 < γmax

1 < γmax
2 is satisfied. Hence,

γ̂ =
(
γ̂1, αγ̂1, (1 − α)γ̂1

)
, (3.7)

where

γ̂1 =

⎧
⎪⎪⎨

⎪⎪⎩

γmax
3

1 − α, 0 < α ≤ α1,

γmax
1 , α1 < α < 1,

(3.8)

with α1 	 0.6. For T sufficiently big, W1(T) and W2(T) have one discontinuity point at α = α1,
as shown in Figure 2. The optimal control does not exist, but one can choose α = α1 + ε.

In case (B), we have that

γmax
1 = 0.2475, γmax

2 = 0.1875, γmax
3 = 0.25, (3.9)

hence condition γmax
2 < γmax

1 < γmax
3 holds. Then, the solution to the RP at J is

γ̂ =
(
γ̂1, αγ̂1, (1 − α)γ̂1

)
, (3.10)

where

γ̂1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γmax
1 , 0 < α ≤ α2,

γmax
2

α
, α2 < α < 1,

(3.11)

with α2 	 0.7575. For T sufficiently big, the cost functionals W1(T) and W2(T) have one
discontinuity point at α = α2, as shown in Figure 3. The optimal control exists, and it is
α = 1/2, for which

W1(T) = 0.347816, W2(T) = 1.1565. (3.12)
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Figure 3: Case (B): behaviour of W1 and W2 for T sufficiently big.
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Figure 4: Case (C): behaviour of W1 and W2 for T sufficiently big.

In case (C)

γmax
1 = 0.21, γmax

2 = 0.09, γmax
3 = 0.16, (3.13)

hence condition γmax
2 < γmax

3 < γmax
1 is satisfied, and we obtain

γ̂ =
(
γ̂1, αγ̂1, (1 − α)γ̂1

)
, (3.14)

where

γ̂1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γmax
3

1 − α, 0 < α ≤ α1,

γmax
1 , α1 < α < α2,

γmax
2

α
, α2 < α < 1,

(3.15)

with α1 	 0.238 and α2 	 0.428. The cost functional W1(T) and W2(T), reported in Figure 4
for T sufficiently big, have two discontinuity points at α = α1 and α = α2. Hence, an optimal
value for α does not exist, but we can choose α = α2 − ε.
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Figure 5: Topology of the symmetric network.

4. Road Traffic Simulation

We present some simulation results in order to test the optimization algorithm for the cost
functionals. In particular, we analyze the effects of different control procedures, applied
locally at each junction, on the global performances of networks and compute the travelling
time of a car on assigned paths. For simplicity, from now on we drop the dependence on T
from W1 and W2.

4.1. A Symmetric Network

In this subsection, we analyze a symmetric network with three simple junctions of 1 × 2
type, labelled by 1, 2, and 3, see Figure 5. In particular, the network consists of two inner
roads, b and c, and five roads, that connect the inner roads to outside: a, d, e, f , and g. The
conservation law with flux function (2.2) is approximated using the Godunov scheme, with
space step Δx = 0.0125, and time step, determined by the CFL condition (see [10, 11]), equal
to 0.5. We assume initial conditions zero for all roads at the starting instant of simulation
(t = 0), a 0.3 Dirichlet boundary datum for roads a, d, e, f , a 0.9 Dirichlet boundary condition
for road g and a time interval of simulation [0, T], where T = 30 min.

Two different choices of the distribution coefficients are considered: (locally) optimal
parameters at each junction, given by analytical results (optimal case); random parameters
(random case), that is, the distribution coefficients are taken randomly for each road junction
when the simulation starts and then are kept constant.

The evolution of W1 and of W2 are depicted in Figures 6 and 7, reporting with a
continuous line the optimal case and with dashed lines various random cases. In some
random simulations, the α values are such that a lower traffic density goes to road g,
with a consequent natural improvement of the network performances. This justifies the
fact that some dashed W1 and W2 curves approach the optimal ones. In other cases, W1

rapidly decreases and W2 tends to infinity, indicating that the random choice of α provokes
congestions on all network roads. However, in any case, the optimal case is better than
the others. In fact, it describes the natural situation (that happens on congested real urban
networks) in which the traffic is redirected to less congested roads.

4.2. A Real Urban Network

This subsection is devoted to the simulation on a portion of the urban network of Salerno,
Italy. The network topology, depicted in Figure 8, is characterized by four principal roads.
Each of them is divided into segments, labelled by letters: Via Torrione (segments a, b, and c),
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Figure 6: W1(t) evaluated for optimal distribution coefficients (continuous line) and random choices
(dashed lines). (a) evolution in [0;T]. (b) zoom around the asymptotic optimal values.
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Figure 7: W2(t) evaluated for optimal distribution coefficients (continuous line) and random choices
(dashed lines). (a) evolution in [0;T]. (b) zoom around the asymptotic optimal values.

Via Leonino Vinciprova (segments d and e), Via Settimio Mobilio (segments f , g, h, and i),
and Via Guercio (segment l). We distinguish inner roads segments, b, e, f , g, and h, and
external ones, a, c, d, i, l. Junctions (indicated by numbers) 1, 3 and 5 are of 1 × 2 type,while
2 and 4 are of 2 × 1 types. The evolution of traffic flows is simulated by the Godunov method
with Δx = 0.0125, Δt = Δx/2 in a time interval [0, T], with T = 120 min. Initial conditions
and boundary data for densities are in Table 1 and have been taken in order to simulate a
congestion scenario. Notice that, for junctions 2 and 4, right of way parameters are chosen
according to measures on the real network.

In Figure 9, we report the behaviour of W1 and W2, where optimal simulations
are indicated again by continuous lines, while random cases by dashed ones. Random
simulations curves of W1 are always lower than the optimal ones. In fact, when optimal
parameters are used, a flows redistribution occurs on roads, with consequent reduction of
congestions at junctions of 1 × 2 type. Focus now on W2, for which the optimal curve is
higher than some random ones. This is not surprising as we deal with the simulation of
a high congested asymmetric network. The traffic redirection at congested 1 × 2 junctions
is of local type and, as expected, benefits occur only on roads and at junctions where the
optimization procedure is applied. This is easy deducible considering Via Torrione, which
presents a 2 × 1 junction, labelled by 2, where traffic high densities cannot be redirected.
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Figure 8: Topology of the portion of the real urban network of Salerno.
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Figure 9: Evolution in [0;T] of W1(t) (a) and W2(t) (b) evaluated for optimal distribution coefficients
(continuous line) and random choices (dashed lines).

Table 1: Initial conditions, boundary data and right of way parameters for roads of the network.

Road Initial condition Boundary data Right of way parameters
a 0.2 0.3 /
b 0.2 / 0.2
c 0.2 0.9 0.4
d 0.2 0.3 /
e 0.8 / /
f 0.2 / 0.8
g 0.75 / 0.6
h 0.6 / /
i 0.75 0.9 /
l 0.75 0.9 /

Even if the right of way parameters which characterize 2 × 1 junctions are optimized accord-
ing to the values in [8], traffic conditions almost remain the same. Hence, although optimal
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Figure 10: Evolution of a car trajectory x(t) along road g with initial travel times t0 = 20 (a) and t0 = 60
(b), evaluated for optimal distribution coefficients (continuous lines) and random choices (dashed lines).

distribution coefficients are used, high traffic densities affect some roads and this justifies that
the optimal curve is not the lowest for W2.

Suppose that a car travels along a path in a network, whose traffic evolution is
modeled by (2.1). The position of the driver x = x(t) is obtained solving the Cauchy problem:

ẋ = v
(
ρ(t, x)

)
,

x(t0) = x0,
(4.1)

where x0 is the initial position at the initial time t0, while v = 1−ρ. Using numerical methods,
described in [13], we aim to estimate the driver travelling time and to prove the goodness
of the optimization results. First, we compute the car trajectory along road g and the time
needed for covering it in optimal case and random cases; then, we fix a car path within the
Salerno network and study the exit time evolution versus the initial travel time t0 (the time
in which the car enters into the network).

In Figure 10, we assume that the car starts its own travel at the beginning of road
g at the initial times t0 = 20 (a) and t0 = 60 (b) and compute the trajectories x(t) along
road g, in optimal case (continuous line) and random cases (dashed lines). Although initial
times t0 are different, the evolution x(t) in the optimal case has always a higher slope with
respect to trajectories in random cases because traffic levels are low. When random choices
of parameters α are used, higher boundary conditions for roads c, i, and l cause an increase
in density values by shocks propagating backwards. Hence, car velocities are reduced, travel
times become longer and so exit times from road g.

In Table 2, we collect the exit times Tout from road g (the times needed to go out from
road g), for the optimal choice of distribution coefficients (opt) and random choices (ri, i =
1, . . . , 9), assuming t0 = 20.

The exit time Tout(t) from road g versus the initial time t0, assuming that the car starts
its path from the beginning of the road is shown in Figure 11(a). Because of the decongestion
effects, the choice of optimal coefficients (continuous lines) allows to obtain an exit time lower
than the other cases (dashed lines). Notice that the exit time becomes stable after a certain
initial time value (t0 	 18.5 for the optimal distribution choice, unlike the random cases, for
which t0 	 35.5 and t0 	 42).
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Table 2: Initial conditions, boundary data and right of way parameters for roads of the network.

Simulations Tout

opt 1.02
r1 9.955
r2 10.89
r3 10.93
r4 11.82
r5 11.895
r6 12.75
r7 13.43
r8 13.585
r9 17.185
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Figure 11: Exit time from road g versus initial travel time t0 in [0, 80] (a) and exit time from the
path (a, g, h, l) versus initial travel times t0 in [0, 80] (b), evaluated for optimal distribution coefficients
(continuous lines) and random choices (dashed and dot dashed lines).

Finally, in Figure 11(b), we consider the exit time Tout(t) from a fixed route, (a, g, h, l),
versus the initial times t0. Precisely, we study the temporal variation of Tout when a car,
starting its trip at the beginning of road a at time t0, crosses roads a, g, h, l in order to exit
from the network. Also in this case, different choices of distribution coefficients (the optimal
one is indicated by a continuous line, unlike the others) affect the time for covering the path.
When optimal parameters are not used, Tout tends to infinity at some critical times tc (tc 	 13
and tc 	 27 for the random case represented by dashed line, and tc 	 23 and tc 	 36 for the
random case with dot-dashed line). This occurs because the car cannot enter road g or road
h, since the traffic within them is blocked. For times greater than critical ones, traffic densities
become stable (a light decongestion allows the car to reach the destination) and exit times
reach a steady value (Tout 	 31.5 and Tout 	 30.35) at times, respectively, t0 	 42 and t0 	 46.
On the contrary, when optimal parameters are used, the exit time does not tend to infinity
(as the network is never congested) and reaches the steady value Tout 	 28.75 at time t0 	 38
(lower, as expected, than steady-state times of simulation with random parameters).
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Figure 12: (a) case γmax
3 < γmax

1 < γmax
2 . (b) case γmax

2 < γmax
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3 .

5. Conclusions

In this paper, an optimization study has been presented to improve the urban traffic condi-
tions in case of special events in which splitting of flows is needed.

The optimization has been made over traffic distribution coefficients at junctions,
using two cost functionals, that measure, respectively, the kinetic energy and the average
travelling times of drivers, weighted with the number of cars moving on roads. An exact
solution has been found for simple junctions having one incoming road and two outgoing
roads. The obtained analytical results have been tested through simulations, showing that in
some cases a total decongestion effect is possible. This is also confirmed by evaluations of
cars trajectories on some roads and fixed routes on the network: using optimal distribution
coefficients, times needed to cover paths are the lowest.

Appendix

We report the proof of Theorem 3.1. Consider new functionals, W1 and W2, in which the
terms not depending on α are neglected. Since the solution to the RP at J depends on the
value of the parameter α, we distinguish various cases. Here, for sake of brevity, we analyze
some of them.

Assume (see Figure 12(a)) that

γmax
3 < γmax

1 < γmax
2 , (A.1)

then

γ̂1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γmax
3

1 − α, 0 < α ≤ α1,

γmax
1 , α1 < α < 1,

(A.2)
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where α1 = (γmax
1 − γmax

3 )/γmax
1 . As for 0 < α ≤ α1, s1 = +1, s2 = −1, and for α1 < α < 1,

s2 = s3 = −1, W1 and W2 assume the form:

W1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
1 − α

⎛

⎝1−

√

1 − 4
γmax

3

1 − α

⎞

⎠+
α

1 − α

(
1+

√
1−4

α

1 − αγ
max
3

)
, 0 < α ≤ α1,

α
(

1 +
√

1 − 4αγmax
1

)
+ (1 − α)

(
1 +

√
1 − 4(1 − α)γmax

1

)
, α1 < α < 1,

W2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
√

1 − 4
(
γmax

3 /(1 − α)
)

1 −
√

1 − 4
(
γmax

3 /(1 − α)
) +

1 −
√

1 − 4(α/(1 − α))γmax
3

1 +
√

1 − 4(α/(1 − α))γmax
3

, 0 < α ≤ α1,

1 −
√

1 − 4αγmax
1

1 +
√

1 − 4αγmax
1

+
1 −

√
1 − 4(1 − α)γmax

1

1 +
√

1 − 4(1 − α)γmax
1

, α1 < α < 1.

(A.3)

Our aim is to maximize W1 and to minimize W2 separately with respect to the parameter α.
If 0 < α ≤ α1, then

∂W1

∂α
= 2

γmax
3

(1 − α)3

[
1

μ(1 − α)
− α

μ((1 − α)/α)

]
+

1

(1 − α)2

[
2 − μ(1 − α) + μ

(
1 − α
α

)]
,

∂W2

∂α
=

4γmax
3

μ((1 − α)/α)
[
1 + μ((1 − α)/α)

]2(1 − α)2
−

4γmax
3

μ(1 − α)
[
μ(1 − α) − 1

]2(1 − α)2
,

(A.4)

where μ(α) =
√

1 − 4(γmax
3 /(1 − α)), and hence the functionals W1 and W2 are, respectively,

an increasing and a decreasing function.
If α1 < α < 1, we get

∂W1

∂α
= 2γmax

1

[
η(1 − α) − η(α)

]
+ ζ(α) − ζ(1 − α),

∂W2

∂α
= 2γmax

1

[
χ(α) − χ(1 − α) + θ(α) − θ(1 − α)

]
,

(A.5)

where

ζ(α) =
√

1 − 4αγmax
1 , η(α) =

α

ζ(α)
,

χ(α) =
1 − ζ(α)

[1 + ζ(α)]2ζ(α)
, θ(α) =

1
[1 + ζ(α)]ζ(α)

.

(A.6)



16 International Journal of Mathematics and Mathematical Sciences

Since

∂W1

∂α
≥ 0 ⇐⇒ α ∈

]
0,

1
2

]
,

∂W2

∂α
≥ 0 ⇐⇒ α ∈

[
1
2
, 1
[
, (A.7)

we conclude that W1 and W2 are maximized and minimized, respectively, for α = 1/2.
Finally, we obtain that

(i) if α1 < 1/2, for all α ∈ ]0, α1[ ∪ ]α1, 1/2],

∂W1

∂α
≥ 0,

∂W2

∂α
≤ 0; (A.8)

(ii) if α1 ≥ 1/2, for all α ∈ ]0, α1[,

∂W1

∂α
> 0,

∂W2

∂α
< 0. (A.9)

Moreover,

lim
α→α+1

[
W1(α) −W1(α1)

]
> 0, lim

α→ α+1

[
W2(α1) −W2(α)

]
> 0. (A.10)

Hence, we conclude that

(i) if α1 < 1/2, W1 and W2 are optimized for α = 1/2;

(ii) if α1 ≥ 1/2, the optimal value for both W1 and W2 does not exist. One can choose
α = α1 + ε, with ε small and positive constant.

In the particular case γmax
3 < γmax

1 = γmax
2 , the analysis is unchanged. If γmax

1 = γmax
3 <

γmax
2 both W1 and W2 are optimized for α = 1/2.

Assume that (Figure 12(b))

γmax
2 < γmax

1 < γmax
3 . (A.11)

We have

γ̂1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γmax
1 , 0 < α ≤ α2,

γmax
2

α
, α2 < α < 1,

(A.12)
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where α2 = γmax
2 /γmax

1 . Then, as for 0 < α ≤ α2, s2 = s3 = −1, and for α2 < α < 1, s1 = +1,
s3 = −1, we have to maximize

W1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α
√

1 − 4αγmax
1 + (1 − α)

√
1 − 4(1 − α)γmax

1 , 0 < α ≤ α2,

1
α

⎛

⎝1 −

√

1 − 4
γmax

2

α

⎞

⎠ +
1 − α
α

(

1 +
√

1 − 4
1 − α
α

γmax
2

)

, α2 < α < 1,

(A.13)

and to minimize

W2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
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1
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1

+
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1 − 4(1 − α)γmax
1
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1 +
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2 /α
)

1 −
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1 − 4
(
γmax

2 /α
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1 −
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1 − 4((1 − α)/α)γmax
2

1 +
√

1 − 4((1 − α)/α)γmax
2

, α2 < α < 1,

(A.14)

separately with respect to α.

Observe that W1 and W2 have both a jump at α = α2. If 0 < α ≤ α2, ∂W1/∂α and
∂W2/∂α have the same expressions already examined in the previous case. If α2 < α < 1,

∂W1

∂α
= −2

γmax
2

α3

[
1

ω(α)
+

1
ω(α/(1 − α))

]
+

1
α2

[
ω(α) −ω

(
α

1 − α

)
− 2

]
,

∂W2

∂α
=

4γmax
2

α2[ω(α) − 1]2ω(α)
−

4γmax
2

α2[1 +ω(α/(1 − α))]2ω(α/(1 − α))
,

(A.15)

where ω(α) =
√

1 − 4(γmax
2 /α), and it follows that W1 and W2 are, respectively, a decreasing

and an increasing function. We get

∂W1

∂α
≥ 0, ∀α ∈ ]0, α̃[,

∂W2

∂α
≤ 0, ∀α ∈ ]0, α̃[, (A.16)

where

α̃ =

⎧
⎪⎪⎨

⎪⎪⎩

α2, α2 <
1
2
,

1
2
, α2 ≥

1
2
,

lim
α→α+2

[
W1(α2) −W1(α)

]
> 0, lim

α→ α+2

[
W2(α2) −W2(α)

]
< 0.

(A.17)
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We conclude that

(i) if α2 < 1/2, the optimal value for W1 and W2 is α = α2;

(ii) if α2 ≥ 1/2, W1 and W2 are optimized for α = 1/2.

The obtained optimization results also hold if γmax
2 < γmax

1 = γmax
3 ; on the contrary,

assuming γmax
1 = γmax

2 < γmax
3 , the optimal value for both functionals is α = 1/2.
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