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We characterize the geometry of the Hamiltonian dynamics with a conformal metric. After
investigating the Eisenhart metric, we study the corresponding conformal metric and obtain the
geometric structure of the classical Hamiltonian dynamics. Furthermore, the equations for the
conformal geodesics, for the Jacobi field along the geodesics, and the equations for a certain flow
constrained in a family of conformal equivalent nondegenerate metrics are obtained. At last the
conformal curvatures, the geodesic equations, the Jacobi equations, and the equations for the
flow of the famous models, an N degrees of freedom linear Hamiltonian system and the Hénon-
Heiles model are given, and in a special case, numerical solutions of the conformal geodesics,
the generalized momenta, and the Jacobi field along the geodesics of the Hénon-Heiles model are
obtained. And the numerical results for the Hénon-Heiles model show us the instability of the
associated geodesic spreads.

1. Introduction

As the development of differential geometry, symplectic geometry, and Riemannian
geometry, the field of dynamics has been studied from the point of geometry, and many
significant results have been reached, especially in Hamiltonian dynamics. In order to
consider the stability of the dynamical systems, it is usually necessary and efficient for one to
study the geometric structure of them.

In [1, 2], the applications of methods used in classical differential geometry are
concerned to study the chaotic dynamics of Hamiltonian systems. After getting the geodesics
in the configuration space which is equipped with a suitable metric, the geometry theory
of chaotic dynamics is investigated and applied into studying the Kepler problem and
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the restricted three body problem. Iwai and Yamaoka [3] proposed a problem, that is how
a many-body system behaves in a neighborhood of a collinear configuration and dealt with
the behavior of boundaries for three bodies in space. From the viewpoint of Riemannian
geometry, similarly to the method for obtaining Jacobi equation for geodesic deviations, the
equations of the variational vector obtained along the solution of the equations of motion, are
used to study the boundary behavior, and small vibrations near an equilibrium of dynamical
systems. Moreover, geometry is also applied to other fields of dynamics, such as Hamiltonian
and gradient control system [4], nonlocal Hamiltonian operators [5], hydrodynamics and
realization [6], fluid mechanics [7], quantum systems [8], reaction dynamics [9], and other
dynamics systems [10–12].

In the present paper, in Section 2, the foundation of the Hamiltonian mechanics,
the Eisenhart metric of a manifold M × �

2 , where M is the configuration space, and the
corresponding geometric structure are introduced. We study the conformal Eisenhart metric
in Section 3, and the curvatures, the geodesic equations, the equations of Jacobi field along
the geodesics, and the equations of a certain flow for the classical Hamiltonian dynamics are
obtained. Moreover, in Section 4, the conformal geometric structures of twomodels are given,
and numerical simulations for one of the models are shown. The final Section 5 is devoted to
the conclusion.

2. Geometry and Dynamics

2.1. Geometry and Flow

To make the paper readable, we recall some useful background of Riemannian geometry. The
readers could refer to [13–15] for more information. Let (MN, g,D) be a smooth manifold
with dimension N, where g is a nondegenerate metric defined on the vector field �(M), and
D is the affine connection, which is defined as

DXY = Xj

(
∂Yi

∂xj
+ ΓijkY

k

)
∂

∂xi
, ∀X, Y ∈ �(M). (2.1)

The coefficients Γkij of the connection D can be represented in terms of the metric tensor g by

Γkij =
1
2
gkl(∂jgil + ∂igjl − ∂lgij

)
, (2.2)

where ∂i means ∂/∂xi, and the Einstein summation convention is used. For any X, Y, Z ∈
�(M), the curvature tensor is defined by

R(X, Y)Z = DXDYZ −DYDXZ −D[X,Y]Z, (2.3)

where [·, ·] is the Lie bracket on �(M) defined as [X, Y] = XY − YX. Then the components of
the curvature tensor can be given by

Rl
kij = ∂iΓlkj − ∂jΓlki + ΓhkjΓ

l
hi − ΓhkiΓ

l
hj . (2.4)
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The Ricci curvature is defined by

Rij = gklRiklj , (2.5)

where Riklj = gksR
s
ilj
. The scalar curvature is defined by

R = gijRij . (2.6)

A curve ξ(t) onM is said to be geodesic if its tangent ξ̇(t) is displaced parallel along the curve
ξ(t), that is,

Dξ̇(t)ξ̇(t) = 0. (2.7)

In local coordinate ξ(t) = (x1(t), x2(t), . . . , xN(t)), the geodesic equation satisfies

d2xk

dt2
+ Γkij

dxi

dt
dxj

dt
= 0. (2.8)

In addition, the equation for the well-known Jacobi field J = Jk∂k satisfies

Dξ̇(t)Dξ̇(t)J = R
(
ξ̇(t), J

)
ξ̇(t), (2.9)

where ξ(t) is a geodesic on manifold M. It is also called the geodesic derivation equation, as
its close connection with the behavior or completeness of the geodesics. Usually Jacobi field is
used to study the stability of the geodesic spreads, that is, the behavior of the geodesics with
the time parameter t changing, of dynamical systems. In [16], the instability of the geodesic
spreads of the entropic dynamical models is obtained via the study of the Jacobi field. The
readers could also refer to [17] for more about its applications to physical systems.

A metric g̃ defined on M is said to be conformally equivalent to g, if there exists a
function f ∈ C∞(M) such that

g̃ = efg. (2.10)

Then the equivalent relation between metrics and the equivalence class of g is called its
conformal class denoted by [g]. In local coordinate, (2.10) becomes

g̃ij = efgij . (2.11)
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Hamilton [18] introduced the Ricci flow in 1982, which ultimately led to the proof,
by Perelman, of the Thurston geometrization conjecture and the solution of the Poincaré
conjecture. It is a geometric evolution equation in which one starts with a smooth Riemannian
manifold (MN, g0) and evolves its metric by the equation

(
∂gt

∂t

)
ij

= −2Rij , (2.12)

where gt|t=0 = g0 and Rij denote the Ricci curvatures with gt.
In this paper, we study a similar flow, which is an evolution equation started from a

smooth manifold MN with nondegenerate metric g, which is not needed to be Riemannian.

2.2. Geometry in Hamiltonian Dynamics

In mechanics [19], a Lagrangian function L of a dynamical system of N degrees of freedom
is usually defined by L(qi, q̇i, t), where q = (q1, . . . , qN) and q̇ = (q̇1, . . . , q̇N) are called the
generalized coordinate and generalized velocity, respectively. While a Hamiltonian function
is represented as H(qi, pi, t), where p = (∂L/∂q1, . . . , ∂L/∂qN) is generalized momenta. The
spaceM of the generalized coordinate is called the configuration space.

The Hamiltonian action within t ∈ [a, b] is

S =
∫b

a

L
(
q, q̇, t

)
dt. (2.13)

The Hamiltonian variational principle states

δS = 0. (2.14)

From the calculus of variation, (2.14) equates to the Euler-Lagrange equations

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . ,N. (2.15)

To pass to the Hamiltonian formalism, we introduce the generalized momenta as

pi =
∂L

∂q̇i
, i = 1, . . . ,N, (2.16)
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make the change (qi, q̇i) �→ (qi, pi), and introduce the Hamiltonian

H
(
qi, pi, t

)
= pj q̇

j − L
(
qi, q̇i, t

)
. (2.17)

Then the Euler-Lagrange equations are equivalent to the Hamiltonian equations, which are
given by

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

, i = 1, . . . ,N. (2.18)

In this paper, we will only consider the classical Hamiltonian dynamics, whose
Hamiltonian is of the form

H =
1
2

N∑
i=1

p2i + V
(
q
)
, (2.19)

where V (q) is the potential energy.
The energy E of the classical Hamiltonian dynamics is a constant equal to Hamiltonian

H . Considering the manifoldM × �2 defined by

M × �2 =
{
q | q =

(
q0, q1, q2, . . . , qN, qN+1

)}
, (2.20)

in which q0 = t and qN+1 = (C2
1/2)t + C2

2 −
∫ t
0 Ldτ , where C1, C2 are real numbers, and in the

following, C1 is assumed to be equal to 1.
In this paper, we assume that, the Greek symbols α, β, γ, . . . are from 0 toN + 1 and the

Latin symbols i, j, k, . . . are from 1 toN.
The Eisenhart metric (cf. [20]) of the manifold M × �2 is defined as

(
gαβ
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2V 0 · · · 0 1

0 0

... IN×N
...

0 0

1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.21)

where IN×N is the identity matrix, and we know that it is not degenerate as det(gαβ) =
(−1)N+3.
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The inverse matrix of (gαβ) is

(
gαβ
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

0 0

... IN×N
...

0 0

1 0 · · · 0 2V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.22)

The nonzero coefficients of the Riemanian connection are

Γk00 = −ΓN+1
0k = ∂kV, (2.23)

where ∂k means ∂/∂qk .
The nonzero components of the curvature tensor are

R0j0l = −∂j∂lV. (2.24)

The nonzero Ricci curvature and the scalar curvature are, respectively, given by

R00 = ΔV,

R = 0,
(2.25)

where Δ is the Laplacian operator in the Euclidean space.
The geodesic equations read

d2q0

dt2
= 0,

d2qi

dt2
= −∂V

∂qi
, i = 1, 2, . . .N,

d2qN+1

dt2
= −dL

dt
,

(2.26)

in which, the first and third equations are identical, and the second ones are the equations of
motion for the associated dynamics.

3. Conformal Structure

From now on, in order to study the conformal structure of the manifoldM × �2 , in whichM
is the configuration space, we investigate the conformal Eisenhart metric which states as

g̃ = efg, (3.1)
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where g is the Eisenhart metric and f : M×�2 → � is a smooth function. Then the arc length
parameter s̃ is shown as

ds̃2 = g̃αβdqαdqβ

= C2
1e

fdt2

= efdt2.

(3.2)

And the volume element dṽ of the manifold under the conformal Eisenhart metric is given
by

dṽ =
√
det
(
g̃
)
dq0 ∧ dq1 ∧ · · · ∧ dqN+1

= −e((N/2)+1)fdq0 ∧ dq1 ∧ · · · ∧ dqN+1.

(3.3)

Proposition 3.1. The conformal and independent components of the curvature tensor are given by

R̃0j0l = ef
(
−∂j∂lV − V∂j∂lf +

1
2
V∂jf∂lf

)

+ δjl
ef

4

(
2∂0∂0f − (∂0f)2 − 4V∂0f∂N+1f − 4V 2(∂N+1f

)2 − 2
(∇f · ∇V

)

−2V ∣∣∇f
∣∣2),

R̃0j0N+1 = ef
(
−1
2
∂0∂jf − V∂j∂N+1f +

1
4
∂0f∂jf +

1
2
V∂jf∂N+1f − 1

2
∂jV∂N+1f

)
,

R̃0jkl = δjle
f

(
1
2
∂0∂kf +

1
2
∂kV∂N+1f − 1

4
∂0f∂kf

)

− δjke
f

(
1
2
∂0∂lf +

1
2
∂lV ∂N+1f − 1

4
∂0f∂lf

)
,

R̃0jkN+1 = ef
(
−1
2
∂j∂kf +

1
4
∂jf∂kf

)

− δjke
f

(
1
2
∂0∂N+1f +

1
2
V
(
∂N+1f

)2 + 1
4
∂0f∂N+1f +

1
4
∣∣∇f
∣∣2),



8 International Journal of Mathematics and Mathematical Sciences

R̃0N+10N+1 = −ef
(
∂0∂N+1f − V∂N+1∂N+1f +

1
4
∣∣∇f
∣∣2),

R̃0N+1kl = 0,

R̃0N+1kN+1 = ef
(
−1
2
∂k∂N+1f +

1
4
∂kf∂N+1f

)
,

R̃ijkl = δjle
f

(
1
2
∂i∂kf − 1

4
∂if∂kf

)
− δile

f

(
1
2
∂j∂kf − 1

4
∂jf∂kf

)

+ δike
f

(
1
2
∂j∂lf − 1

4
∂jf∂lf

)
− δjke

f

(
1
2
∂i∂lf − 1

4
∂if∂lf

)

+
(
δikδjl − δilδjk

)
ef
(
1
2
∂0f∂N+1f +

1
2
V
(
∂N+1f

)2 + 1
4
∣∣∇f
∣∣2),

R̃ijkN+1 = δike
f

(
1
2
∂j∂N+1f − 1

4
∂jf∂N+1f

)
− δjke

f

(
1
2
∂i∂N+1f − 1

4
∂if∂N+1f

)
,

R̃iN+1kN+1 = δike
f

(
1
2
∂N+1∂N+1f − 1

4
(
∂N+1f

)2)
,

(3.4)

where ∇ and (, ·, ) are the gradient operator and the inner product in the Euclidean space, respectively.

Proof. From (2.2), one can get the independent conformal coefficients

Γ̃000 = ∂0f + V∂N+1f, Γ̃k00 = ∂kV + V∂kf,

Γ̃N+1
00 = V∂0f + 2V 2∂N+1f, Γ̃00j =

1
2
∂jf,

Γ̃k0j =
1
2
δjk∂0f, Γ̃N+1

0j = −∂jV,

Γ̃00N+1 = 0, Γ̃k0N+1 = −1
2
∂kf, Γ̃N+1

0N+1 = −V∂N+1f,

Γ̃0ij = −1
2
δij∂N+1f, Γ̃kij =

1
2
δik∂jf +

1
2
δjk∂if − 1

2
δij∂kf,

Γ̃N+1
ij = −1

2
δij∂0f − δijV ∂N+1f, Γ̃0iN+1 = 0,

Γ̃kiN+1 =
1
2
δik∂N+1f, Γ̃N+1

iN+1 =
1
2
∂if, Γ̃0N+1N+1 = 0,

Γ̃kN+1N+1 = 0, Γ̃N+1
N+1N+1 = ∂N+1f.

(3.5)

Then from (2.4) and R̃αβγη = g̃βλR̃λ
αγη, one can get the conclusion, immediately.
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Proposition 3.2. The conformal Ricci curvatures of M × �2 are given by

R̃00 = ΔV + VΔf − N

2
∂0∂0f +

N

4
(
∂0f
)2 +NV∂0f∂N+1f +NV 2(∂N+1f

)2

+
N

2
(∇f · ∇V

)
+
N

2
V
∣∣∇f
∣∣2 + 2V∂0∂N+1f + 2V 2∂N+1∂N+1f,

R̃0k = −N
(
1
2
∂0∂kf +

1
2
∂kV∂N+1f − 1

4
∂0f∂kf

)
,

R̃0N+1 = −1
2
Δf − N + 2

2
∂0∂N+1f − V∂N+1∂N+1f

−N

(
1
2
V
(
∂N+1f

)2 + 1
4
∂0f∂N+1f +

1
4
∣∣∇f
∣∣2),

R̃ik = −N
2
∂i∂kf +

N

4
∂if∂kf

− δik

(
∂0∂N+1f +

N

2
∂0f∂N+1f +

N

2
V
(
∂N+1f

)2 + N

4
∣∣∇f
∣∣2 + V∂N+1∂N+1f +

1
2
Δf

)
,

R̃iN+1 = −N
2
∂i∂N+1f +

N

4
∂if∂N+1f,

R̃N+1N+1 = −N
2
∂N+1∂N+1f +

N

4
(
∂N+1f

)2
.

(3.6)

Proof. From (2.5), and the conformal curvature tensors obtained in Proposition 3.1, we can
get the conclusion, immediately.

Theorem 3.3. The conformal scalar curvature is given by

R̃ = −e−f
(
(N + 1)Δf +

N(N + 1)
4

∣∣∇f
∣∣2 + 2(N + 1)∂0∂N+1f

)

− e−f
(
N(N + 1)

2
∂0f∂N+1f + 2(N + 1)V∂N+1∂N+1f +

N(N + 1)
2

(
∂N+1f

)2)
.

(3.7)

Proof. From (2.6), and the conclusion in Proposition 3.2, we can obtain the conclusion of
Theorem 3.3, immediately.



10 International Journal of Mathematics and Mathematical Sciences

Remark 3.4. When V is a smooth function on the configuration space and let f = V , we can
get

R̃00 = (V + 1)
(
ΔV +

N

2
|∇V |2

)
, R̃0k = 0, R̃0N+1 = −1

2
ΔV − N

4
|∇V |2,

R̃ik = −N
2
∂i∂kV +

N

4
∂iV ∂kV − δik

(
1
2
ΔV +

N

4
|∇V |2

)
,

R̃iN+1 = 0, R̃N+1N+1 = 0,

R̃ = −e−V
(
(N + 1)ΔV +

N(N + 1)
4

|∇V |2
)
.

(3.8)

Theorem 3.5. The conformal geodesic equations are

d2qk

d t2
+
6E − 4V − 1
2(1 − 2L)

∂N+1f
dqk

dt
− 1
2
∂kf

(
dqk

dt

)2

+
(
E − V +

1
2

)
∂kf + ∂kV = 0, (3.9)

and f satisfies

∂0f = L∂N+1f,(
1
2
− L

)df
dt

= 2
(
E − V − 1

4

)
∂N+1f,

(3.10)

where

df
dt

= ∂if
dqi

dt
, i = 1, . . . ,N,

L = E − 2V.

(3.11)

Proof. From the geodesic equation (2.8), and the coefficients of Riemannian connection in
(3.5), we can get the equations of Theorem 3.5.

For the classical Hamiltonian system, L is usually not a constant. Then if f is
constrained in C∞(M), the second equation in (3.10) can be reduced into df/dt = 0.
Therefore, we can get the following.

Remark 3.6. When assuming f : M → �, the geodesic equations are

d2qk

dt2
− 1
2
∂kf

(
dqk

dt

)2

+
(
E − V +

1
2

)
∂kf + ∂kV = 0, (3.12)



International Journal of Mathematics and Mathematical Sciences 11

and f satisfies that

df
dt

= 0. (3.13)

Lemma 3.7 (Hopf). Let (M,g) be a compact manifold, f ∈ C∞(M). Then
∫
M Δgf = 0.

Lemma 3.8. Let f, h ∈ C∞(M), g̃ = efg, then

∇g̃h = e−f∇gh,

Δg̃h = e−fΔgh +
N − 2

2
g̃
(∇g̃f,∇g̃h

)
.

(3.14)

Proof. From the definition of gradient and Laplacian of h ∈ C∞(M), one can obtain

∇g̃h = ∂ihg̃
ij∂j = e−f∂ihgij∂j

= e−f∇gh,

Δg̃h =
1√
G̃
∂i

(√
G̃g̃ij∂jh

)
= e−(N/2)f 1√

G
∂i
(
e((N−2)/2)f√Ggij∂jh

)

= e−f
1√
G
∂i
(√

Ggij∂jh
)
+
N − 2

2
e−fgij∂jh∂if

= e−fΔgh +
N − 2

2
g̃
(∇g̃f,∇g̃h

)
,

(3.15)

where G = det(gij).

Theorem 3.9. Let f : M → �, M ×U1 ×U2 be compact, whereU1 and U2 are compact subsets of
�. Then from Theorem 3.3, Lemmas 3.7 and 3.8, one can get that

∫
M×U1×U2

R̃ = −
∫
M×U1×U2

e−f
(
(N + 1)Δf +

N(N + 1)
4

∣∣∇f
∣∣2)

= −
∫
M×U1×U2

(
(N + 1)Δg̃f − (N + 1)(N − 4)

4
e−f
∣∣∇f
∣∣2)

=
(N + 1)(N − 4)

4

∫
M×U1×U2

(
e−f
∣∣∇f
∣∣2),

(3.16)

and moreover,

(1) when N > 4,
∫
M×U1×U2

R̃ ≥ 0,

(2) when N = 4,
∫
M×U1×U2

R̃ ≡ 0,

(3) when N < 4,
∫
M×U1×U2

R̃ ≤ 0.



12 International Journal of Mathematics and Mathematical Sciences

In addition, when N/= 4 and the equality of (3.16) holds, |∇g̃f |2 = e−2f |∇f |2 = 0, so that f is a
constant function on the configuration spaceM.

Theorem 3.10. Let f : M → � be a smooth function. With the conformal Eisenhart metric, the
equations for Jacobi field along the geodesics, which is the solution of (3.12), are given by

d2J0

dt2
+ ∂if

dJi

dt
+A1J

0 + ∂i∂jf
dqj

dt
Ji = 0,

d2Ji

dt2
+A2

dJ0

dt
+A3

dJj

dt
− ∂if

dJN+1

dt
+A4J

j = 0,

d2JN+1

dt2
− 2

dV
dt

dJ0

dt
+A5

dJj

dt
+A6J

0 +A7J
i +A8J

N+1 = 0,

(3.17)

where

A1 =
1
2
∂if

d2qi

dt2
+
1
2
(∇f · ∇V

) − 2L + 1
8
∣∣∇f
∣∣2,

A2 = 2∂iV +
(
E − 1

2

)
∂if,

A3 = ∂jf
dqi

dt
− ∂if

dqj

dt
,

A4 =
1
2
(
δik∂jf + δij∂kf − δkj∂if

)d2qk

dt2
+ ∂i∂jV − 1

4
δij
∣∣∇f
∣∣2

+
1
2

(
∂iV ∂jf + ∂jV∂if − ∂i∂jf + δij

(∇f · ∇V
)
+ ∂j∂sf

dqs

dt
dqj

dt

)
,

A5 = −2∂jV +
(
1
2
− L

)
∂jf,

A6 = −∂jV
d2qj

dt2
+
1
2
(∇f · ∇V

) − |∇V |2,

A7 = −2∂i∂jV
dqj

dt
+
(
1
2
− L

)
∂i∂jf

dqj

dt
,

A8 =
1
2
∂jf

d2qj

dt2
+
1
2
(∇f · ∇V

) − 1
4
∣∣∇f
∣∣2.

(3.18)

Proof. Firstly, from the Jacobi equation (2.9), we can get the conformal Jacobi equations
represented in components as

d2Jα

dt2
+ 2Γ̃αβσ

dqβ

dt
dJσ

dt
+

(
Γ̃αβσ

d2qβ

dt2
+ Γ̃γ

βσ
Γ̃αγλ

dqβ

dt
dqλ

dt
+ ∂λΓ̃αβσ

dqβ

dt
dqλ

dt
− R̃α

βλσ

dqβ

dt
dqλ

dt

)
Jσ = 0,

(3.19)
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where R̃α
βλσ

are given by (2.4). From (2.4), (3.19) turns into

d2Jα

dt2
+ 2Γ̃αβσ

dqβ

dt
dJσ

dt
+

(
Γ̃αβσ

d2qβ

dt2
+ Γ̃γ

βλ
Γ̃αγσ

dqβ

dt
dqλ

dt
+ ∂σ Γ̃αβλ

dqβ

dt
dqλ

dt

)
Jσ = 0. (3.20)

Furthermore, substituting (3.5) into (3.20), in which f should be constrained in C∞(M) but
not C∞(M × �2), we complete the proof of Theorem 3.10.

Now let fu : M × [a, b] → � be a smooth function with fu|u=0 = 0, and gu = efug, that
is, gu|u=0 = g, where g is the Eisenhart metric. Then we can get the following.

Theorem 3.11. The equations of the flow defined in (2.12) are

efu
∂fu
∂u

= −Δfu − N

2
∣∣∇fu

∣∣2,
ΔV +

N

2
(∇fu · ∇V

)
= 0,

2∂i∂kfu − ∂ifu∂kfu = 0, i /= k,

Δfu −N∂i∂ifu +
N

2
(
∂ifu
)2 + N − 1

2
∣∣∇fu

∣∣2 = 0, i = 1, 2, . . . ,N.

(3.21)

Proof. From (2.12), one can obtain

−2R00 = −efu ∂fu
∂u

2V, −2R0i = 0, −2R0N+1 = efu
∂fu
∂u

,

−2Rik = efu
∂fu
∂u

δik, −2RiN+1 = 0, −2RN+1N+1 = 0,

(3.22)

where Rαβ are the Ricci curvatures with the metric gu.

Then from the conformal Ricci curvatures obtained in Proposition 3.2, and through a
direct computation, one can get the conclusion.

4. Examples

In this section, the conformal geometric structures of two famous classical Hamiltonian
systems are shown. Assuming that f : M → � ia a smooth function and the conformal
metric g̃ = efg, where M is the configuration space and g is the Eisenhart metric. For the
following examples, the total energy E is assumed to be a constant.

Example 4.1. For an N degrees of freedom linear Hamiltonian system, the Hamiltonian is
given by

H =
1
2

N∑
i=1

p2i + V
(
q1, q2, . . . , qN

)
, (4.1)
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in which

V =
1
2

N−1∑
i=1

ω2
i

(
qi
)2 − λ2

2

(
qN
)2
, (4.2)

where ωi and λ are constants.

This system consists of N − 1 uncoupled linear oscillators, with the remaining
uncoupled degree of freedom consisting of a parabolic barrier.

From (4.2), one can get

∇V =
(
ω2

1q
1, ω2

2q
2, . . . , ω2

N−1q
N−1,−λ2qN

)
,

ΔV =
N−1∑
i=1

ω2
i − λ2.

(4.3)

The coordinate of the manifold M × �
2 is q = (q0 = t, q1, q2, . . . , qN, qN+1) where qN+1 =

(t/2) + C2
2 −
∫ t
0 Ldτ .

Proposition 4.2. The conformal Ricci curvatures and scalar curvature of the N degrees of freedom
linear Hamiltonian system are given by

R̃00 =
N−1∑
i=1

ω2
i − λ2 + VΔf +

N

2
(∇f · ∇V

)
+
N

2
V
∣∣∇f
∣∣2, R̃0k = 0,

R̃0N+1 = −1
2
Δf − N

4
∣∣∇f
∣∣2, R̃iN+1 = 0, R̃N+1N+1 = 0,

R̃ik = −N
2
∂i∂kf +

N

4
∂if∂kf − δik

(
1
2
Δf +

N

4
∣∣∇f
∣∣2),

R̃ = −e−f
(
(N + 1)Δf +

N(N + 1)
4

∣∣∇f
∣∣2),

(4.4)

where i, k are from 1 toN.

Moreover, from (3.12), we can get the geodesic equations as

q0 = t,

d2qk

dt2
− 1
2
∂kf

(
dqk

dt

)2

+
(
E − V +

1
2

)
∂kf +ω2

kq
k = 0, k = 1, 2, . . . ,N − 1,

d2qN

dt2
− 1
2
∂Nf

(
dqN

dt

)2

+
(
E − V +

1
2

)
∂kf − λ2qN = 0,

qN+1 =
t

2
+ C2

2 −
∫ t

0
Ldτ,

(4.5)

where L = E − 2V , and f satisfies df/dt = 0.
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Remark 4.3. When f is a constant function, (4.5) yields that

q0 = t,

d2qk

dt2
+ω2

kq
k = 0, k = 1, 2, . . . ,N − 1,

d2qN

dt2
− λ2qN = 0,

qN+1 =
t

2
+ C2

2 −
∫ t

0
Ldτ.

(4.6)

For the N degrees of freedom linear Hamiltonian system, from the equations of flows in
(3.21), we can get the following.

Proposition 4.4. The equations of flow are given by

efu
∂fu
∂u

= −Δfu − N

2
∣∣∇fu

∣∣2,
N−1∑
i=1

(
ω2

i q
i∂ifu

)
− λ2qN∂Nfu +

2
N

(
N−1∑
i=1

(
ω2

i

)
− λ2

)
= 0,

2∂i∂kfu − ∂ifu∂kfu = 0, i /= k,

Δfu −N∂i∂ifu +
N

2
(
∂ifu
)2 + N − 1

2
∣∣∇fu

∣∣2 = 0, i = 1, 2, . . . ,N,

(4.7)

where {fu|fu|u=0 = 0} is a family of smooth functions.

Example 4.5. For the Hénon-Heiles Model, the Hamiltonian is

H =
1
2

(
p21 + p22

)
+ V
(
q1, q2

)
, (4.8)

in which the potential V is given by

V =
1
2

((
q1
)2

+
(
q2
)2)

+
(
q1
)2
q2 − 1

3

(
q2
)3
. (4.9)

Next we are going to study the geometry of the Hénon-Heiles Model and obtain the
numerical solutions.
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Proposition 4.6. The conformal Ricci curvatures and scalar curvature are given by

R̃00 = ΔV + VΔf +
(∇f · ∇V

)
+ V
∣∣∇f
∣∣2, R̃0k = 0,

R̃03 = −1
2
Δf − 1

2
∣∣∇f
∣∣2, R̃i3 = 0, R̃33 = 0,

R̃ik = −∂i∂kf +
1
2
∂if∂kf − δik

(
1
2
Δf +

1
2
∣∣∇f
∣∣2),

R̃ = −e−f
(
3Δf +

3
2
∣∣∇f
∣∣2),

(4.10)

where i, k are from 1 to 2, ∇V = (q1 + 2q1q2, q2 + (q1)2 − (q2)2) and ΔV = 2.

From the Hamiltonian equations, one can get that

E − V = H − V

=
1
2

(
p21 + p22

)

=
1
2

⎛
⎝(dq1

dt

)2

+

(
dq2

dt

)2
⎞
⎠.

(4.11)

Then the geodesic equations are given by

q0 = t,

d2q1

dt2
− 1
2
∂1f

(
dq1

dt

)2

+
(
E − V +

1
2

)
∂1f + q1 + 2q1q2 = 0,

d2q2

dt2
− 1
2
∂2f

(
dq2

dt

)2

+
(
E − V +

1
2

)
∂2f + q2 +

(
q1
)2

−
(
q2
)2

= 0,

q3 =
t

2
+ C2

2 −
∫ t

0
Ldτ,

(4.12)

where df/dt = 0, and E − V is given by (4.11).
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Figure 1: Component q0 of the geodesic.
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Figure 2: Component q1 of the geodesic.

Remark 4.7. When f is a constant function onM, the geodesic equations are given by

q0 = t,

d2q1

dt2
+ q1 + 2q1q2 = 0,

d2q2

dt2
+ q2 +

(
q1
)2

−
(
q2
)2

= 0,

q3 =
t

2
+ C2

2 −
∫ t

0
Ldτ.

(4.13)
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Figure 4: Component q3 of the geodesic.

Moreover, for the above geodesic equations of the Hénon-Heiles model in (4.13)which can be
reduced into the following first-order differential equations in (4.14), according to the theory
of ordinary differential equations, we know that when the initial values are given, the solution
of (4.13) uniquely exists.

Next we are going to study the solution of the above geodesic equations (4.13) through
numerical simulations. In order to get the reduced equations and do simulation, firstly we
introduce two parameters p1, p2, which are the generalizedmomenta, and pi = dqi/dt, i = 1, 2.
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Figure 5: Generalized momentum p1.

Then the second-order differential equations in (4.13) become into the following first-order
differential equations

q0 = t,

dq1

dt
= p1,

dp1
dt

+ q1 + 2q1q2 = 0,

dq2

dt
= p2,

dp2
dt

+ q2 +
(
q1
)2 − (q2)2 = 0,

q3 =
t

2
+ C2

2 −
∫ t

0
Ldτ,

(4.14)

where L = E − 2V .

Let the initial vector (q1, q2, q3, p1, p2) be (0, 0, 1, 1, 1), and the interval for time t be
[0, 5], by use of the ode45 method in Matlab, that is, Runge-Kutta (4, 5) method, we can get
the following numerical results of geodesics and the generalized momenta (Figures 1, 4).

Figures 2 and 3 above give the motion of the Hénon-Heiles model. Figures 5 and 6
describe the forms of generalized momenta.
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0 1 2 3 4 5

t

−10

−8

−6

−4

−2

0

2

J
3

×106

Figure 10: Component J3 of the Jacobi field.
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Proposition 4.8. When f is a constant function on M, the Jacobi field along the geodesic, which is
the solution of (4.13), is given by

d2J0

dt2
= 0,

d2J1

dt2
+ 2
(
q1 + 2q1q2

)dJ0
dt

+
(
1 + 2q2

)
J1 + 2q1J2 = 0,

d2J2

dt2
+ 2
(
q2 +

(
q1
)2

−
(
q2
)2)dJ0

dt
+ 2q1J1 +

(
1 − 2q2

)
J2 = 0,

d2J3

dt2
− 2

dV
dt

dJ0

dt
− 2
(
q1 + 2q1q2

)dJ1
dt

− 2
(
q2 +

(
q1
)2

−
(
q2
)2)dJ2

dt
− |∇V |2J0

− 2

((
1 + 2q2

)dq1
dt

+ 2q1
dq2

dt

)
J1 − 2

(
2q1

dq1

dt
+
(
1 − 2q2

)dq2
dt

)
J2 = 0,

(4.15)

where dV/dt = (q1 + 2q1q2)(dq1/dt) + (q2 + (q1)2 − (q2)2)(dq2/dt), and |∇V |2 = (q1 + 2q1q2)2 +
(q2 + (q1)2 − (q2)2)2.

Moreover, the Jacobi equations in (4.15) are also ordinary differential equations which
can be reduced into first-order differential equations, and when the initial values are given,
the solution of (4.15) uniquely exists.
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For (4.15), next we are going to find the numerical solution of the Jacobi field. Using
the similar process as above, we introduce four parameters u0, u1, . . . , u3 and assume that
ui = dJi/dt, i = 0, 1, . . . , 3. Then (4.15) becomes into

dJ0

dt
= u0,

du0

dt
= 0,

dJ1

dt
= u1,

du1

dt
+ 2
(
q1 + 2q1q2

)
u0 +

(
1 + 2q2

)
J1 + 2q1J2 = 0,

dJ2

dt
= u2,

du2

dt
+ 2
(
q2 +

(
q1
)2 − (q2)2)u0 + 2q1J1 +

(
1 − 2q2

)
J2 = 0,

dJ3

dt
= u3,

du3

dt
− 2

dV
dt

u0 − 2
(
q1 + 2q1q2

)
u1 − 2

(
q2 +

(
q1
)2

−
(
q2
)2)

u2 − |∇V |2J0

− 2
((

1 + 2q2
)
p1 + 2q1p2

)
J1 − 2

(
2q1p1 +

(
1 − 2q2

)
p2
)
J2 = 0,

(4.16)

where dqi/dt and d2qi/dt2 are replaced by pi and dpi/dt given in (4.14), respectively.
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We assume that the initial vector (J0, J1, J2, J3, u0, u1, u2, u3) is (1, 1, 1, 1, 1, 1, 1, 1), and
the time interval is [0, 5]. Also using the ode45 method in Matlab, and the first-order
differential equations of geodesics and generalized momenta in (4.14), we can get the
following numerical results of Jacobi field.

Figures 7, 8, 9, and 10 show us that the Jacobi field is divergent when the time t → +∞,
which implies the instability of the geodesic spread. For more please refer to [21, 22] about
the instability of the geodesic derivation equation, that is, the Jacobi equation for the Hénon-
Heiles model, and [16, 17] about the geodesic spread and geodesic derivative equation and
their applications (Figures 11-14).

Proposition 4.9. For the Hénon-Heiles model, from Theorem 3.11, we can obtain the equations of
flow as

efu
∂fu

∂u
= −Δfu −

∣∣∇fu
∣∣2,

(
q1 + 2q1q2

)
∂1fu +

(
q2 +

(
q1
)2

−
(
q2
)2)

∂2fu = −2,

2∂i∂kfu − ∂ifu∂kfu = 0, i /= k,

Δfu − 2∂i∂ifu +
(
∂ifu
)2 + 1

2
∣∣∇fu

∣∣2 = 0, i = 1, 2.

(4.17)

5. Conclusion

The theory of conformal metric in Riemannian geometry is applied to characterize the
geometry of the classical Hamiltonian dynamics with the conformal Eisenhart metric
(Section 3). We obtain the Ricci curvatures, the scalar curvatures, the geodesic equations,
the Jacobi equations, and the equation of a certain flow. The relation between the curvatures
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with Eisenhart metric and its conformal metric can also be shown clearly. As in the examples,
the conformal curvatures, the equation of a certain flow, and the numerical solutions of
the geodesics, generalized momenta, and Jacobi field along the geodesics are obtained
(Section 4).
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