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Hypersubstitutions are mappings which map operation symbols to terms of the corresponding
arities. They were introduced as a way of making precise the concept of a hyperidentity
and generalizations to M-hyperidentities. A variety in which every identity is satisfied as a
hyperidentity is called solid. If every identity is anM-hyperidentity for a subsetM of the set of all
hypersubstitutions, the variety is called M-solid. There is a Galois connection between monoids
of hypersubstitutions and sublattices of the lattice of all varieties of algebras of a given type.
Therefore, it is interesting and useful to know how semigroup or monoid properties of monoids of
hypersubstitutions transfer under this Galois connection to properties of the corresponding lattices
of M-solid varieties. In this paper, we study the order of each hypersubstitution of type (2,1),
that is, the order of the cyclic subsemigroup of the monoid of all hypersubstitutions of type (2,1)
generated by that hypersubstitution.

1. Preliminaries

Let � denote the set of all positive integers. Let τ = {(fi, ni) | i ∈ I} be a type. Let
X = {x1, x2, x3, . . .} be a countably infinite alphabet of variables such that the sequence of
the operation symbols (fi)i∈I is disjoint with X, and let Xn = {x1, x2, . . . , xn} be an n-element
alphabet where n ∈ �. Here, fi is ni-ary for a natural number ni ≥ 1. An n-ary (n ≥ 1) ���� of
type τ is inductively defined as follows:

(i) every variable xj ∈ Xn is an n-ary term,

(ii) if t1, . . . , tni are n-ary terms and fi is an ni-ary operation symbol, then fi(t1, . . . , tni)
is an n-ary term.

LetWτ(Xn) be the smallest set containing x1, . . . , xn and being closed under finite application
of (ii). The set of all terms of type τ over the alphabet X is defined as the disjoint union
Wτ(X) :=

⋃∞
n=1 Wτ(Xn).
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Any mapping σ : {fi : i ∈ I} → Wτ(X) is called a ������	
����	��� of type τ if
σ(fi) is an ni-ary term of type τ for every i ∈ I. Any hypersubstitution σ of type τ can be
uniquely extended to a map σ̂ onWτ(X) as follows:

(i) σ̂[t] := t if t ∈ X,

(ii) σ̂[t] := σ(fi)(σ̂[t1], . . . , σ̂[tni]) if t = fi(t1, . . . , tni).

A binary operation ◦h is defined on the set Hyp(τ) of all hypersubstitutions of type τ by

(σ1◦hσ2)
(
fi
)
:= σ̂1

[
σ2
(
fi
)]
, (1.1)

for all ni-ary operation symbols fi. This binary associative operation makes Hyp(τ) into a
monoid, with the identity hypersubstitution σid which maps every fi to fi(x1, . . . , xni) as an
identity element. For a submonoid M of Hyp(τ) an identity s ≈ t of a variety V of type (τ) is
called anM-hyperidentity of V if for every hypersubstitution σ ∈ M, the equation σ̂[s] ≈ σ̂[t]
holds in V . A variety V is called M-solid if every identity of V is an M-hyperidentity of V .
If M is a submonoid of Hyp(τ), then the collection of all M-solid varieties of type τ is a
complete sublattice of the lattice of all varieties of type τ [1].

Let σ ∈ Hyp(τ) and let 〈σ〉 := {σn | n ∈ �} be the cyclic subsemigroup of Hyp(τ)
generated by σ. The order of σ ∈ Hyp(τ) is defined as the order of the semigroup 〈σ〉. If 〈σ〉
is finite, then the order of the hypersubstition σ is finite, otherwise the order of σ is infinite.
The hypersubstitution σ is idempotent if and only if the order of σ is 1.

The order of a hypersubstitution of type (2) is 1, 2, or infinite [2]. The order of a
hypersubstitution of type (3) is 1, 2, 3, or infinite [3]. The order of a hypersubstitution of
type (2,2) is 1, 2, 3, 4, or infinite [4]. We are interested in type (2,1). The main result is as
follows.

Main Theorem. Any hypersubstitution of type (2, 1) has order either infinite or less than or equal
to 3.

Throughout this paper, let f and g be the binary operation symbols and the unary
operation symbols of type τ = (2, 1), respectively. For a binary term a and an unary term b
of type τ , the hypersubstitution which maps the operation symbol f to the term a and the
operation symbol g to the term b will be denoted by σa,b.

For a binary term t ∈ W(2,1)(X2), we introduce the following notations:

leftmost(t)—the first variable (from the left) occurring in t,

rightmost(t)—the last variable occurring in t,

var(t)—the set of all variable occurring in t,

op(t)—the total number of all operation symbols occurring in t,

ops(t)—the set of all operation symbols occurring in t,

firstops(t)—the first operation symbol (from the left) occurring in t.

For t ∈ W(2,1)(X2), let Lp(t) denote the left path from the root to the leaf which is
labelled by the leftmost variable in t and Rp(t) denote the right path from the root to the leaf
which is labelled by the rightmost variable in t. The operation symbols occurring in Lp(t) and
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Rp(t) will be denoted by ops(Lp(t)) and ops(Rp(t)), respectively. If t ∈ W(2,1)(X2) such that
var(t) = {x1} or var(t) = {x2}, we define t1 = t and

tn = tn−1(t, t), if n ≥ 1. (1.2)

For a and b of the hypersubstitution σa,b, we break our analysis into the following six
cases, which cover all possibilities for a and b:

(I) op(a) ≤ 1 and op(b) ≤ 1,

(II) op(a) > 1 and op(b) > 1,

(III) op(a) = 1 and op(b) > 1,

(IV) op(a) > 1 and op(b) = 1,

(V) op(a) > 1 and op(b) = 0,

(VI) op(a) = 0 and op(b) > 1.

In case (I), we have term a ∈ {x1, x2, f(x1, x1), f(x1, x2), f(x2, x1), f(x2, x2), g(x1),
g(x2)} and b ∈ {x1, g(x1), f(x1, x1)}. For σa,b we have twenty-four cases, for which the orders
can be verified by simple calculations. The case a = g(x2) and b = f(x1, x1) gives order 3, six
other cases give order 2, and the remaining 17 cases give order 1.

2. Case II: op(a) > 1 and op(b) > 1

In this section, we consider the order of a hypersubstitution σa,b where op(a) > 1 and op(b) >
1. We consider three subcases of Case II:

(II-1) var(a) = {x1, x2}, var(b) = {x1},
(II-2) var(a) = {x1}, var(b) = {x1},
(II-3) var(a) = {x2}, var(b) = {x1}.

The following formula for the operation symbol count of the compound term
s(t1, . . . , tn) for some s, t1, . . . , tn ∈ Wτ(X) was proved in [5]:

op(s(t1, . . . , tn)) =
n∑

j=1

vbj(s)op
(
tj
)
+ op(s), s, t1, . . . , tn ∈ W(τ)(X), (2.1)

where vbj(s) = the number of occurrences of variable xj in the term s.
Using the facts (see [5]) that op(σ̂[t]) > op(t) for all t ∈ Wτ(X) if σ ∈ Hyp(τ) is regular,

that is, var(σ(fi)) = Xn, for all i ∈ I, and the formula above, we obtain the following theorem.

Theorem 2.1. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1). If op(a) > 1, op(b) > 1, var(a) = {x1, x2},
var(b) = {x1}, then the order of σa,b is infinite.

Proof. Since σa,b is regular, by induction we obtain op(σk
a,b(f)) < op(σk+1

a,b (f)). Then, the order
of σa,b is infinite.
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The following lemmas are easy to prove.

Lemma 2.2. Let a, t ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) ≥ 1, op(b) ≥ 1. If t /∈ X2,
then σ̂n

a,b
[t] is not a variable for all n ∈ �.

Lemma 2.3. Let a, t ∈ W(2,1)(X2), b ∈ W(2,1)(X1). If var(t) = {xi} for some i ∈ {1, 2}, then
var(σ̂n

a,b
[t]) = {xi} for all n ∈ �.

Lemma 2.4. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) ≥ 1, op(b) ≥ 1, and a =
f(a1, a2), b = g(b1) for some a1, a2 ∈ W(2,1)(X2), b1 ∈ W(2,1)(X1). Then, the following hold:

(i) if var(a) = {x1} and a1 /=x1, then the order of σa,b is infinite;

(ii) if var(b) = {x1} and b1 /=x1, then the order of σa,b is infinite.

Proof. (i) Assume var(a) = {x1} and a1 /=x1. Then, a1 /∈ X2. Let n ∈ �. By Lemma 2.2,
σ̂n+1
a,b [a1] /∈ X2. Since var(a) = {x1}, by Lemma 2.3, var(σ̂n

a,b[a]) = {x1}. Now,

op
(
σ̂n+1
a,b [a]

)
= op

(
σ̂n
a,b

[
σ̂a,b

[
f(a1, a2)

]])

= op
(
σ̂n
a,b

[
σa,b

(
f
)
(σ̂a,b[a1], σ̂a,b[a2])

])

= op
(
σ̂n
a,b[a(σ̂a,b[a1], σ̂a,b[a2])]

)

= op
(
σ̂n
a,b[a]

(
σ̂n+1
a,b [a1], σ̂n+1

a,b [a2]
))

> op
(
σ̂n
a,b[a]

)
.

(2.2)

This shows that op(σ̂n+1
a,b

[a]) > op(σ̂n
a,b
[a]) for all n ∈ �. Hence, the order of σa,b is infinite.

(ii) Assume var(b) = {x1} and b1 /=x1, then b1 /∈ X1. Let n ∈ �. By Lemma 2.2,
σ̂n+1
a,b [b1] /∈ X1. Since var(b) = {x1}, by Lemma 2.3 var(σ̂n

a,b[b]) = {x1} for all n ∈ �. Then,

op
(
σ̂n+1
a,b [b]

)
= op

(
σ̂n
a,b

[
σ̂a,b

[
g(b1)

]])

= op
(
σ̂n
a,b[b]

(
σ̂n+1
a,b [b1]

))

> op
(
σ̂n
a,b[b]

)
.

(2.3)

Therefore, op(σ̂n+1
a,b

[b]) > op(σ̂n
a,b
[b]) for all n ∈ �. Hence we have the claim.

Throughout the rest of this paper, we assume that when a is not a variable term it has
the form f(a1, a2) or g(a1), for some terms a1, a2 and that when b is not a variable term it has
the form f(b1, b2) or g(b1), for some terms b1, b2.

In Case (II-2), we have var(a) = {x1}, var(b) = {x1}. We consider the following four
subcases:

(2.1) firstops(a) = f , firstops(b) = f ;

(2.2) firstops(a) = g, firstops(b) = g;
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(2.3) firstops(a) = f , firstops(b) = g;

(2.4) firstops(a) = g, firstops(b) = f .

In Case (2.1), we can separate into four subcases:

(2.1.1) a1 /∈ X2;

(2.1.2) a1 = x1, b1 = x1;

(2.1.3) a1 = x1, b1 /∈ X1, ops(Lp(b)) = {f};
(2.1.4) a1 = x1, b1 /∈ X1, ops(Lp(b))/= {f}.

Theorem 2.5. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x1} = var(b), and a = f(a1, a2), b = f(b1, b2) for some a1, a2 ∈ W(2,1)(X2), b1, b2 ∈ W(2,1)(X1).
Then, the following hold:

(i) if a and b satisfy (2.1.1) or (2.1.4), then σa,b has infinite order;

(ii) if a and b satisfy (2.1.2) or (2.1.3), then the order of σa,b is less than or equal to 3.

Proof. (i) Assume a and b satisfy (2.1.1). By Lemma 2.2, we have σ̂n
a,b[a1] /∈ X2 for all n ∈ �.

Since var(σ̂a,b[a]) = {x1}, by Lemma 2.3 var(σ̂n
a,b
[a]) = {x1} for all n ∈ �. Therefore,

op
(
σ̂k+1
a,b [a]

)
= op

(
σ̂k
a,b[a(σ̂a,b[a1], σ̂a,b[a2])]

)

= op
(
σ̂k
a,b[a]

(
σ̂k+1
a,b [a1], σ̂k+1

a,b [a2]
))

> op
(
σ̂k
a,b[a]

)
.

(2.4)

This shows that op(σ̂n+1
a,b

[a]) > op(σ̂n
a,b
[a]) for all n ∈ �. Hence, σa,b has infinite order.

Assume a and b satisfy (2.1.4). Since var(σ̂a,b[a]) = {x1}, σ̂n
a,b[a] = σ̂a,b[a] for all n ∈ �.

Since g ∈ ops(Lp(b)), we have op(σ̂n+1
a,b

[b]) > op(σ̂n
a,b
[b]) for all n ∈ �. Hence, the order of

σa,b is infinite.
(ii) Assume a and b satisfy (2.1.2). Since var(σ̂a,b[a]) = {x1}, a1 = x1 and firstops(a) =

f , we obtain σ̂a,b[a] = a. This gives

σ̂3
a,b

[
f
]
= σ̂2

a,b[a] = σ̂a,b[a] = σ̂2
a,b

[
f
]
. (2.5)

Since b1 = x1, var(σ̂a,b[a]) = {x1} and firstops(b) = f , we have σ̂a,b[b]) = a. So,

σ̂3
a,b

[
g
]
= σ̂2

a,b[b] = σ̂a,b[a] = a = σ̂a,b[b] = σ̂2
a,b

[
g
]
. (2.6)

Hence, σ2
a,b = σ3

a,b. This shows that the order of σa,b is less than or equal to 2.
Assume a and b satisfy (2.1.3). Because of (2.1.2), we have σ̂a,b[a] = a, which implies

σ̂3
a,b
[f]) = σ̂2

a,b
[f]. Since ops(Lp(b)) = {f}, we have

σ̂a,b[b] = a′
1

(
a′
2

(· · ·a′
m−1

(
a′
m(x1, x1), σ̂a,b

[
t′m−1

])
, . . . , σ̂a,b

[
t′2
])
, σ̂a,b

[
t′1
])
, (2.7)
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for some t′1, . . . , t
′
m−1 ∈ W(2,1)(X1) with m = op(Lp(b)) and a′

1 = a′
2 = · · · = a′

m = a. It follows
that σ̂2

a,b
[b] = (σ̂a,b[a])m. Since σ̂a,b[a] = a, we obtain

σ̂4
a,b

[
g
]
= σ̂3

a,b[b] = σ̂a,b

[
(σ̂a,b[a])

m] =
(
σ̂2
a,b[a]

)m

= (σ̂a,b[σ̂a,b[a]])
m = (σ̂a,b[a])

m = σ̂2
a,b[b] = σ̂3

a,b

[
g
]
.

(2.8)

Thus, σ3
a,b

= σ4
a,b
. Hence, the order of σa,b is less than or equal to 3.

In Case (2.2), we have firstops(a) = g and firstops(b) = g. Since op(a) > 1 and op(b) >
1, a1 /∈ X2 and b1 /∈ X1. Then, we obtain the following.

Theorem 2.6. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x1}, a = g(a1) and b = g(b1) for some a1 ∈ W(2,1)(X2), b1 ∈ W(2,1)(X1). Then, σa,b has infinite
order.

Proof. Assume that a = g(a1), b = g(b1), op(a) > 1, op(b) > 1, var(a) = {x1}. Then, a1 /∈ X2,
b1 /∈ X1. It can be proved, as in the proof of Theorem 2.5(i), that the order of σa,b is infinite.

In Case (2.3), we have firstops(a) = f and firstops(b) = g. Since op(b) > 1, b1 /∈ X1.
Then, we obtain the following.

Theorem 2.7. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x1}, a = f(a1, a2) and b = g(b1) for some a1, a2 ∈ W(2,1)(X2), b1 ∈ W(2,1)(X1) \X1. Then, σa,b has
infinite order.

Proof. By op(b) > 1, b1 /∈ X1. Since firstops(b) = g, var(b) = {x1} and Lemma 2.4(ii), we have
σa,b has infinite order.

In Case (2.4), we have firstops(a) = g and firstops(b) = f . Since op(a) > 1 and op(b) >
1, a1 /∈ X2 and b1 /∈ X1 or b2 /∈ X1. We consider the following three subcases:

(2.4.1) b1 /∈ X1;

(2.4.2) b1 = x1, op(a1) = {g};

(2.4.3) b1 = x1, op(a1)/= {g}.

Theorem 2.8. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x1}, var(b) = {x1}, and a = g(a1), b = f(b1, b2) for some a1 ∈ W(2,1)(X2), b1, b2 ∈ W(2,1)(X1).
Then, the following hold:

(i) if a and b satisfy (2.4.1) or (2.4.3), then σa,b has infinite order;

(ii) if a and b satisfy (2.4.2), then the order of σa,b is less than or equal to 2.
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Proof. (i) Assume that a and b satisfy (2.4.1). By Lemma 2.2, we have σ̂n
a,b
[a1] /∈ X2 for all

n ∈ �. Since var(σ̂a,b[a]) = {x1}, by Lemma 2.3 var(σ̂n
a,b
[a]) = {x1} for all n ∈ �. Therefore,

op
(
σ̂k+1
a,b [a]

)
= op

(
σ̂k
a,b[a(σ̂a,b[a1], σ̂a,b[a2])]

)

= op
(
σ̂k
a,b[a]

(
σ̂k+1
a,b [a1], σ̂k+1

a,b [a2]
))

> op
(
σ̂k
a,b[a]

)
.

(2.9)

This shows that op(σ̂n+1
a,b

[a]) > op(σ̂n
a,b
[a]) for all n ∈ �. Hence, σa,b has infinite order.

Assume that a and b satisfy (2.4.3). This case can be proved as in (2.4.1).
(ii) Assume that a and b satisfy (2.4.2). Then, σ̂a,b[a] = b and σ̂a,b[b] = a. We have

σ3
a,b = σa,b and σ4

a,b = σ2
a,b. Hence, the order of σa,b is less than or equal to 3.

In Case (II-3), we have var(a) = {x2}, var(b) = {x1}. We consider the following four
subcases:

(3.1) firstops(a) = f , firstops(b) = f ;

(3.2) firstops(a) = g, firstops(b) = g;

(3.3) firstops(a) = f , firstops(b) = g;

(3.4) firstops(a) = g, firstops(b) = f .

In Case (3.1), we can separate into four subcases:

(3.1.1) a2 /∈ X2;

(3.1.2) a2 = x2, b2 = x1;

(3.1.3) a2 = x2, b2 /∈ X1, ops(Rp(b)) = {f};
(3.1.4) a2 = x2, b2 /∈ X1, ops(Rp(b))/= {f}.

Theorem 2.9. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x2}, var(b) = {x1}, and a = f(a1, a2), b = f(b1, b2) for some a1, a2 ∈ W(2,1)(X2), b1, b2 ∈
W(2,1)(X1). Then, the following hold:

(i) if a and b satisfy (3.1.1) or (3.1.4), then σa,b has infinite order;

(ii) if a and b satisfy (3.1.2) or (2.1.3), then the order of σa,b is less than or equal to 2.

Proof. (i)Assume that a and b satisfy (3.1.1). By Lemma 2.2, we have σ̂n
a,b
[a1] /∈ X2 for all n in

�. Since var(σ̂a,b[a]) = {x2}, by Lemma 2.3 var(σ̂n
a,b
[a]) = {x2} for all n ∈ �. Therefore,

op
(
σ̂k+1
a,b [a]

)
= op

(
σ̂k
a,b[a(σ̂a,b[a1], σ̂a,b[a2])]

)

= op
(
σ̂k
a,b[a]

(
σ̂k+1
a,b [a1], σ̂k+1

a,b [a2]
))

> op
(
σ̂k
a,b[a]

)
.

(2.10)

This shows that op(σ̂n+1
a,b

[a]) > op(σ̂n
a,b
[a]) for all n ∈ �. Hence, σa,b has infinite order.
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Assume that a and b satisfy (3.1.4). Then, σ̂n
a,b
[a] = σ̂a,b[a] for all n ∈ �. Since

var(σ̂a,b[a]) = {x2} and b2 /∈ X1, we have

op
(
σ̂k+1
a,b [b]

)
= op

(
σ̂k
a,b[b(σ̂a,b[b1], σ̂a,b[b2])]

)

= op
(
σ̂k
a,b[b]

(
σ̂k+1
a,b [b1], σ̂

k+1
a,b [b2]

))

> op
(
σ̂k
a,b[b]

)
.

(2.11)

This implies that op(σ̂n+1
a,b

[b]) > op(σ̂n
a,b
[b]) for all n ∈ �. Hence, the order of σa,b is infinite.

(ii) Assume that a and b satisfy (3.1.2). Then, we get σ̂a,b[a] = a, σ̂2
a,b
[b] = σ̂a,b[b]

or σ̂a,b[a] = a, σ̂a,b[b] = b. In the first, the order of σa,b is equal to 2. For the latter, σa,b is
idempotent.

Assume that a and b satisfy (3.1.3). Then, σ̂a,b[a] = a, σ̂2
a,b[b] = σ̂a,b[b], which can be

proved the same way as the first case of (ii).

In Case (3.2), we have firstops(a) = g and firstops(b) = g. Since op(a) > 1 and op(b) >
1, a1 /∈ X2 and b1 /∈ X1. Then, we obtain the following.

Theorem 2.10. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x2}, a = g(a1) and b = g(b1) for some a1 ∈ W(2,1)(X2) \ X2, b1 ∈ W(2,1)(X1) \ X1. Then σa,b has
infinite order.

Proof. Since var(a) = {x2} and b1 /∈ X1, we have

op
(
σ̂k+1
a,b [b]

)
= op

(
σ̂k
a,b[b(σ̂a,b[b1], σ̂a,b[b2])]

)

= op
(
σ̂k
a,b[b]

(
σ̂k+1
a,b [b1], σ̂

k+1
a,b [b2]

))

> op
(
σ̂k
a,b[b]

)
.

(2.12)

Hence, the order of σa,b is infinite.

In Case (3.3), we have firstops(a) = f and firstops(b) = g. Since op(b) > 1, b1 /∈ X1.
Then, we obtain the following.

Theorem 2.11. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x2}, a = f(a1, a2) and b = g(b1) for some a1, a2 ∈ W(2,1)(X2), b1 ∈ W(2,1)(X1) \X1. Then σa,b has
infinite order.

Proof. Since b1 /∈ X1 firstops(b) = g and Lemma 2.4(ii), we have σa,b has infinite order.
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In Case (3.4), we have firstops(a) = g and firstops(b) = f . Since op(a) > 1 and op(b) >
1, a1 /∈ X2 and b1 /∈ X1. We have the following result.

Theorem 2.12. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) > 1, var(a) =
{x2}, var(b) = {x1}, and a = g(a1), b = f(b1, b2) for some a1 ∈ W(2,1)(X2), b1, b2 ∈ W(2,1)(X1).
Then, σa,b has infinite order.

Proof. Since op(a) > 1, a1 /∈ X2. We have, by Lemma 2.2, σ̂n
a,b
[a1] /∈ X2 for all n in �. Since

var(σ̂a,b[a]) = {x2}, by Lemma 2.3 var(σ̂n
a,b
[a]) = {x2} for all n ∈ �. We obtain

op
(
σ̂k+1
a,b [a]

)
= op

(
σ̂k
a,b[a(σ̂a,b[a1], σ̂a,b[a2])]

)

= op
(
σ̂k
a,b[a]

(
σ̂k+1
a,b [a1], σ̂k+1

a,b [a2]
))

> op
(
σ̂k
a,b[a]

)
.

(2.13)

Hence, σa,b has infinite order.

3. Case III: op(a) = 1 and op(b) > 1

We consider three subcases:

(III-1) var(a) = X2, var(b) = {x1};
(III-2) var(a) = {x1}, var(b) = {x1};
(III-3) var(a) = {x2}, var(b) = {x1}.

In Case (III-1), we separate into the following subcases:

(1) a = f(x1, x2),firstops(b) = f ;

(2) a = f(x1, x2),firstops(b) = g;

(3) a = f(x2, x1),firstops(b) = f ;

(4) a = f(x2, x1),firstops(b) = g.

We have the following results. Subcases (2) and (4) give infinite order, by Lemma 2.4(ii). The
next proposition deal with subcases (1) and (3).

Proposition 3.1. Let b = f(b1, b2) for some b1, b2 ∈ W(2,1)(X1) be such that var(b) = {x1} and
op(b) > 1. Then, the following hold:

(i) if a = f(x1, x2), then the order of σa,b is equal to 1 or is infinite;

(ii) if a = f(x2, x1), then the order of σa,b is less than or equal to 3 or infinite.

Proof. (i) Assume that a = f(x1, x2). Then, σa,b[a] = a. We consider the following.
(i′) If ops(b) = {f}, then σa,b[b] = b. We get that σa,b is idempotent.
(i′′) If g ∈ ops(b), suppose that g ∈ ops(b1). Let k ∈ �. Then op(σ̂k+1

a,b [b1]) ≥
op(σ̂k

a,b
[b1]).
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Now,

op
(
σ̂k+1
a,b [b]

)
= op

(
σ̂k
a,b[σ̂a,b[b]]

)

= op
(
σ̂k
a,b

[
σa,b

(
f
)
(σ̂a,b[b1], σ̂a,b[b2])

])

= op
(
σk
a,b

(
σa,b

(
f
))(

σ̂k+1
a,b [b1], σ̂

k+1
a,b [b2]

))

> op
(
σk
a,b

(
f
)(

σ̂k
a,b[b1], σ̂

k
a,b[b2]

))

= op
(
σ̂k
a,b[b]

)
.

(3.1)

A similar argument works for g ∈ ops(b2). This shows that the order of σa,b is infinite.
(ii) If ops(b) = {f}, then σ̂1

a,b[a] = σ̂3
a,b[a] and σ̂a,b[b] = σ̂3

a,b[b]. This gives σ̂
4
a,b = σ̂2

a,b.
Then, the order of σa,b is less than or equal to 3. If g ∈ ops(b), then it can be proved as in (i′′)
that the order is infinite.

In Case (III-2), we have var(a) = {x1}, var(b) = {x1}. We consider the following
subcases:

(3.2.1) a = f(x1, x1), firstops(b) = f ;

(3.2.1.1) b1 = x1;

(3.2.1.2) b1 /=x1, g ∈ ops(Lp(b));

(3.2.1.3) b1 /=x1, g /∈ ops(Lp(b));

(3.2.2) a = g(x1), firstops(b) = g, then b1 /∈ X1;

(3.2.3) a = f(x1, x1), firstops(b) = g, then b1 /∈ X1;

(3.2.4) a = g(x1), firstops(b) = f ;

(3.2.4.1) b1 = x1;

(3.2.4.2) b1 /=x1.

Proposition 3.2. Let a = f(x1, x1), firstops(b) = f , op(b) > 1, and var(b) = {x1}. Then, the
following hold:

(i) if b satisfies (3.2.1.1) or (3.2.1.3), then the order of σa,b is less than or equal to 2;

(ii) if b satisfies (3.2.1.2), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (3.2.1.1), then σ̂a,b[a] = a = σ̂a,b[b]. Assume that a and b satisfy
(3.2.1.3). Since a = f(x1, x1) and g /∈ σ̂a,b[b], we have σ̂2

a,b
[b] = σ̂a,b[b]. Clearly, σ̂2

a,b
[a] = a.

Then, σ3
a,b

= σ2
a,b
. Hence, the order of σa,b is less than or equal to 2.
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(ii) Assume that a and b satisfy (3.2.1.2). Since a = f(x1, x1), firstops(b) = f and
g ∈ ops(Lp(b)), it follows that σ̂a,b[b] = f(x1, x1)(b(v), b(v′)) for some v, v′ ∈ W(2,1)(X1). For
n ∈ �, we have

op
(
σ̂n+1
a,b [b]

)
= op(σ̂n[σ̂a,b[b]])

= op
(
σ̂n
a,b

[
f(x1, x1)

(
b(v), b

(
v′))]

)

= op
(
f(x1, x1)

(
σ̂n
a,b[b]

(
σ̂n
a,b[v]

)
, σ̂n

a,b[b]
(
σ̂n
a,b

[
v′]

)))

> op
(
σ̂n
a,b[b]

)
.

(3.2)

Hence, the order of σa,b is infinite.

Proposition 3.3. Let a = g(x1) or a = f(x1, x1), firstops(b) = g, op(b) > 1, and var(b) = {x1}.
Then, the order of σa,b is infinite.

Proof. Assume that a = g(x1). Since firstops(b) = g, a = g(x1), σ̂a,b[b] = b(g(x1)). For any
natural number n, op(σ̂n+1

a,b
[b]) > op(σ̂n

a,b
[b]) makes σa,b have infinite order.

Assume that a = f(x1, x1). Since firstops(b) = g, a = f(x1, x1), σ̂a,b[b] = b(f(x1, x1)).
For n ∈ �, a similar proof to those above gives op(σ̂n+1

a,b [b]) > op(σ̂n
a,b[b]). Hence, the order of

σa,b is infinite.

Proposition 3.4. Let a = g(x1), firstops(b) = f , op(b) > 1 and var(b) = {x1}. Then the following
hold:

(i) if b satisfies (3.2.4.1), then the order of σa,b is equal to 2;

(ii) if b satisfies (3.2.4.2), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (3.2.4.1), then σ̂a,b[a] = b and σ̂a,b[b] = a. Hence, the order of σa,b

is equal to 2.
(ii) Assume that a and b satisfy (3.2.4.2). Since a = g(x1), firstops(b) = f , it follows

that σ̂a,b[b] = g(x1)b. For n ∈ �. As in the proof of Proposition 3.3, we have op(σ̂n+1
a,b [b]) >

op(σ̂n
a,b[b]). Hence, the order of σa,b is infinite.

In Case (III-3), we have var(a) = {x2}, var(b) = {x1}. We consider the following
subcases:

(3.3.1) a = f(x2, x2), firstops(b) = f ;

(3.3.1.1) b2 = x1;
(3.3.1.2) b2 /=x1;

(3.3.2) a = g(x2), firstops(b) = g.

(3.3.3) a = f(x2, x2),firstops(b) = g.

(3.3.4) a = g(x2),firstops(b) = f ;

(3.3.4.1) b2 = x1;
(3.3.4.2) b2 /=x1.
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Proposition 3.5. Let a = f(x2, x2), firstops(b) = f , op(b) > 1, and var(b) = {x1}. Then, the
following hold:

(i) if b satisfies (3.3.1.1), then the order of σa,b is equal to 2;

(ii) if b satisfies (3.3.1.2), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (3.3.1.1), then σ̂a,b[a] = a and σ̂2
a,b[b] = σ̂a,b[b]. Hence the order of

σa,b is equal to 2.
(ii) This can be proved in the same way as Proposition 3.2 (ii).

Proposition 3.6. Let a = g(x2) or a = f(x2, x2), firstops(b) = g, op(b) > 1, and var(b) = {x1}.
Then, the order of σa,b is infinite.

Proof. Assume that a = g(x2). Since firstops(b) = g, a = g(x2), σ̂a,b[b] = b(g(x2)). The same
argument works as in Proposition 3.3. Hence, the order of σa,b is infinite. The case that a =
f(x2, x2) can be proved similarly.

Proposition 3.7. Let a = g(x2), firstops(b) = f , op(b) > 1, and var(b) = {x1}. Then, the following
hold:

(i) if b satisfies (3.3.4.1), then the order of σa,b is equal to 2;

(ii) if b satisfies (3.3.4.2), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (3.3.4.1), then σ̂2
a,b[a] = a and σ̂2

a,b[b] = b. Hence, the order of σa,b

is equal to 2.
(ii) Assume a and b satisfy (3.3.4.2), Since b = g(x2), firstops(b) = f , b2 /∈ X2. By

Lemma 2.2, we have σ̂n
a,b
[b1] /∈ X2. Then,

op(σ̂a,b[b]) = op
(
σ̂a,b

[
f(b1, b2)

])

= op
(
σa,b

(
f
)
(σ̂a,b[b1], σ̂a,b[b2])

)

> op
(
f(b1, b2)

)

= op(b).

(3.3)

This shows that, op(σ̂a,b[b]) > op(b) for all a ∈ W(2,1)(X1) \ X1. Consequently, op(σ̂k+1
a,b [b]) =

op(σ̂a,b[σ̂k
a,b
[b]]) for all k ∈ �. Then, order of σa,b is infinite.

4. Case IV: op(a) > 1 and op(b) = 1

We consider three subcases:

(IV-1) var(a) = X2, var(b) = {x1};
(IV-2) var(a) = {x1}, var(b) = {x1};
(IV-3) var(a) = {x2}, var(b) = {x1}.

In Case (IV-1), we separate into four cases:

(4.1.1) b = f(x1, x1), firstops(a) = f ;



International Journal of Mathematics and Mathematical Sciences 13

(4.1.2) b = f(x1, x1), firstops(a) = g;

(4.1.3) b = g(x1), firstops(a) = f ;

(4.1.4) b = g(x1), firstops(a) = g.

Theorem 4.1. Let a ∈ W(2,1)(X2), b ∈ W(2,1)(X1) be such that op(a) > 1, op(b) = 1, var(a) =
{x1, x2}, var(b) = {x1}. Then, the following hold:

(i) if b satisfies (4.1.1) or (4.1.2) or (4.1.3), then the order of σa,b is infinite;

(ii) if b satisfies (4.1.4), then the order of σa,b is equal to 1 or is infinite.

Proof. (i) If a and b satisfy (4.1.1), then we let a = f(a1, a2) for some a1, a2 ∈ W(2,1)(X2). Since
op(a) > 1, we may assume that a1 /∈ X2. By Lemma 2.2, we have σ̂n

a,b[a1] /∈ X2. For any
natural number n, op(σ̂n+1

a,b
[a]) > op(σ̂n

a,b
[a]) makes σa,b have infinite order. Cases (4.1.2) and

(4.1.3) can be proved similarly.
(ii) Assume that a and b satisfy (4.1.4). If ops(a1) = {g}, then σ̂a,b[a] = a and σ̂a,b[b] =

b. Hence, σa,b is idempotent. The case that op(a1)/= {g} can be proved as in (i).

In Case (IV-2), we have var(a) = {x1}, var(b) = {x1}. If a = g(a1) for some term a1,
then op(a) > 1 means that a1 is not variable.

Proposition 4.2. Let b = f(x1, x1) or b = g(x1), op(a) > 1, a = g(a1) for some a1 and var(a) =
{x1} = var(b). Then, the order of σa,b is infinite.

Proof. Assume op(a) > 1, a = g(a1) for some a1 and var(a) = {x1} = var(b). Since a1 /∈ X2. By
Lemma 2.2 we have σ̂n

a,b
[a1] /∈ X2. It can be proved, as in the proof of Theorem 4.1(i), that the

order of σa,b is infinite.

In Case (IV-3), we have var(a) = {x2}, var(b) = {x1}. If firstops(a) = g, then a2 /∈ X2.
We consider the following cases:

(4.3.1) a2 /∈ X2, b = f(x1, x1);

(4.3.2) a2 /∈ X2, b = g(x1).

Proposition 4.3. Let b = f(x1, x1), op(a) > 1, and var(a) = {x2}, var(b) = {x1}. If a and b satisfy
(4.3.1), then the order of σa,b is infinite.

Proof. The case (4.3.1) can be verified as in Proposition 4.2.

Proposition 4.4. Let b = g(x1), op(a) > 1, and var(a) = {x2}, var(b) = {x1}. If a and b satisfy
(4.3.2), then the order of σa,b is equal to 1 or is infinite.

Proof. Assume that a and b satisfy (4.3.2). If b = g(x1), firstops(a) = g, and ops(a2) = {g},
then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is idempotent. Assume that a2 /∈ X2. This case
can be proved as in Proposition 4.3.
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5. Case V: op(a) > 1 and op(b) = 0

In this case, we have a = f(a1, a2) or a = g(a1), b = x1. We consider three subcases:

(V-1) var(a) = X2, b = x1;

(V-2) var(a) = {x1}, b = x1;

(V-3) var(a) = {x2}, b = x1.

In Case (V-1), we separate into the following subcases:

(5.1.1) firstops(a) = f , a1 /∈ X2, ops(Lp(a))/= {g};
(5.1.2) firstops(a) = f , a1 /∈ X2, ops(Lp(a)) = {g};
(5.1.3) firstops(a) = f , a1 ∈ X2, ops(Rp(a))/= {g};
(5.1.4) firstops(a) = f , a1 ∈ X2, ops(Rp(a)) = {g};
(5.1.5) firstops(a) = g, ops(a1) = {g};
(5.1.6) firstops(a) = g, ops(a1)/= {g}.

Proposition 5.1. Let a = f(a1, a2), op(a) > 1, op(b) = 0, var(a) = {x1, x2}, and b = x1. Then, the
following hold:

(i) if a satisfies (5.1.1) or (5.1.3), then the order of σa,b is infinite;

(ii) if a satisfies (5.1.2) or (5.1.4), then the order of σa,b is less than or equal to 2.

Proof. (i) Assume a and b satisfy (5.1.1). Then, firstops(a) = f , var(a) = {x1, x2}, and f ∈
ops(Lp(a)). Then, op(a) < op(σ̂a,b[a]). For any natural number n, op(σ̂n+1

a,b
[a]) > op(σ̂n

a,b
[a])

makes σa,b have infinite order. A similar argument works for (5.1.3).
(ii) Assume a and b satisfy (5.1.2). Then, firstops(a) = f , var(a) = {x1, x2}, and

ops(Lp(a)) = {g}. If leftmost(a1) = x1, then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is
idempotent. If leftmost(a1) = x2, then σ̂2

a,b
[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence, the order

of σa,b is equal to 2.
Assume a and b satisfy (5.1.4). Then, firstops(a) = f , var(a) = {x1, x2} and

ops(Rp(a)) = {g}. If rightmost(a2) = x2, then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is
idempotent. If leftmost(a2) = x1, then σ̂2

a,b
[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence, the order of

σa,b is equal to 2.

Proposition 5.2. Let a = g(a1), op(a) > 1, op(b) = 0, var(a) = {x1, x2}, and b = x1. If a satisfies
(5.1.5) or (5.1.6), then, the order of σa,b is less than or equal to 2.

Proof. Assume that a and b satisfy (5.1.5). Then, firstops(a1) = g and ops(a1) = {g}. If
leftmost(a1) = x1, then σ̂a,b[a] = b and σ̂a,b[b] = b. Hence, the order of σa,b is equal to 2.
If leftmost(a1) = x2, then σ̂2

a,b
[a] = σ̂a,b[a] and σ̂a,b[b] = b. Again, the order of σa,b is equal to

2.
Assume that a and b satisfy (5.1.6). Then firstops(a1) = f and f ∈ ops(a1). If

leftmost(a1) = x1, then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is idempotent. If leftmost(a1) =
x2, then σ̂2

a,b
[a] = σ̂a,b[a] and σ̂a,b[b] = b. Hence, the order of σa,b is equal to 2.
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In Case (V-2), we have var(a) = {x1}, var(b) = {x1}. We separate this case into
following subcases:

(5.2.1) firstops(a) = f , a1 = x1;

(5.2.2) firstops(a) = f , a1 /∈ X2, ops(Lp(a)) = {g};
(5.2.3) firstops(a) = f , a1 /∈ X2, ops(Lp(a))/= {g};
(5.2.4) firstops(a) = g, ops(a1) = {g};
(5.2.5) firstops(a) = g, ops(a1)/= {g}.

Proposition 5.3. Let a = f(a1, a2), op(a) > 1, op(b) = 0, var(a) = {x1}, and b = x1. Then, the
following hold:

(i) if a satisfies (5.2.1) or (5.2.2), then the order of σa,b is equal to 1;

(ii) if a satisfies (5.2.3), then the order of σa,b is infinite.

Proof. (i) Assume that a and b satisfy (5.2.1). Since firstops(a1) = f and var(a) = {x1}, we
have σ̂a,b[a] = a. Since b = x1, σ̂a,b[b] = b. Hence, σa,b is idempotent.

Assume a and b satisfy (5.2.2). Since ops(a1) = g and var(a) = {x1}, we have σ̂a,b[a] =
a and σ̂a,b[b] = b. Hence, σa,b is idempotent.

(ii) Assume a and b satisfy (5.2.3). Since firstops(a1) = f and var(a) = {x1}, we have
op(σ̂k+1

a,b
[a1]) ≥ op(σ̂k

a,b
[a1]) for all k ∈ �. For any natural number n, op(σ̂n+1

a,b
[a]) > op(σ̂n

a,b
[a])

makes σa,b have infinite order.

Proposition 5.4. Let a = g(a1), op(a) > 1, op(b) = 0, var(a) = {x1}, and b = x1. Then, the
following hold:

(i) if a satisfies (5.2.4), then the order of σa,b is equal to 2;

(ii) if a satisfies (5.2.5), then the order of σa,b is equal to 1 or is infinite.

Proof. (i) Assume a and b satisfy (5.2.4). Then, σ̂a,b[a] = b = σ̂a,b[b]. Hence, the order of σa,b

is equal to 2.
(ii) Assume a and b satisfy (5.2.5). If there is only one f ∈ ops(a1), then σ̂a,b[a] =

x1(x1(· · · (a))) = a and σ̂a,b[b] = b. Hence, σa,b is idempotent.
Assume that the symbol f occurs more than twice in term a1. Then, op(σ̂k+1

a,b
[a1]) ≥

op(σ̂k
a,b
[a1]) for all k ∈ �. For any natural number n, op(σ̂n+1

a,b
[a]) > op(σ̂n

a,b
[a]) makes σa,b

have infinite order.

In Case (V-3), we have var(a) = {x2}, b = x1. We separate into the following subcases:

(5.3.1) firstops(a) = f , a2 = x2;

(5.3.2) firstops(a) = f , a2 /∈ X2, ops(a2) = {g};
(5.3.3) firstops(a) = f , a2 /∈ X2, ops(a2)/= {g};
(5.3.4) firstops(a) = g, ops(a1) = {g};
(5.3.5) firstops(a) = g, ops(a1)/= {g}.
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Proposition 5.5. Let a = f(a1, a2), op(a) > 1, op(b) = 0, var(a) = {x2}, and b = x1. Then, the
following hold:

(i) if a satisfies (5.3.1) or (5.3.2), then the order of σa,b is equal to 1;

(ii) if a satisfies (5.3.3), then the order of σa,b is infinite.

Proof. This can be proved similarly to the proof of Proposition 5.3.

Proposition 5.6. Let a = g(a1), op(a) > 1, op(b) = 0, var(a) = {x2}, and b = x1. Then, the
following hold:

(i) if a satisfies (5.3.4), then the order of σa,b is equal to 2;

(ii) if a satisfies (5.3.5), then the order of σa,b is equal to 1 or is infinite.

Proof. This can be proved similarly to the proof of Proposition 5.4.

6. Case VI: op(a) = 0 and op(b) > 1

In this case, we consider the following cases:

(6.1) a = x1;

(6.1.1) firstops(b) = f , b1 = x1;

(6.1.2) firstops(b) = f , b1 /∈ X1, ops(Lp(b)) = {f};
(6.1.3) firstops(b) = f , b1 /∈ X1, ops(Lp(b))/= {f};
(6.1.4) firstops(b) = g, ops(b1) = {f};
(6.1.5) firstops(b) = g, ops(b1)/= {f};

(6.2) a = x2;

(6.2.1) firstops(b) = f , b2 = x1;

(6.2.2) firstops(b) = f , b2 /∈ X1, ops(Rp(b)) = {f};
(6.2.3) firstops(b) = f , b2 /∈ X1, ops(Rp(b))/= {f};
(6.2.4) firstops(b) = g, ops(b1) = {f};
(6.2.5) firstops(b) = g, ops(b1)/= {f}.

Proposition 6.1. Let a = x1, b = f(b1, b2), op(b) > 1, and var(b) = {x1}. Then, the following hold:

(i) if b satisfies (6.1.1) or (6.1.2), then the order of σa,b is equal to 2;

(ii) if b satisfies (6.1.3), then the order of σa,b is equal to 1 or is infinite.

Proof. (i) If a and b satisfy (6.1.1) or (6.1.2), then σ̂a,b[a] = a and σ̂a,b[b] = a. Hence, the order
of σa,b is equal to 2.

(ii) Assume a and b satisfy (6.1.3). If there is only one occurrence of g in b1, then
σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is idempotent.
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Assume that g occurs more than twice in b1. Then, op(σ̂k+1
a,b

[b1]) ≥ op(σ̂k
a,b
[b1]) for all

k ∈ �. Then,

op
(
σ̂k+1
a,b [b]

)
= op

(
σ̂k
a,b[σ̂a,b[b]]

)

= op
(
σ̂k
a,b

[
σa,b

(
f
)
(σ̂a,b[b1], σ̂a,b[b2])

])

= op
(
σk
a,b

(
σa,b

(
f
))(

σ̂k+1
a,b [b1], σ̂

k+1
a,b [b2]

))

> op
(
σk
a,b

(
f
)(

σ̂k
a,b[b1], σ̂

k
a,b[b2]

))

= op
(
σ̂k
a,b[b]

)
.

(6.1)

This shows that the order of σa,b is infinite.

Proposition 6.2. Let a = x1, b = g(b1), op(b) > 1, and var(b) = {x1}. Then, the following hold:

(i) if b satisfies (6.1.4), then the order of σa,b is equal to 1;

(ii) if b satisfies (6.1.5), then the order of σa,b is infinite.

Proof. (i) If a and b satisfy (6.1.4), then σ̂a,b[a] = a and σ̂a,b[b] = b. Hence, σa,b is idempotent.
(ii) Assume a and b satisfy (6.1.5). Then, op(σ̂k+1

a,b [b1]) ≥ op(σ̂k
a,b[b1]) for all k ∈ �.

Then,

op
(
σ̂k+1
a,b [b]

)
= op

(
σ̂k
a,b[σ̂a,b[b]]

)

= op
(
σ̂k
a,b

[
σa,b

(
g
)
(σ̂a,b[b1])

])

= op
(
σk
a,b

(
σa,b

(
g
))(

σ̂k+1
a,b [b1]

))

> op
(
σk
a,b

(
g
)(

σ̂k
a,b[b1]

))

= op
(
σ̂k
a,b[b]

)
.

(6.2)

This shows that the order of σa,b is infinite.

Proposition 6.3. Let a = x2, b = f(b1, b2), op(b) > 1, and var(b) = {x1}. Then, the following hold:

(i) if b satisfies (6.2.1) or (6.2.2), then the order of σa,b is equal to 2;

(ii) if b satisfies (6.2.3), then the order of σa,b is equal to 1 or is infinite.

Proof. (i) If a and b satisfy (6.2.1) or (6.2.2), then σ̂a,b[a] = a and σ̂2
a,b
[b] = σ̂a,b[b]. Hence the

order of σa,b is equal to 2.
(ii) This case can be proved similarly to the proof of Proposition 6.1(ii).
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Proposition 6.4. Let a = x2, b = g(b1), op(b) > 1, and var(b) = {x1}. Then, the following hold:
(i) if b satisfies (6.2.4), then the order of σa,b is equal to 1;

(ii) if b satisfies (6.2.5), then the order of σa,b is infinite.

Proof. The proofs follow those of Proposition 6.2 (i) and (ii), respectively.
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