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This paper is concerned with a common element of the set of common fixed points for two
infinite families of strictly pseudocontractive mappings and the set of solutions of a system
of cocoercive quasivariational inclusions problems in Hilbert spaces. The strong convergence
theorem for the above two sets is obtained by a novel general iterative scheme based on the
viscosity approximation method, and applicability of the results has shown difference with the
results of many others existing in the current literature.

1. Introduction

Throughout this paper, we always assume that C is a nonempty closed-convex subset of a
real Hilbert spaceH with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively, and
2H denotes the family of all the nonempty subsets ofH.

Let B : H → H be a single-valued nonlinear mapping and M : H → 2H a set-valued
mapping. We consider the following quasivariational inclusion problem, which is to find a point
x ∈ H such that

θ ∈ Bx +Mx, (1.1)

where θ is the zero vector in H. The set of solutions of the problem (1.1) is denoted by
VI(H,B,M). As special cases of the problem (1.1), we have the following.
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(i) If M = ∂φ : H → 2H , where φ : H → R ∪ {+∞} is a proper convex lower
semicontinuous function such that R is the set of real numbers, and ∂φ is the
subdifferential of φ, then the quasivariational inclusion problem (1.1) is equivalent
to find x ∈ H such that

〈Bx, v − x〉 + φ
(
y
) − φ(x) ≥ 0, ∀v, y ∈ H, (1.2)

which is called the mixed quasivariational inequality problem (see [1]).

(ii) IfM = ∂δC, where δC : H → {0,+∞} is the indicator function of C, that is,

δC(x) =

⎧
⎨

⎩

0, x ∈ C,

+∞, x /∈ C,
(1.3)

then the quasivariational inclusion (1.1) is equivalent to find x ∈ C such that

〈Bx, v − x〉 ≥ 0, ∀v ∈ C, (1.4)

which is called Hartman-Stampacchia variational inequality problem (see [2–4]).

Recall that PC is the metric projection of H onto C, that is, for each x ∈ H, there exists
the unique point in PCx ∈ C such that

‖x − PCx‖ = min
y∈C

∥∥x − y
∥∥. (1.5)

A mapping T : C → C is called nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C, (1.6)

and the mapping f : C → C is called a contraction if there exists a constant α ∈ (0, 1) such
that

∥∥f(x) − f
(
y
)∥∥ ≤ α

∥∥x − y
∥∥, ∀x, y ∈ C. (1.7)

A point x ∈ C is a fixed point of T provided Tx = x. We denote by F(T) the set of fixed
points of T , that is, F(T) = {x ∈ C : Tx = x}. If C ⊂ H is bounded, closed, and convex and
T is a nonexpansive mapping of C into itself, then F(T) is nonempty (see [5]). Recall that a
mapping A : C → C is said to be

(i) monotone if

〈
Ax −Ay, x − y

〉 ≥ 0, ∀x, y ∈ C, (1.8)
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(ii) k-Lipschitz continuous if there exists a constant k > 0 such that

∥
∥Ax −Ay

∥
∥ ≤ k

∥
∥x − y

∥
∥, ∀x, y ∈ C, (1.9)

if k = 1, then A is a nonexpansive,

(iii) pseudocontractive if

∥
∥Ax −Ay

∥
∥2 ≤ ∥∥x − y

∥
∥2 +
∥
∥(I −A)x − (I −A)y

∥
∥2, ∀x, y ∈ C, (1.10)

(iv) k-strictly pseudocontractive if there exists a constant k ∈ [0, 1) such that

∥∥Ax −Ay
∥∥2 ≤ ∥∥x − y

∥∥2 + k
∥∥(I −A)x − (I −A)y

∥∥2, ∀x, y ∈ C, (1.11)

and it is obvious that A is a nonexpansive if and only if A is a 0-strictly
pseudocontractive,

(v) α-strongly monotone if there exists a constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥∥x − y

∥∥2, ∀x, y ∈ C, (1.12)

(vi) α-inverse-strongly monotone (or α-cocoercive) if there exists a constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ α
∥∥Ax −Ay

∥∥2, ∀x, y ∈ C, (1.13)

if α = 1, then A is called that firmly nonexpansive; it is obvious that any α-inverse-
strongly monotone mapping A is monotone and (1/α)-Lipschitz continuous,

(vii) relaxed α-cocoercive if there exists a constant α > 0 such that

〈
Ax −Ay, x − y

〉 ≥ (−α)∥∥Ax −Ay
∥∥2, ∀x, y ∈ C, (1.14)

(viii) relaxed (α, r)-cocoercive if there exists two constants α, r > 0 such that

〈
Ax −Ay, x − y

〉 ≥ (−α)∥∥Ax −Ay
∥∥2 + r

∥∥x − y
∥∥2, ∀x, y ∈ C, (1.15)

and it is obvious that any r-strongly monotonicity implies to the relaxed (α, r)-
cocoercivity.

The existence common fixed points for a finite family of nonexpansive mappings have
been considered by many authors (see [6–9] and the references therein).
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In this paper, we study the mapping Wn defined by

Un,n+1 = I,

Un,n = μnSnUn,n+1 +
(
1 − μn

)
I,

Un,n−1 = μn−1Sn−1Un,n +
(
1 − μn−1

)
I,

...

Un,k = μkSkUn,k+1 +
(
1 − μk

)
I,

Un,k−1 = μk−1Sk−1Un,k +
(
1 − μk−1

)
I,

...

Un,2 = μ2S2Un,3 +
(
1 − μ2

)
I,

Wn = Un,1 = μ1S1Un,2 +
(
1 − μ1

)
I,

(1.16)

where {μi} is nonnegative real sequence in (0, 1), for all i ∈ N, S1, S2, . . . from a family of
infinitely nonexpansive mappings of C into itself. It is obvious that Wn is a nonexpansive
of C into itself, such a mapping Wn is called a W-mapping generated by S1, S2, . . . , Sn and
μ1, μ2, . . . , μn.

A typical problem is to minimize a quadratic function over the set of fixed points of a
nonexpansive mapping in a real Hilbert spaceH,

min
x∈Ω

{
1
2
〈Ax, x〉 − 〈x, b〉

}
, (1.17)

where A is a bounded linear operator on H, Ω is the fixed-point set of a nonexpansive
mapping S on H, and b is a given point in H. Recall that A is a strongly positive bounded
linear operator onH if there exists a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.18)

Marino and Xu [10] introduced the following iterative scheme based on the viscosity
approximation method introduced by Moudafi [11]:

xn+1 = αnγf(xn) + (I − αnA)Sxn, ∀n ∈ N, (1.19)

where x1 ∈ H, A is a strongly positive bounded linear operator on H, f is a contraction on
H, and S is a nonexpansive on H. They proved that under some appropriateness conditions
imposed on the parameters, if F(S)/= ∅, then the sequence {xn} generated by (1.19) converges
strongly to the unique solution z = PF(S)(I −A + γf)z of the variational inequality

〈(
A − γf

)
z, x − z

〉 ≥ 0, ∀x ∈ F(S), (1.20)
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which is the optimality condition for the minimization problem

min
x∈F(S)

{
1
2
〈Ax, x〉 − h(x)

}
, (1.21)

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
Iiduka and Takahashi [12] introduced an iterative scheme for finding a common

element of the set of fixed points of a nonexpansive mapping and the set of solutions of
the variational inequality (1.4) as in the following theorem.

Theorem IT. Let C be a nonempty closed-convex subset of a real Hilbert space H. Let B be an α-
inverse-strongly monotone mapping of C intoH, and let S be a nonexpansive mapping of C into itself
such that F(S) ∩ VI(C,B)/= ∅. Suppose that x1 = x ∈ C and {xn} is the sequence defined by

xn+1 = αnx + (1 − αn)SPC(xn − λnBxn), (1.22)

for all n ∈ N, where {αn} ⊂ (0, 1) and {λn} ⊂ [a, b] such that 0 < a < b < 2α satisfying the following
conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(C2)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |λn+1 − λn| < ∞,

then {xn} converges strongly to PF(S)∩VI(C,B)x.

Definition 1.1 (see [13]). Let M : H → 2H be a multivalued maximal monotone mapping,
then the single-valued mapping JM,λ : H → H defined by JM,λ(u) = (I + λM)−1(u), for all
u ∈ H, is called the resolvent operator associated withM, where λ is any positive number, and I
is the identity mapping.

Recently, Zhang et al. [13] considered the problem (1.1). To be more precise, they
proved the following theorem.

Theorem ZLC. Let H be a real Hilbert space, let B : H → H be an α-inverse-strongly monotone
mapping, letM : H → 2H be a maximal monotone mapping, and let S : H → H be a nonexpansive
mapping. Suppose that the set F(S) ∩ VI(H,B,M)/= ∅, where VI(H,B,M) is the set of solutions of
quasivariational inclusion (1.1). Suppose that x1 = x ∈ H and {xn} is the sequence defined by

yn = JM,λ(xn − λBxn),

xn+1 = αnx + (1 − αn)Syn,
(1.23)

for all n ∈ N, where λ ∈ (0, 2α) and {αn} ⊂ (0, 1) satisfying the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(C2)
∑∞

n=1 |αn+1 − αn| < ∞,

then {xn} converges strongly to PF(S)∩VI(H,B,M)x.
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Peng et al. [14] introduced an iterative scheme

Φ
(
un, y
)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

yn = JM,λ(un − λBun),

xn+1 = αnf(xn) + (1 − αn)Syn,

(1.24)

for all n ∈ N, where x1 ∈ H, B is an α-cocoercive mapping on H, f is a contraction onH, S is a
nonexpansive on H,M is a maximal monotone mapping of H into 2H , and Φ is a bifunction
from H ×H into R.

We note that their iteration is well defined if we let C = H, and the appropriateness of
the control conditions αn and λ of their iteration should be {αn} ⊂ (0, 1) and λ ∈ (0, 2α) (see
Theorem 3.1 in [14]). They proved that under some appropriateness imposed on the other
parameters, if Ω = F(S) ∩ VI(H,B,M) ∩ EP(Φ)/= ∅, then the sequences {xn}, {yn}, and {un}
generated by (1.24) converge strongly to z = PΩf(z) of the variational inequality

〈
z − f(z), x − z

〉 ≥ 0, ∀x ∈ Ω, (1.25)

where EP(Φ) is the set of solutions of equilibrium problem defined by

EP(Φ) =
{
x ∈ H : Φ

(
x, y
) ≥ 0, ∀y ∈ H

}
. (1.26)

Moreover, Plubtieng and Sriprad [15] introduced an iterative scheme

Φ
(
un, y
)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ H,

yn = JM,λ(un − λBun),

xn+1 = αnγf(xn) + (I − αnA)Snyn,

(1.27)

for all n ∈ N, where x1 ∈ H,A is a strongly bounded linear operator onH, B is an α-cocoercive
mapping onH, f is a contraction onH, Sn is a nonexpansive onH,M is a maximal monotone
mapping of H into 2H , and Φ is a bifunction fromH ×H into R.

We note that the appropriateness of the control conditions αn and λ of their iteration
should be {αn} ⊂ (0, 1) and λ ∈ (0, 2α) (see Theorem 3.2 in [15]). They proved that under
some appropriateness imposed on the other parameters, if Ω =

⋂∞
n=1 F(Sn) ∩ VI(H,B,M) ∩

EP(Φ)/= ∅, then the sequences {xn}, {yn}, and {un} generated by (1.27) converge strongly to
z = PΩ(I −A + γf)z.

On the other hand, Li and Wu [16] introduced an iterative scheme for finding a
common element of the set of fixed points of a k-strictly pseudocontractive mapping with
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a fixed point and the set of solutions of relaxed cocoercive quasivariational inclusions as
follows:

yn = JM,λ(xn − λBxn),

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)(
μSkxn +

(
1 − μ

)
yn

)
,

(1.28)

for all n ∈ N, where x1 ∈ H, A is a strongly positive bounded linear operator on H, f is a
contraction onH, Sk is amapping onH defined by Skx = kx+(1−k)Sx for all x ∈ H, such that
S is a k-strictly pseudocontractive mapping on H with a fixed point, B is relaxed cocoercive
and Lipschitz continuous mappings onH, andM is a maximal monotone mapping ofH into
2H .

They proved that under the missing condition of μ, which should be 0 < μ < 1 (see
Theorem 2.1 in [16]) and some appropriateness imposed on the other parameters, if Ω =
F(S) ∩ VI(H,B,M)/= ∅, then the sequence {xn} generated by (1.28) converges strongly to
z = PΩ(I −A + γf)z.

Very recently, Tianchai and Wangkeeree [17] introduced an implicit iterative scheme
for finding a common element of the set of common fixed points of an infinite family of
a kn-strictly pseudocontractive mapping and the set of solutions of the system of generalized
relaxed cocoercive quasivariational inclusions as follows:

zn = JM2,λ2(xn − λ2(B2 + C2)xn),

yn = JM1,λ1(zn − λ1(B1 + C1)zn),

xn+1 = αnγf(Wnxn) + βnxn +
((
1 − βn

)
I − αnA

)(
γnWnxn +

(
1 − γn

)
yn

)
,

(1.29)

for all n ∈ N, where x1 ∈ H, A is a strongly positive bounded linear operator on H, f is a
contraction on H, Wn is a W-mapping on H generated by {Sn} and {μn} such that Snx =
δnx + (1 − δn)Tnx for all x ∈ H, Tn is a kn-strictly pseudocontractive mapping on H with a
fixed point, Mi is a maximal monotone mapping of H into 2H , and Bi, Ci are two mappings
of relaxed cocoercive and Lipschitz continuous mappings on H for each i = 1, 2.

They proved that under some appropriateness imposed on the parameters, if Ω =⋂∞
n=1 F(Tn) ∩ F(D)/= ∅ such that the mapping D : H → H defined by

Dx = JM1,λ1((I − λ1(B1 + C1))JM2,λ2(I − λ2(B2 + C2))x), ∀x ∈ H, (1.30)

then the sequence {xn} generated by (1.29) converges strongly to z = PΩ(I −A + γf)z.
In this paper, we introduce a novel general iterative scheme (1.32) below by the

viscosity approximation method to find a common element of the set of common fixed points
for two infinite families of strictly pseudocontractive mappings and the set of solutions of
a system of cocoercive quasivariational inclusions problems in Hilbert spaces. Firstly, we
introduce a mappingWn, whereWn is aW-mapping generated by {Rn} and {μn} for solving
a common fixed point for two infinite families of strictly pseudocontractive mappings by
iteration such that the mapping Rn : H → H defined by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (1.31)



8 International Journal of Mathematics and Mathematical Sciences

for all n ∈ N, where {Sn : H → H} and {Tn : H → H} are two infinite families of k1 and
k2-strictly pseudocontractive mappings with a fixed point, respectively, and {μn} ⊂ (0, μ] for
some μ ∈ (0, 1). It follows that a linear general iterative scheme of the mappings Wn and
JMi,λi(I − λiCi) is obtained as follows:

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(1.32)

for all n ∈ N, where x1 = u ∈ H,Mi : H → 2H is a maximal monotonemapping,Ci : H → H
is a cocoercive mapping for each i = 1, 2, . . . ,N, f : H → H is a contraction mapping, and
A,B : H → H are twomappings of the strongly positive linear bounded self-adjoint operator
mappings.

As special cases of the iterative scheme (1.32), we have the following.

(i) If εn = 0 for all n ∈ N, then (1.32) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
I − βnB − αnA

)
yn, ∀n ∈ N.

(1.33)

(ii) If B ≡ I, then (1.32) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnxn +
((
1 − εn − βn

)
I − αnA

)
yn, ∀n ∈ N.

(1.34)

(iii) If εn = 0 for all n ∈ N, then (1.34) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
yn, ∀n ∈ N.

(1.35)

(iv) If βn = 0 for all n ∈ N, then (1.34) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + ((1 − εn)I − αnA)yn, ∀n ∈ N.

(1.36)
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(v) If εn = 0 for all n ∈ N, then (1.36) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + (I − αnA)yn, ∀n ∈ N.

(1.37)

(vi) If γ = 1 and A ≡ I, then (1.37) is reduced to the iterative scheme

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnf(xn) + (1 − αn)yn, ∀n ∈ N.

(1.38)

(vii) If Mi ≡ Ci ≡ 0 for each i = 1, 2, . . . ,N and
∑N

i=1 ρi = 1, then (1.32) is reduced to the
iterative scheme

yn = γnWnxn +
(
1 − γn

)
xn,

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn, ∀n ∈ N.

(1.39)

Furthermore, if Sn ≡ Tn for all n ∈ N, then the mapping Rn : H → H in (1.31) is
reduced to

Rnx = αx + (1 − α)Tnx, ∀x ∈ H, (1.40)

for all n ∈ N. It follows that the iterative scheme (1.32) is reduced to find a common element of
the set of common fixed points for an infinite family of strictly pseudocontractive mappings
and the set of solutions of a system of cocoercive quasivariational inclusions problems in
Hilbert spaces.

It is well known that the class of strictly pseudocontractive mappings contains the
class of nonexpansive mappings; it follows that if the mapping Rn is defined as (1.31) and
k1 = k2 = 0, then the iterative scheme (1.32) is reduced to find a common element of the
set of common fixed points for two infinite families of nonexpansive mappings and the set
of solutions of a system of cocoercive quasivariational inclusions problems in Hilbert spaces,
and if the mapping Rn is defined as (1.40) and k1 = k2 = 0, then the iterative scheme (1.32)
is reduced to find a common element of the set of common fixed points for an infinite family
of nonexpansive mappings and the set of solutions of a system of cocoercive quasivariational
inclusions problems in Hilbert spaces.

We suggest and analyze the iterative scheme (1.32) above under some appropriateness
conditions imposed on the parameters, the strong convergence theorem for the above two sets
is obtained, and applicability of the results has shown difference with the results of many
others existing in the current literature.
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2. Preliminaries

We collect the following lemmas which are used in the proof for the main results in the next
section.

Lemma 2.1. Let C be a nonempty closed-convex subset of a Hilbert space H then the following
inequalities hold:

(1) 〈x − PCx, PCx − y〉 ≥ 0, ∀x ∈ H,y ∈ C,

(2) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 2.2 (see [10]). Let H be a Hilbert space, let f : H → H be a contraction with coefficient
0 < α < 1, and let A : H → H be a strongly positive linear bounded operator with coefficient γ > 0,
then

(1) if 0 < γ < γ/α, then

〈
x − y,

(
A − γf

)
x − (A − γf

)
y
〉 ≥ (γ − γα

)∥∥x − y
∥∥2, ∀x, y ∈ H, (2.1)

(2) if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤ 1 − ργ .

Lemma 2.3 (see [18]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − ηn

)
an + δn, n ≥ 1, (2.2)

where {ηn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1) limn→∞ηn = 0 and
∑∞

n=1 ηn = ∞,

(2) lim supn→∞(δn/ηn) ≤ 0 or
∑∞

n=1 |δn| < ∞,

then limn→∞an = 0.

Lemma 2.4 (see [9]). LetC be a nonempty closed-convex subset of a Hilbert spaceH, define mapping
Wn as (1.16), let Si : C → C be a family of infinitely nonexpansive mappings with

⋂∞
i=1 F(Si)/= ∅,

and let {μi} be a sequence such that 0 < μi ≤ μ < 1, for all i ≥ 1, then

(1) Wn is nonexpansive and F(Wn) =
⋂n

i=1 F(Si) for each n ≥ 1,

(2) for each x ∈ C and for each positive integer k, limn→∞Un,kx exists,

(3) the mapping W : C → C defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C, (2.3)

is a nonexpansive mapping satisfying F(W) =
⋂∞

i=1 F(Si), and it is called the W-mapping
generated by S1, S2, . . . and μ1, μ2, . . ..

Lemma 2.5 (see [13]). The resolvent operator JM,λ associated with M is single-valued and
nonexpansive for all λ > 0.
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Lemma 2.6 (see [13]). u ∈ H is a solution of quasivariational inclusion (1.1) if and only if u =
JM,λ(u − λBu), for all λ > 0, that is,

VI(H,B,M) = F(JM,λ(I − λB)), ∀λ > 0. (2.4)

Lemma 2.7 (see [19]). Let C be a nonempty closed-convex subset of a strictly convex Banach space
X. Let {Tn : n ∈ N} be a sequence of nonexpansive mappings on C. Suppose that

⋂∞
n=1 F(Tn)/= ∅.

Let {αn} be a sequence of positive real numbers such that
∑∞

n=1 αn = 1, then a mapping S on C
defined by

Sx =
∞∑

n=1

αnTnx, (2.5)

for x ∈ C, is well defined, nonexpansive, and F(S) =
⋂∞

n=1 F(Tn) holds.

Lemma 2.8 (see [2]). LetC be a nonempty closed-convex subset of a Hilbert spaceH and S : C → C
a nonexpansive mapping, then I − S is demiclosed at zero. That is, whenever {xn} is a sequence in
C weakly converging to some x ∈ C and the sequence {(I − S)xn} strongly converges to some y, it
follows that (I − S)x = y.

Lemma 2.9 (see [20]). Let C be a nonempty closed-convex subset of a real Hilbert space H and
T : C → C a k-strict pseudocontraction. Define S : C → C by Sx = αx + (1 − α)Tx for each x ∈ C,
then, as α ∈ [k, 1), S is a nonexpansive such that F(S) = F(T).

3. Main Results

Lemma 3.1. Let C be a nonempty closed-convex subset of a real Hilbert space H, and let S, T : C →
C be two mappings of k1 and k2-strictly pseudocontractive mappings with a fixed point, respectively.
Suppose that F(S) ∩ F(T)/= ∅ and define a mapping R : C → C by

Rx = αx + (1 − α)(αSx + (1 − α)Tx), ∀x ∈ C, (3.1)

where α ∈ [k, 1) \ {0} such that k = max{k1, k2}, then R is well defined, nonexpansive, and F(R) =
F(S) ∩ F(T).

Proof. Define the mappings S1, T1 : C → C as follows:

S1x = αx + (1 − α)Sx, T1x = αx + (1 − α)Tx, (3.2)

for all x ∈ C. By Lemma 2.9, we have S1 and T1 as nonexpansive such that F(S1) = F(S) and
F(T1) = F(T). Therefore, for all x ∈ C, we have

Rx = αx + (1 − α)(αSx + (1 − α)Tx)

= αx + α(1 − α)Sx + (1 − α)2Tx
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= α2x + α(1 − α)Sx + (1 − α)αx + (1 − α)2Tx

= α(αx + (1 − α)Sx) + (1 − α)(αx + (1 − α)Tx)

= αS1x + (1 − α)T1x.

(3.3)

It follows from Lemma 2.7 that R is well defined, nonexpansive, and F(R) = F(S1) ∩ F(T1) =
F(S) ∩ F(T).

Theorem 3.2. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A,B : H → H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction
mapping with coefficient δ ∈ (0, 1). Let {Sn : H → H} and {Tn : H → H} be two infinite
families of k1 and k2-strictly pseudocontractive mappings with a fixed point such that k1, k2 ∈ [0, 1),
respectively. Define a mapping Rn : H → H by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (3.4)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(3.5)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and
λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (3.6)

Proof. From ‖B‖ = β ∈ (0, 1], εn ≤ αn for all n ∈ N, (C1) and (C2), we have αn → 0, εn → 0
as n → ∞ and lim supn→∞βn < 1. Thus, we may assume without loss of generality that
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αn < (1 − εn − βn‖B‖)‖A‖−1 for all n ∈ N. For any x, y ∈ H and for each i = 1, 2, . . . ,N, by the
ξi-cocoercivity of Ci, we have

∥
∥(I − λiCi)x − (I − λiCi)y

∥
∥2 =

∥
∥(x − y

) − λi
(
Cix − Ciy

)∥∥2

=
∥
∥x − y

∥
∥2 − 2λi

〈
x − y,Cix − Ciy

〉
+ λ2i
∥
∥Cix − Ciy

∥
∥2

≤ ∥∥x − y
∥
∥2 − (2ξi − λi)λi

∥
∥Cix − Ciy

∥
∥2

≤ ∥∥x − y
∥
∥2,

(3.7)

which implies that I − λiCi is a nonexpansive. Since A and B are two mappings of the linear
bounded self-adjoint operators, we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1},

‖B‖ = sup{|〈Bx, x〉| : x ∈ H, ‖x‖ = 1}.
(3.8)

Observe that

〈(
(1 − εn)I − βnB − αnA

)
x, x
〉
= (1 − εn)〈x, x〉 − βn〈Bx, x〉 − αn〈Ax, x〉

≥ 1 − εn − βn‖B‖ − αn‖A‖

> 0.

(3.9)

Therefore, we obtain that (1 − εn)I − βnB − αnA is positive. Thus, by the strong positivity of A
and B, we get

∥∥(1 − εn)I − βnB − αnA
∥∥ = sup

{〈(
(1 − εn)I − βnB − αnA

)
x, x
〉
: x ∈ H, ‖x‖ = 1

}

= sup
{
(1 − εn)〈x, x〉 − βn〈Bx, x〉 − αn〈Ax, x〉 : x ∈ H, ‖x‖ = 1

}

≤ 1 − εn − βnβ − αnδ

≤ 1 − βnβ − αnδ.

(3.10)

Define the sequences of mappings {Pn : H → H} and {Qn : H → H} as follows:

Pnx = αnγf(x) + βnBx +
(
(1 − εn)I − βnB − αnA

)
Qnx, ∀x ∈ H,

Qnx = γnWnx +
(
1 − γn

) N∑

i=1

ρiJMi,λi(I − λiCi)x, ∀x ∈ H,
(3.11)
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for all n ∈ N. Firstly, we prove that Pn has a unique fixed point inH. Note that for all x, y ∈ H,
by (3.11), (C3), the nonexpansiveness ofWn, JMi,λi , and I − λiCi, we have

∥
∥Qnx −Qny

∥
∥ ≤ γn

∥
∥Wnx −Wny

∥
∥

+
(
1 − γn

) N∑

i=1

ρi
∥
∥JMi,λi(I − λiCi)x − JMi,λi(I − λiCi)y

∥
∥

≤ γn
∥
∥x − y

∥
∥ +
(
1 − γn

) N∑

i=1

ρi
∥
∥(I − λiCi)x − (I − λiCi)y

∥
∥

≤ γn
∥
∥x − y

∥
∥ +
(
1 − γn

)
(

N∑

i=1

ρi

)
∥
∥x − y

∥
∥

=
∥∥x − y

∥∥.

(3.12)

Therefore, Qn is a nonexpansive. It follows from (3.10), (3.11), (3.12), the contraction of f ,
and the linearity of A and B that

∥∥Pnx − Pny
∥∥ ≤ αnγ

∥∥f(x) − f
(
y
)∥∥ + βn‖B‖

∥∥x − y
∥∥

+
∥∥(1 − εn)I − βnB − αnA

∥∥∥∥Qnx −Qny
∥∥

≤ αnγδ
∥∥x − y

∥∥ + βnβ
∥∥x − y

∥∥ +
(
1 − βnβ − αnδ

)∥∥x − y
∥∥

=
(
1 −
(
δ − γδ

)
αn

)∥∥x − y
∥∥.

(3.13)

Hence, Pn is a contraction with coefficient 1−(δ−γδ)αn ∈ (0, 1). Therefore, Banach contraction
principle guarantees that Pn has a unique fixed point in H, and so the iteration (3.5) is well
defined.

Next, we prove that {xn} is bounded. Pick p ∈ Ω. Therefore, by Lemma 2.6, we have

p = JMi,λi(I − λiCi)p, (3.14)

for each i = 1, 2, . . . ,N. By (3.14), the nonexpansiveness of JMi,λi , and I − λiCi, we have

∥∥JMi,λi(xn − λiCixn) − p
∥∥ =
∥∥JMi,λi(xn − λiCixn) − JMi,λi

(
p − λiCip

)∥∥

≤ ∥∥(xn − λiCixn) −
(
p − λiCip

)∥∥

≤ ∥∥xn − p
∥∥.

(3.15)
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Let tn =
∑N

i=1 ρiJMi,λi(xn − λiCixn). By (3.14), (C3), the nonexpansiveness of JMi,λi , and
I − λiCi, we have

∥
∥tn − p

∥
∥ =

∥
∥
∥
∥
∥

N∑

i=1

ρiJMi,λi(xn − λiCixn) −
N∑

i=1

ρip

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

N∑

i=1

ρiJMi,λi(xn − λiCixn) −
N∑

i=1

ρiJMi,λi

(
p − λiCip

)
∥
∥
∥
∥
∥

≤
N∑

i=1

ρi
∥∥JMi,λi(xn − λiCixn) − JMi,λi

(
p − λiCip

)∥∥

≤
N∑

i=1

ρi
∥
∥(xn − λiCixn) −

(
p − λiCip

)∥∥

≤
(

N∑

i=1

ρi

)
∥∥xn − p

∥∥

=
∥∥xn − p

∥∥.

(3.16)

Since Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), where α ∈ [k, 1) \ {0}, {Sn} and {Tn} are
two infinite families of k1 and k2-strict pseudocontractions with a fixed point, respectively,
such that k = max{k1, k2}; therefore, by Lemma 3.1, we have that Rn is a nonexpansive and
F(Rn) = F(Sn) ∩ F(Tn) for all n ∈ N. It follows from Lemma 2.4(1) that we get F(Wn) =⋂n

i=1 F(Ri) = (
⋂n

i=1 F(Si)) ∩ (
⋂n

i=1 F(Ti)), which implies thatWnp = p. Hence, by (3.16) and the
nonexpansiveness ofWn, we have

∥∥yn − p
∥∥ =
∥∥γnWnxn +

(
1 − γn

)
tn − p

∥∥

=
∥∥γn
(
Wnxn − p

)
+
(
1 − γn

)(
tn − p

)∥∥

≤ γn
∥∥Wnxn −Wnp

∥∥ +
(
1 − γn

)∥∥tn − p
∥∥

≤ γn
∥∥xn − p

∥∥ +
(
1 − γn

)∥∥xn − p
∥∥

=
∥∥xn − p

∥∥.

(3.17)

By (3.10), (3.17), the contraction of f , and the linearity of A and B, we have

∥∥xn+1 − p
∥∥ =
∥∥αnγf(xn) + βnBxn +

(
(1 − εn)I − βnB − αnA

)
yn − p

∥∥

=
∥∥αn

(
γf(xn) −Ap

)
+ βnB

(
xn − p

)

+
(
(1 − εn)I − βnB − αnA

)(
yn − p

) − εnp
∥∥

≤ αn

∥∥γf(xn) −Ap
∥∥ + βn‖B‖

∥∥xn − p
∥∥

+
∥∥(1 − εn)I − βnB − αnA

∥∥∥∥yn − p
∥∥ + εn

∥∥p
∥∥
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≤ αnγ
∥
∥f(xn) − f

(
p
)∥∥ + αn

∥
∥γf
(
p
) −Ap

∥
∥ + βnβ

∥
∥xn − p

∥
∥

+
(
1 − βnβ − αnδ

)∥
∥xn − p

∥
∥ + αn

∥
∥p
∥
∥

≤
(
1 −
(
δ − γδ

)
αn

)∥∥xn − p
∥∥ + αn

(∥∥γf
(
p
) −Ap

∥∥ +
∥∥p
∥∥)

≤ max

{
∥∥xn − p

∥∥,

∥
∥γf
(
p
) −Ap

∥
∥ +
∥
∥p
∥
∥

δ − γδ

}

.

(3.18)

It follows from induction that

∥∥xn+1 − p
∥∥ ≤ max

{
∥∥x1 − p

∥∥,

∥∥γf
(
p
) −Ap

∥∥ +
∥∥p
∥∥

δ − γδ

}

, (3.19)

for all n ∈ N. Hence, {xn} is bounded, and so are {yn}, {Wnxn}, {tn}, {f(xn)}, {Ayn}, {Bxn},
and {Byn}.

Next, we prove that ‖xn+1 − xn‖ → 0 as n → ∞. By (C3), the nonexpansiveness of
JMi,λi , and I − λiCi, we have

‖tn+1 − tn‖ =

∥∥∥∥∥

N∑

i=1

ρiJMi,λi(xn+1 − λiCixn+1) −
N∑

i=1

ρiJMi,λi(xn − λiCixn)

∥∥∥∥∥

≤
N∑

i=1

ρi‖JMi,λi(xn+1 − λiCixn+1) − JMi,λi(xn − λiCixn)‖

≤
N∑

i=1

ρi‖(xn+1 − λiCixn+1) − (xn − λiCixn)‖

≤
(

N∑

i=1

ρi

)

‖xn+1 − xn‖

= ‖xn+1 − xn‖.

(3.20)

By the nonexpansiveness of Ri and Un,i, we have

‖Wn+1xn −Wnxn‖ = ‖Un+1,1xn −Un,1xn‖
=
∥∥μ1R1Un+1,2xn +

(
1 − μ1

)
xn −
(
μ1R1Un,2xn +

(
1 − μ1

)
xn

)∥∥

≤ μ1‖Un+1,2xn −Un,2xn‖
= μ1
∥∥μ2R2Un+1,3xn +

(
1 − μ2

)
xn −
(
μ2R2Un,3xn +

(
1 − μ2

)
xn

)∥∥
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≤ μ1μ2‖Un+1,3xn −Un,3xn‖
...

≤
(

n∏

i=1

μi

)

‖Un+1,n+1xn −Un,n+1xn‖

≤ M
n∏

i=1

μi,

(3.21)

for some constant M such that M ≥ ‖Un+1,n+1xn − Un,n+1xn‖ ≥ 0. Therefore, from (3.21), by
the nonexpansiveness of Wn+1, we have

‖Wn+1xn+1 −Wnxn‖ ≤ ‖Wn+1xn+1 −Wn+1xn‖ + ‖Wn+1xn −Wnxn‖

≤ ‖xn+1 − xn‖ +M
n∏

i=1

μi.
(3.22)

Since

yn+1 − yn =
(
γn+1Wn+1xn+1 +

(
1 − γn+1

)
tn+1
) − (γnWnxn +

(
1 − γn

)
tn
)

= γn+1(Wn+1xn+1 −Wnxn) +
(
γn+1 − γn

)
(Wnxn − tn)

+
(
1 − γn+1

)
(tn+1 − tn),

(3.23)

combining (3.20), (3.22), and (3.23), we have

∥∥yn+1 − yn

∥∥ ≤ γn+1‖Wn+1xn+1 −Wnxn‖ +
∣∣γn+1 − γn

∣∣‖Wnxn − tn‖
+
(
1 − γn+1

)‖tn+1 − tn‖

≤ γn+1

(

‖xn+1 − xn‖ +M
n∏

i=1

μi

)

+
∣∣γn+1 − γn

∣∣‖Wnxn − tn‖

+
(
1 − γn+1

)‖xn+1 − xn‖

≤ ‖xn+1 − xn‖ +M
n∏

i=1

μi +
∣∣γn+1 − γn

∣∣‖Wnxn − tn‖.

(3.24)

By the linearity of A and B, we have

xn+2 − xn+1 =
(
αn+1γf(xn+1) + βn+1Bxn+1 +

(
(1 − εn+1)I − βn+1B − αn+1A

)
yn+1
)

− (αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn

)

=
(
(1 − εn+1)I − βn+1B − αn+1A

)(
yn+1 − yn

)
+
(
βn − βn+1

)
Byn
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+ (αn − αn+1)Ayn + (εn − εn+1)yn + αn+1γ
(
f(xn+1) − f(xn)

)

+ γ(αn+1 − αn)f(xn) + βn+1B(xn+1 − xn)

+
(
βn+1 − βn

)
Bxn.

(3.25)

Therefore, by (3.10), (3.24), (3.25), and the contraction of f , we have

‖xn+2 − xn+1‖ ≤ ∥∥(1 − εn+1)I − βn+1B − αn+1A
∥
∥
∥
∥yn+1 − yn

∥
∥ +
∣
∣βn − βn+1

∣
∣
∥
∥Byn

∥
∥

+ |αn − αn+1|
∥
∥Ayn

∥
∥ + |εn − εn+1|

∥
∥yn

∥
∥ + αn+1γ

∥
∥f(xn+1) − f(xn)

∥
∥

+ γ |αn+1 − αn|
∥
∥f(xn)

∥
∥ + βn+1‖B‖‖xn+1 − xn‖ +

∣
∣βn+1 − βn

∣
∣‖Bxn‖

≤
(
1 − βn+1β − αn+1δ

)∥∥yn+1 − yn

∥∥ +
∣∣βn − βn+1

∣∣∥∥Byn

∥∥

+ |αn − αn+1|
∥∥Ayn

∥∥ + |εn − εn+1|
∥∥yn

∥∥ + αn+1γδ‖xn+1 − xn‖

+ γ |αn+1 − αn|
∥∥f(xn)

∥∥ + βn+1β‖xn+1 − xn‖ +
∣∣βn+1 − βn

∣∣‖Bxn‖
≤ (1 − ηn

)‖xn+1 − xn‖ + δn,

(3.26)

where ηn := (δ − γδ)αn+1 ∈ (0, 1) and

δn := M
n∏

i=1

μi +N
(∣∣γn − γn+1

∣∣ + |εn − εn+1| +
∣∣βn − βn+1

∣∣ + |αn − αn+1|
)
, (3.27)

such that

N = max

{

sup
n≥1

‖Wnxn − tn‖, sup
n≥1

(∥∥Byn

∥∥ + ‖Bxn‖
)
, sup

n≥1

∥∥yn

∥∥, sup
n≥1

(∥∥Ayn

∥∥ + γ
∥∥f(xn)

∥∥)
}

.

(3.28)

By (C1), (C3), (C4), and (C5), we can find that limn→∞ηn = 0,
∑∞

n=1 ηn = ∞, and
∑∞

n=1 δn < ∞;
therefore, by (3.26) and Lemma 2.3, we obtain

‖xn+1 − xn‖ −→ 0 as n −→ ∞. (3.29)

Next, we prove that ‖xn − yn‖ → 0 as n → ∞. By the linearity of B, we have

∥∥xn+1 − yn

∥∥ =
∥∥αnγf(xn) + βnBxn +

(
(1 − εn)I − βnB − αnA

)
yn − yn

∥∥

=
∥∥αn

(
γf(xn) −Ayn

)
+ βnB(xn − xn+1) + βnB

(
xn+1 − yn

) − εnyn

∥∥

≤ αn

∥∥γf(xn) −Ayn

∥∥ + βn‖B‖‖xn − xn+1‖ + βn‖B‖
∥∥xn+1 − yn

∥∥ + εn
∥∥yn

∥∥

≤ αn

(∥∥γf(xn) −Ayn

∥∥ +
∥∥yn

∥∥) + βnβ‖xn − xn+1‖ + βnβ
∥∥xn+1 − yn

∥∥.

(3.30)
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It follows that

(
1 − βnβ

)∥
∥xn+1 − yn

∥
∥ ≤ αn

(∥∥γf(xn) −Ayn

∥
∥ +
∥
∥yn

∥
∥) + βnβ‖xn − xn+1‖. (3.31)

Hence, by (C1), (C2), (3.29), and (3.31), we have

∥
∥xn+1 − yn

∥
∥ −→ 0 as n −→ ∞. (3.32)

Since

∥
∥xn − yn

∥
∥ ≤ ‖xn − xn+1‖ +

∥
∥xn+1 − yn

∥
∥, (3.33)

therefore, by (3.29) and (3.32), we obtain

∥∥xn − yn

∥∥ −→ 0 as n −→ ∞. (3.34)

For all x, y ∈ H, by Lemma 2.2(2), the nonexpansiveness of PΩ, the contraction of f ,
and the linearity of A, we have

∥∥PΩ
(
I −A + γf

)
x − PΩ

(
I −A + γf

)
y
∥∥ ≤ ∥∥(I −A + γf

)
x − (I −A + γf

)
y
∥∥

≤ γ
∥∥f(x) − f

(
y
)∥∥ + ‖I −A‖∥∥x − y

∥∥

≤ γδ
∥∥x − y

∥∥ +
(
1 − δ
)∥∥x − y

∥∥

=
(
1 −
(
δ − γδ

))∥∥x − y
∥∥.

(3.35)

Therefore, PΩ(I−A+γf) is a contractionwith coefficient 1−(δ−γδ) ∈ (0, 1); Banach contraction
principle guarantees that PΩ(I − A + γf) has a unique fixed point, say w ∈ H, that is, w =
PΩ(I −A + γf)w. Hence, by Lemma 2.1(1), we obtain

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (3.36)

Next, we claim that

lim sup
n→∞

〈
γf(w) −Aw,xn −w

〉 ≤ 0. (3.37)

To show this inequality, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
γf(w) −Aw,xn −w

〉
= lim

i→∞
〈
γf(w) −Aw,xni −w

〉
. (3.38)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly to

w. Without loss of generality, we can assume that xni ⇀ w as i → ∞.
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Next, we prove that w ∈ Ω. Define the sequence of mappings {Qn : H → H} and the
mapping Q : H → H by

Qnx = γnWnx +
(
1 − γn

) N∑

i=1

ρiJMi,λi(I − λiCi)x, ∀x ∈ H,

Qx = lim
n→∞

Qnx,

(3.39)

for all n ∈ N. Therefore, by (C2) and Lemma 2.4(3), we have

Qx = aWx + (1 − a)
N∑

i=1

ρiJMi,λi(I − λiCi)x, ∀x ∈ H, (3.40)

where 0 < a = limn→∞γn < 1. From (C3), Lemma 2.4(3), we have thatW and
∑N

i=1 ρiJMi,λi(I −
λiCi) are nonexpansive. Therefore, by (C3), Lemmas 2.4(3), 2.6, 2.7, and 3.1, we have

F(Q) = F(W) ∩ F

(
N∑

i=1

ρiJMi,λi(I − λiCi)

)

=

( ∞⋂

i=1

F(Ri)

)

∩
(

N⋂

i=1

F(JMi,λi(I − λiCi))

)

=

( ∞⋂

i=1

F(Si)

)

∩
( ∞⋂

i=1

F(Ti)

)

∩
(

N⋂

i=1

VI(H,Ci,Mi)

)

,

(3.41)

that is, F(Q) = Ω. From (3.34), we have ‖yni − xni‖ → 0 as i → ∞. Thus, from (3.5) and
(3.39), we get ‖Qxni − xni‖ → 0 as i → ∞. It follows from xni ⇀ w and by Lemma 2.8 that
w ∈ F(Q), that is, w ∈ Ω. Therefore, from (3.36) and (3.38), we obtain

lim sup
n→∞

〈
γf(w) −Aw,xn −w

〉
= lim

i→∞
〈
γf(w) −Aw,xni −w

〉

=
〈(
γf −A

)
w,w −w

〉 ≤ 0.
(3.42)

Next, we prove that xn → w as n → ∞. Since w ∈ Ω, the same as in (3.17), we have

∥∥yn −w
∥∥ ≤ ‖xn −w‖. (3.43)

Therefore, by (3.10), (3.43), Lemma 2.1(2), the contraction of f , and the linearity of A and B,
we have

‖xn+1 −w‖2 = ∥∥αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn −w

∥∥2

=
∥∥αn

(
γf(xn) −Aw

)
+ βnB(xn −w)

+
(
(1 − εn)I − βnB − αnA

)(
yn −w

) − εnw
∥∥2
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≤ ∥∥βnB(xn −w) +
(
(1 − εn)I − βnB − αnA

)(
yn −w

)∥∥2

+ 2
〈
αn

(
γf(xn) −Aw

) − εnw, xn+1 −w
〉

≤ (βn‖B‖‖xn −w‖ + ∥∥(1 − εn)I − βnB − αnA
∥
∥
∥
∥yn −w

∥
∥)2

+ 2αnγ
〈
f(xn) − f(w), xn+1 −w

〉

+ 2αn

〈
γf(w) −Aw,xn+1 −w

〉 − 2εn〈w,xn+1 −w〉

≤
(
βnβ‖xn −w‖ +

(
1 − βnβ − αnδ

)
‖xn −w‖

)2

+ 2αnγδ‖xn −w‖‖xn+1 −w‖
+ 2αn

〈
γf(w) −Aw,xn+1 −w

〉 − 2εn〈w,xn+1 −w〉

≤
(
1 − αnδ

)2
‖xn −w‖2 + αnγδ

(
‖xn −w‖2 + ‖xn+1 −w‖2

)

+ 2αn

〈
γf(w) −Aw,xn+1 −w

〉 − 2εn〈w,xn+1 −w〉.
(3.44)

If follows that

‖xn+1 −w‖2 ≤ 1 − 2αnδ + αnγδ

1 − αnγδ
‖xn −w‖2 + δ′

n

=

⎛

⎜
⎝1 −

2
(
δ − γδ

)
αn

1 − αnγδ

⎞

⎟
⎠‖xn −w‖2 + δ′

n

≤ (1 − η′
n

)‖xn −w‖2 + δ′
n,

(3.45)

where η′
n := (δ − γδ)αn/(1 − αnγδ) ∈ (0, 1) and

δ′
n :=

1
1 − αnγδ

(
α2
nδ

2‖xn −w‖2 + 2αn

〈
γf(w) −Aw,xn+1 −w

〉 − 2εn〈w,xn+1 −w〉
)
. (3.46)

By (3.29), (3.42), (C1), and (C3), we can found that limn→∞η′
n = 0,

∑∞
n=1 η

′
n = ∞, and

lim supn→∞(δ
′
n/η

′
n) ≤ 0. Therefore, by Lemma 2.3, we obtain that {xn} converges strongly

to w, and so is {yn}. This completes the proof.

Remark 3.3. The iteration (3.5) is the difference with many others as follows.

(1) TwomappingsA andB of the strongly positive linear bounded self-adjoint operator
mappings are used in the iteration of {xn}, which used only one mapping A by
many others.

(2) Three parameters αn, βn, and εn are used in the iteration of {xn}, which used only
two parameters αn and βn by many others.
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(3) The parameter βn can be chosen to be βn = 0 for all n ∈ N, because the condition
lim infn→∞βn > 0 of Suzuki’s Lemma (see [21]) is ignored in the control conditions
of the iteration, which is used by many others.

(4) A solving of a common fixed point for two infinite families of strictly pseudocon-
tractive mappings by iteration is obtained by the mapping Wn, where Wn is a W-
mapping generated by {Rn} and {μn} such that Rn is defined as in Theorem 3.2.

4. Applications

Theorem 4.1. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A,B : H → H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction
mapping with coefficient δ ∈ (0, 1). Let {Sn : H → H} and {Tn : H → H} be two infinite
families of k1 and k2-strictly pseudocontractive mappings with a fixed point such that k1, k2 ∈ [0, 1),
respectively. Define a mapping Rn : H → H by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.1)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
I − βnB − αnA

)
yn,

(4.2)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), {βn} ⊂ [0, 1), ρi ∈ (0, 1), and λi ∈ (0, 2ξi] for each
i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |βn+1 − βn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.3)

Proof. It is concluded from Theorem 3.2 immediately, by putting εn = 0 for all n ∈ N.
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Theorem 4.2. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A : H → H be a
strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1] such that
δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let
{Sn : H → H} and {Tn : H → H} be two infinite families of k1 and k2-strictly pseudocontractive
mappings with a fixed point such that k1, k2 ∈ [0, 1), respectively. Define a mapping Rn : H → H
by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.4)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnxn +
((
1 − εn − βn

)
I − αnA

)
yn,

(4.5)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and
λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.6)

Proof. It is concluded from Theorem 3.2 immediately, by putting B ≡ I.

Theorem 4.3. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A : H → H be a
strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1] such that
δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let
{Sn : H → H} and {Tn : H → H} be two infinite families of k1 and k2-strictly pseudocontractive
mappings with a fixed point such that k1, k2 ∈ [0, 1), respectively. Define a mapping Rn : H → H
by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.7)
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for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

)
yn,

(4.8)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), {βn} ⊂ [0, 1), ρi ∈ (0, 1), and λi ∈ (0, 2ξi] for each
i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |βn+1 − βn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.9)

Proof. It is concluded from Theorem 4.2 immediately, by putting εn = 0 for all n ∈ N.

Theorem 4.4. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A : H → H be a
strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1] such that
δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let
{Sn : H → H} and {Tn : H → H} be two infinite families of k1 and k2-strictly pseudocontractive
mappings with a fixed point such that k1, k2 ∈ [0, 1), respectively. Define a mapping Rn : H → H
by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.10)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + ((1 − εn)I − αnA)yn,

(4.11)
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for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and λi ∈ (0, 2ξi]
for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.12)

Proof. It is concluded from Theorem 4.2 immediately, by putting βn = 0 for all n ∈ N.

Theorem 4.5. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A : H → H be a
strongly positive linear bounded self-adjoint operator mapping with coefficient δ ∈ (0, 1] such that
δ ≤ ‖A‖ ≤ 1, and let f : H → H be a contraction mapping with coefficient δ ∈ (0, 1). Let
{Sn : H → H} and {Tn : H → H} be two infinite families of k1 and k2-strictly pseudocontractive
mappings with a fixed point such that k1, k2 ∈ [0, 1), respectively. Define a mapping Rn : H → H
by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.13)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H,

suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

)N∑

i=1
ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + (I − αnA)yn,
(4.14)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), ρi ∈ (0, 1), and λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N
satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2) 0 < limn→∞γn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,
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then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.15)

Proof. It is concluded from Theorem 4.4 immediately, by putting εn = 0 for all n ∈ N.

Theorem 4.6. LetH be a real Hilbert space, letMi : H → 2H be a maximal monotone mapping, and
let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let f : H → H be a contraction
mapping with coefficient δ ∈ (0, 1), and let {Sn : H → H} and {Tn : H → H} be two infinite
families of k1 and k2-strictly pseudocontractive mappings with a fixed point such that k1, k2 ∈ [0, 1),
respectively. Define a mapping Rn : H → H by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.16)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅. For x1 = u ∈ H, suppose that {xn}

is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnf(xn) + (1 − αn)yn,

(4.17)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1), ρi ∈ (0, 1), and λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N
satisfying the following conditions:

(C1) limn→∞αn = 0,

(C2) 0 < limn→∞γn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩf(w) is a unique
solution of the variational inequality

〈(
I − f
)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.18)

Proof. It is concluded from Theorem 4.5 immediately, by putting γ = δ = 1 and A ≡ I.

Theorem 4.7. Let H be a real Hilbert space. Let A,B : H → H be two mappings of the strongly
positive linear bounded self-adjoint operator mappings with coefficients δ, β ∈ (0, 1] such that δ ≤
‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction mapping with coefficient
δ ∈ (0, 1). Let {Sn : H → H} and {Tn : H → H} be two infinite families of k1 and k2-strictly
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pseudocontractive mappings with a fixed point such that k1, k2 ∈ [0, 1), respectively. Define a mapping
Rn : H → H by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.19)

for all n ∈ N, where α ∈ [k, 1) \ {0} such that k = max{k1, k2}. Let Wn : H → H be a W-
mapping generated by {Rn} and {μn} such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that
Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} is

generated iteratively by

yn = γnWnxn +
(
1 − γn

)
xn,

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(4.20)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1) and {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn satisfying the
following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is
a unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.21)

Proof. It is concluded from Theorem 3.2 immediately, by putting Mi ≡ Ci ≡ 0 for each i =
1, 2, . . . ,N.

Theorem 4.8. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A,B : H → H be two
mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients δ, β ∈
(0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction mapping
with coefficient δ ∈ (0, 1). Let {Tn : H → H} be an infinite family of k-strictly pseudocontractive
mappings with a fixed point such that k ∈ [0, 1). Define a mapping Rn : H → H by

Rnx = αx + (1 − α)Tnx, ∀x ∈ H, (4.22)
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for all n ∈ N, where α ∈ [k, 1). LetWn : H → H be aW-mapping generated by {Rn} and {μn} such
that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that Ω := (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅

and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(4.23)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1) and {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and
λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.24)

Proof. It is concluded from Theorem 3.2 immediately, by putting Sn ≡ Tn for all n ∈ N, and
note that α ∈ [k, 1) by Lemma 2.9.

Theorem 4.9. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A,B : H → H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction
mapping with coefficient δ ∈ (0, 1). Let {Sn : H → H} and {Tn : H → H} be two infinite families
of nonexpansive mappings. Define a mapping Rn : H → H by

Rnx = αx + (1 − α)(αSnx + (1 − α)Tnx), ∀x ∈ H, (4.25)

for all n ∈ N, where α ∈ (0, 1). Let Wn : H → H be a W-mapping generated by {Rn} and {μn}
such that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that Ω := (

⋂∞
n=1 F(Sn)) ∩ (

⋂∞
n=1 F(Tn)) ∩

(
⋂N

i=1 VI(H,Ci,Mi))/= ∅ and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} is generated
iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(4.26)
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for all n ∈ N, where {αn}, {γn} ⊂ (0, 1) and {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and
λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.27)

Proof. It is concluded from Theorem 3.2 immediately, by putting k1 = k2 = 0.

Theorem 4.10. Let H be a real Hilbert space, let Mi : H → 2H be a maximal monotone mapping,
and let Ci : H → H be a ξi-cocoercive mapping for each i = 1, 2, . . . ,N. Let A,B : H → H be
two mappings of the strongly positive linear bounded self-adjoint operator mappings with coefficients
δ, β ∈ (0, 1] such that δ ≤ ‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction
mapping with coefficient δ ∈ (0, 1). Let {Tn : H → H} be an infinite family of nonexpansive
mappings. Define a mapping Rn : H → H by

Rnx = αx + (1 − α)Tnx, ∀x ∈ H, (4.28)

for all n ∈ N, where α ∈ [0, 1). LetWn : H → H be aW-mapping generated by {Rn} and {μn} such
that {μn} ⊂ (0, μ], for some μ ∈ (0, 1). Assume that Ω := (

⋂∞
n=1 F(Tn)) ∩ (

⋂N
i=1 VI(H,Ci,Mi))/= ∅

and 0 < γ < δ/δ. For x1 = u ∈ H, suppose that {xn} is generated iteratively by

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn),

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
yn,

(4.29)

for all n ∈ N, where {αn}, {γn} ⊂ (0, 1) and {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn, ρi ∈ (0, 1), and
λi ∈ (0, 2ξi] for each i = 1, 2, . . . ,N satisfying the following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞γn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞ and
∑N

i=1 ρi = 1,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |εn+1 − εn| < ∞,

(C5)
∑∞

n=1 |γn+1 − γn| < ∞ and
∑∞

n=1
∏n

i=1μi < ∞,
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then the sequences {xn} and {yn} converge strongly to w ∈ Ω where w = PΩ(I − A + γf)w is a
unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ Ω. (4.30)

Proof. It is concluded from Theorem 4.8 immediately, by putting k = 0.

Theorem 4.11. Let H be a real Hilbert space. Let A,B : H → H be two mappings of the strongly
positive linear bounded self-adjoint operator mappings with coefficients δ, β ∈ (0, 1] such that δ ≤
‖A‖ ≤ 1 and ‖B‖ = β, respectively, and let f : H → H be a contraction mapping with coefficient
δ ∈ (0, 1). Let T : H → H be a nonexpansive mapping. Assume that F(T)/= ∅ and 0 < γ < δ/δ. For
x1 = u ∈ H, suppose that {xn} is generated iteratively by

xn+1 = αnγf(xn) + βnBxn +
(
(1 − εn)I − βnB − αnA

)
(σnTxn + (1 − σn)xn), (4.31)

for all n ∈ N, where {αn}, {σn} ⊂ (0, 1) and {βn}, {εn} ⊂ [0, 1) such that εn ≤ αn satisfying the
following conditions:

(C1) limn→∞αn = limn→∞(εn/αn) = 0,

(C2) 0 < limn→∞σn < 1 and lim supn→∞βn < 1,

(C3)
∑∞

n=1 αn = ∞,

(C4)
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |βn+1 − βn| < ∞,

(C5)
∑∞

n=1 |εn+1 − εn| < ∞ and
∑∞

n=1 |σn+1 − σn| < ∞,

then the sequences {xn} and {yn} converge strongly to w ∈ F(T) where w = PF(T)(I −A + γf)w is
a unique solution of the variational inequality

〈(
A − γf

)
w,y −w

〉 ≥ 0, ∀y ∈ F(T). (4.32)

Proof. From Theorem 4.10, putting α = 0 andMi ≡ Ci ≡ 0 for all i = 1, 2, . . . ,N. Setting T1 ≡ T ,
Tn ≡ I for all n = 2, 3, . . ., and let μn ⊂ (0, μ] for some μ ∈ (0, 1) such that

∑∞
n=1
∏n

i=1μi < ∞.
Therefore, from the definition of Rn in Theorem 4.10, we have R1 = T1 = T and Rn = I
for all n = 2, 3, . . .. Since Wn is a W-mapping generated by {Rn} and {μn}, therefore by the
definition of Un,i and Wn in (1.16), we have Un,i = I for all i = 2, 3, . . . and Wn = Un,1 =
μ1R1Un,2 + (1 − μ1)I = μ1T + (1 − μ1)I. Hence, by Theorem 4.10, we obtain

yn = γnWnxn +
(
1 − γn

) N∑

i=1

ρiJMi,λi(xn − λiCixn)

= γn
(
μ1Txn +

(
1 − μ1

)
xn

)
+
(
1 − γn

)
(

N∑

i=1

ρi

)

xn

= γn
(
μ1Txn +

(
1 − μ1

)
xn

)
+
(
1 − γn

)
xn

= σnTxn + (1 − σn)xn,

(4.33)

where σn := γnμ1. This completes the proof.
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