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This paper is concerned with the existence of nonoscillatory solutions for the nonlinear dynamic

equation (p(t)(ψ ◦ x)(xσ )Δ)Δ + q(t)f ◦ xσ = 0 on time scales. By making use of the generalized
Riccati transformation technique, we establish some necessary and sufficient criteria to guarantee
the existence. The last examples show that our results can be applied on the differential equations,
the difference equations, and the q-difference equations.

1. Introduction

In the recent decade there have been many literatures to study the oscillatory properties for
second-order dynamic equations on time scales; see, for example, [1–11] and the references
therein. In particular, the dynamic equation of the form

(
p(t)xΔ

)Δ
+ q(t)f ◦ xσ = 0 (1.1)

has been attracting one’s interesting; see, for example, [3, 5, 8]. Motivated by the papers
mentioned as above, in this paper we consider the existence of nonoscillatory solutions for
nonlinear dynamic equation

(
p(t)

(
ψ ◦ x)(xσ)Δ

)Δ
+ q(t)f ◦ xσ = 0 (1.2)

on a time scale �, where xσ = x ◦ σ.
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Referring to [12, 13], a time scale � can be defined as an arbitrary nonempty subset
of the set � of real numbers, with the properties that every Cauchy sequence in � converges
to a point of � with the possible exception of Cauchy sequences which converge to a finite
infimum or finite supremum of �. On any time scale �, the forward and backward jump
operators are defined, respectively, by

σ(t) := inf{s ∈ � : s > t}, ρ(t) := sup{s ∈ � : s < t}, (1.3)

where inf ∅ := sup� and sup ∅ := inf�. A point t ∈ � is said to be right-scattered if σ(t) > t,
right-dense if σ(t) = t, left-scattered if ρ(t) < t, and left-dense if ρ(t) = t. A derived set from
� is defined as follows: � k = � − {m} when � has a left-scattered maximum m, otherwise
�
k = �.

Definition 1.1. For a function f : � → � and t ∈ �
k, we define the delta-derivative fΔ(t) of

f(t) to be the number (provided it exists) with the property that, for any ε > 0, there is a
neighborhood U of t (i.e.,U = (t − δ, t + δ) ∩ � for some δ) such that

∣∣∣[f(σ(t)) − f(s)] − fΔ(t)[σ(t) − s]
∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (1.4)

We say that f is delta-differentiable (or in short: differentiable) on � k provided fΔ(t) exists
for all t ∈ � k.

For two differentiable functions f and g at t ∈ � k with g(t)g(σ(t))/= 0, it holds that

(
fg

)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t), (1.5)

(
f

g

)Δ

(t) =
fΔ(t)g(σ(t)) − f(σ(t))gΔ(t)

g(t)g(σ(t))
. (1.6)

Definition 1.2. A function F : � → � is called an antiderivative of f provided FΔ(t) = f(t)
holds for all t ∈ � k. By the antiderivative, the Cauchy integral of f is defined as

∫b
a
f(s)Δs =

F(b) − F(a), and ∫∞
a
f(s)Δs = limt→∞

∫ t
a
f(s)Δs.

Definition 1.3. Let f : � → � be a function, where f is called right-dense continuous (rd-
continuous) if it is right continuous at right-dense points in � and its left-sided limits exist
(finite) at left-dense points in �.

To distinguish from the traditional interval in � , we define the interval in � by

[a,∞)
�
:= {t ∈ � : a ≤ t <∞}. (1.7)

Let Crd(�) (or Crd(�,�)) denote the set of all rd-continuous functions defined on �, and
C1

rd(�) (or C1
rd(�,�)) denote the set of all differentiable functions whose derivative is rd-

continuous.
Since we are interested in the existence of nonoscillatory solutions of (1.2), we make

the blanket assumption that inf� = t0 and sup� = ∞. As defined in [1], by a solution of (1.2)



International Journal of Mathematics and Mathematical Sciences 3

we mean a nontrivial real function x(t), with x(t) ∈ C1
rd[t1,∞)

�
and p(t)ψ(x(t))(xσ (t))Δ ∈

C1
rd[t1,∞)

�
for some t1 ≥ t0, which satisfies (1.2) on [t1,∞)

�
. A solution of (1.2) is said to be

nonoscillatory if it is eventually positive or eventually negative.

2. Preliminaries

Let us assume in (1.2) under consideration that

(H1) σ ∈ C1
rd(�,�)with σΔ(t) > 0 on �,

(H2) p, q ∈ Crd(�,�) and there exists a t1 ∈ � such that p(t) > 0 and q(t) ≥ 0 on [t1,∞)
�

and
∫∞
t1
(Δs/p(s)) = ∞,

∫∞
t1
q(s)Δs < ∞; also, q is not identically zero on [t1,∞)�,

(H3) ψ ∈ C1(� ,� +) with ψ(x) ≤ m0 on � for some constant m0 > 0 and, ψ is nonincreas-
ing on [0,∞) and nondecreasing on (−∞, 0],

(H4) f ∈ C1(� ,�) satisfies that xf(x) > 0 for x /= 0, f ′(x) ≥ m1 on � for some constant
m1 > 0, and f ′ is nondecreasing on [0,∞) and nonincreasing on (−∞, 0].

Suppose that �̃ = {x(t) ∈ Crd(�,�) : t ∈ �} is a time scale. By σ̃ and ρ̃ we denote the
forward and backward jump operators on �̃, respectively, and by Δ̃we denote the derivative
on �̃. Let σ̃2 = σ̃ ◦ σ̃. Then, f Δ̃(σ̃(x))/ψ(x) is bounded below on �̃ by assumptions (H3)-(H4).
Indeed, in case σ̃(x) = σ̃2(x), we have f ′(σ̃(x))/ψ(x) = f Δ̃(σ̃(x))/ψ(x) and the assertion
holds. In case σ̃(x) < σ̃2(x), by the definition of delta-derivative and the mean value theorem,
there exits a constant c ∈ [σ̃(x), σ̃2(x)] such that

f Δ̃(σ̃(x)) =
f
(
σ̃2(x)

) − f(σ̃(x))
σ̃2(x) − σ̃(x) = f ′(c), (2.1)

and then

f Δ̃(σ̃(x))
ψ(x)

=
f ′(c)
ψ(x)

≥ m1

m0
. (2.2)

Furthermore, f Δ̃(σ̃(x)) is nondecreasing on [0,∞)
�̃
by virtue of (H4). Indeed, for any

x, y ∈ [0,∞)
�̃
with x ≤ y, there are four cases to consider. In case σ̃(x) = σ̃2(x) and σ̃(y) =

σ̃2(y), f Δ̃(σ̃(x)) = f ′(σ̃(x)) ≤ f ′(σ̃(y)) = f Δ̃(σ̃(y)). In case σ̃(x) = σ̃2(x) and σ̃(y) < σ̃2(y),
we have f Δ̃(σ̃(x)) = f ′(σ̃(x)) and

f Δ̃(σ̃(y)) =
f
(
σ̃2(y)) − f(σ̃(y))

σ̃2
(
y
) − σ̃(y) = f ′(cy

)
, (2.3)

where cy ∈ [σ̃(y), σ̃2(y)]. Since cy ≥ σ̃(x), it follows that f Δ̃(σ̃(x)) ≤ f Δ̃(σ̃(y)). The other
cases can be shown likewise.

As a consequence, we see from assumption (H3) that fΔ(σ̃(x))/ψ(x) is nondecreasing
on [0,∞)

�̃
. Similarly, we can show that f Δ̃(σ̃(x))/ψ(x) is nonincreasing on (−∞, 0]

�̃
provided

σ̃(x) ∈ (−∞, 0]
�̃
.
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As thus, we can extract the essences as above and obtain a result as follows.

Lemma 2.1. Suppose that �̃ is a time scale and f Δ̃(x)/ψ(x) is defined on it. Then it follows that

(i) f Δ̃(σ̃(x))/ψ(x) is positively bounded below and

(ii) f Δ̃(σ̃(x))/ψ(x) is nondecreasing on [0,∞)
�̃
and nonincreasing on (−∞, 0]

�̃
.

For a given a ∈ �̃with a/= 0, we introduce a function on �̃ as follows:

Γa(x) =
∫x

a

ψ
(
ρ̃(u)

)

f(u)
Δ̃u for x ∈ �̃ with x /= 0. (2.4)

Then the function Γa(x) possesses the following properties.

(i) If a > 0, then Γa(x) is strictly increasing for x > 0 and Γ−1
a (y) ≥ a is strictly increasing

for y ≥ 0.

(ii) If a < 0, then Γa(x) is strictly decreasing for x < 0 and Γ−1
a (y) ≤ a is strictly

decreasing for y ≥ 0.

(iii) If a/= 0, then F(Γ−1
a (y)) is nondecreasing for y ≥ 0 (by Lemma 2.1 (ii)). Here F is

defined as in (2.6).

For the sake of convenience, we let

R(t) =
p(t)ψ(x(t))(xσ(t))Δ

f(xσ(t))
, (2.5)

F(x) =
f Δ̃(σ̃(x))
ψ(x)

(2.6)

whenever they are defined.
Note that, if x(t) is an eventually negative solution of (1.2), then y(t) = −x(t) satisfies

that

(
p(t)

(
ψ̃ ◦ y)(yσ)Δ)Δ

+ q(t)f̃ ◦ yσ = 0, (2.7)

where

ψ̃
(
y
)
= ψ

(−y), f̃
(
y
)
= −f(−y) (2.8)

possess the same properties as ψ and f , respectively. Therefore, in what follows we will
restrict our attention to the eventually positive solutions of (1.2).

3. Main Results

Before entering our main discussions, we remark that x([t1,∞)
�
) is a time scale when

x ∈ C1
rd[t1,∞)� and x is monotonic on [t1,∞)�, where t1 ∈ �. In the following discussions,
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the notations Δ̃, σ̃ and ρ̃ will act upon the time scale x([t1,∞)
�
), while Δ, σ, and ρ will do on

�. Then σ̃ ◦ x = x ◦ σ when x is strictly increasing on [t1,∞)
�
.

Lemma 3.1. Suppose that t1 ∈ � and x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)
�
. Then it

holds that

R(t) =
∫∞

t

q(s)Δs +
∫∞

t

R(s)R(σ(s))F(x(s))
p(s)

Δs (3.1)

for all t ∈ [t1,∞)
�
and

R(t) =
∫∞

t

q(s)Δs +
∫∞

t

R(s)R(σ(s))F
(
Γ−1
xσ (t1)

(∫ρ(s)
t1

(
R(u)Δu/p(u)

)))

p(s)
Δs (3.2)

for all t ∈ [σ(t1),∞)
�
.

Proof. Without loss of generality, let p(t) > 0 and q(t) ≥ 0 on [t1,∞)
�
. Then it follows from

(1.2) that

(
p(t)ψ(x(t))(xσ(t))Δ

)Δ
= −q(t)f(xσ(t)) ≤ 0 ∀t ∈ [t1,∞)

�
. (3.3)

We assert that

p(t)ψ(x(t))(xσ(t))Δ > 0 ∀t ∈ [t1,∞)
�
. (3.4)

Otherwise, note from assumption (H2) that q is not identically zero on [t1,∞)
�
, (3.3) implies

that there exits a t2 ∈ [t1,∞)
�
and a constant m > 0 such that

p(t)ψ(x(t))(xσ(t))Δ ≤ −m ∀t ∈ [t2,∞)
�
. (3.5)

Consequently we find that

xσ(t) ≤ xσ(t2) − m

m0

∫ t

t2

Δs
p(s)

−→ −∞ as t −→ ∞, (3.6)

which contradicts x(t) > 0 on [t1,∞)
�
. Since (3.4) holds, it is clear that

(xσ(t))Δ > 0, R(t) > 0 ∀t ∈ [t1,∞)
�
. (3.7)

On the other hand, we see from (3.3) that R(t) is nonincreasing on [t1,∞)
�
, which,

associated with (3.7), means that limt→∞R(t) exists as a finite number.
Next we will show that

∫∞

t1

R(s)R(σ(s))F(x(s))
p(s)

Δs < ∞. (3.8)
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Note that xσ is strictly increasing due to assumption (H1) and (3.7); by (1.2), (1.5) and (1.6)
and the chain rule [13, Theorem 1.93]we have

RΔ(t) =

[
p(t)ψ(x(t))(xσ(t))Δ

]Δ
f
(
xσ

2
(t)

)

f(xσ(t))f
(
xσ2(t)

)

−

[
p(σ(t))ψ(xσ(t))

(
xσ

2
(t)

)Δ
]
f Δ̃(xσ(t))(xσ(t))Δ

f(xσ(t))f
(
xσ2(t)

)

= −q(t) −
p(σ(t))ψ(xσ(t))

(
xσ

2
(t)

)Δ

f
(
xσ2(t)

) ·
f Δ̃(xσ(t))

[
p
(
ψ ◦ x)(xσ)Δ

]
(t)

p(t)ψ(x(t))f(xσ(t))

= −q(t) − R(σ(t)R(t))F(x(t))
p(t)

.

(3.9)

Taking Δ-integral on (3.9) from t1 to t, we obtain that

R(t) − R(t1) = −
∫ t

t1

q(s)Δs −
∫ t

t1

R(s)R(σ(s))F(x(s))
p(s)

Δs. (3.10)

Now that the limit of R(t) exists as t → ∞, by assumption (H2) and (3.10)we see that
(3.8) holds. Note that F(x(t)) is positive bounded below (see Lemma 2.1(i)), (3.8) infers that
limt→∞R(t) = 0. To sum up, it is easy to see that (3.10) yields (3.1).

Next we prove (3.2). Again note that xσ is strictly increasing on [t1,∞)
�
, by the

substitution theorem [13, Theorem 1.98], it follows that

∫ t

t1

R(t)Δs
p(t)

=
∫ t

t1

ψ(x(s))(xσ(s))ΔΔs
f(xσ(s))

=
∫xσ(t)

xσ (t1)

ψ
(
ρ̃(u)

)
Δ̃u

f(u)
, (3.11)

which, together with the definition of Γa, induces

x(t) = Γ−1xσ(t1)

(∫ρ(t)

t1

R(s)Δs
p(s)

)
∀t ∈ [σ(t1),∞)

�
, (3.12)

where we have used ρ(σ(t)) = t (see assumption (H1)). Now let us substitute x(t) in (3.12)
into (3.1) and then we obtain (3.2). The proof is complete.

Theorem 3.2. Suppose that t1 ∈ �. Then x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)
�
(or, on

[σ(t1),∞)
�
) if and only if there exists a constant α > 0 and a function ϕ ∈ Crd([t1,∞)

�
,�+) such

that

ϕ(t) ≥
∫∞

t

q(s)Δs +
∫∞

t

ϕ(s)ϕ(σ(s))
p(s)

F

(
Γ−1
α

(∫ρ(s)

t1

ϕ(u)Δu
p(u)

))
Δs (3.13)

for all t ∈ [σ(t1),∞)�.
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Proof. Suppose that x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)
�
. Then, by Lemma 3.1,

R defined as in (2.5) satisfies R ∈ Crd([t1,∞)
�
,�+) and (3.13) holds, where α = xσ(t1).

Conversely, suppose that there exists a constant α > 0 and a function ϕ ∈ Crd(�,�+)
such that (3.13) holds. Let y0(t) ≡ 0 and define a sequence of functions {yn(t)}∞n=0 on
[σ(t1),∞)

�
as follows:

yn+1(t) =
∫∞

t

q(s)Δs +
∫∞

t

yn(s)yn(σ(s))F
(
Γ−1
α

(∫ρ(s)
t1

(
yn(u)Δu/p(u)

)))

p(s)
Δs. (3.14)

It is clear that 0 ≤ y1(t) ≤ ϕ(t) on [σ(t1),∞)�. Suppose that yn−1(t) ≤ yn(t) ≤ ϕ(t) on
[σ(t1),∞)

�
. Then, by the monotone of F(Γ−1

a (y)) for y ≥ 0, we learn that

yn+1(t) ≥
∫∞

t

q(s)Δs +
∫∞

t

yn−1(s)yn−1(σ(s))F
(
Γ−1
α

(∫ρ(s)
t1

(
yn−1(u)Δu/p(u)

)))

p(s)
Δs = yn(t)

(3.15)

as well as

yn+1 ≤ ϕ(t). (3.16)

So by the mathematical induction we obtain that

0 ≤ yn(t) ≤ yn+1(t) ≤ ϕ(t) ∀[σ(t1),∞)
�
, (3.17)

which means that there exists a function y such that

lim
n→∞

yn(t) = y(t) ≤ ϕ(t) ∀t ∈ [σ(t1),∞)�. (3.18)

Now by Lebesgue’s domination convergence theorem on time scales [14, Chapter 5],
we may deduce from (3.14) that

y(t) =
∫∞

t

q(s)Δs +
∫∞

t

y(s)y(σ(s))F
(
Γ−1
α

(∫ρ(s)
t1

(
y(u)Δu/p(u)

)))

p(s)
Δs. (3.19)

Let

x(t) = Γ−1
α

(∫ρ(t)

t1

y(s)Δs
p(s)

)
. (3.20)
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Then x(t) ≥ α on [σ(t1),∞)
�

and xσ(t) is strictly increasing on [t1,∞)
�
. Moreover,

x([σ(t1),∞)
�
) is another time scale with σ̃ ◦x = x◦σ. Therefore, by the theorem on derivative

of the inverse [13, Theorem 1.97]we learn that

(xσ(t))Δ =
f(xσ(t))y(t)
ψ(x(t))p(t)

for t ∈ [t1,∞)
�
. (3.21)

Now from (3.20) we have

Γα(xσ(t)) =
∫ t

t1

y(s)Δs
p(s)

for t ∈ [t1,∞)
�
, (3.22)

which implies that

p(t)ψ(x(t))(xσ(t))Δ = y(t)f(xσ(t)), (3.23)

and this results in

(
p(t)ψ(x(t))(xσ(t))Δ

)Δ

= yσ(t)f Δ̃(xσ(t))(xσ(t))Δ + f(xσ(t))yΔ(t)

= yσ(t)f Δ̃(xσ(t))(xσ(t))Δ + f(xσ(t))
[
−q(t) − y(t)y(σ(t))F(x(t))

p(t)

]

= yσ(t)f Δ̃(xσ(t))(xσ(t))Δ − q(t)f(xσ(t)) −

[
p(t)ψ(x(t))(xσ(t))Δ

]
yσ(t)F(x(t))

p(t)

= −q(t)f(xσ(t)),

(3.24)

where we have imposed formulas (3.19) and (3.20) for the second equal sign and (3.23) for
the third, respectively.

Now we see from (3.24) that x(t) defined by (3.20) is a positive solution of (1.2). The
proof is complete.

In the remainder of this section, we define formally a sequence of functions {Qn(t)}∞n=0
as follows. Let t1 ∈ �, α > 0, and

Q0(t) =
∫∞

t

q(s)Δs, (3.25)

Q1(t) =
∫∞

t

Q0(s)Q0(σ(s))F
(
Γ−1
α

(∫ρ(s)
t1

Q0(u)Δu/p(u)
))

p(s)
Δs (3.26)
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as well as

Qn+1(t)

=
∫∞

t

[Q0(s) +Qn(s)][Q0(σ(s)) +Qn(σ(s))]F
(
Γ−1
α

(∫ρ(s)
t1

(
(Q0(u) +Qn(u))/p(u)Δu

)))

p(s)
Δs.

(3.27)

Then Q1(t) ≤ Q2(t). By induction, it follows that

0 < Qn(t) ≤ Qn+1(t) for n = 1, 2, 3, . . . . (3.28)

If x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)
�
for some t1 ∈ �, then (3.1) holds

by Lemma 3.1 and hence

Q0(t) ≤ R(t) ∀t ∈ [σ(t1),∞)
�
, (3.29)

which, together with (3.26), results in

Q1(t) ≤
∫∞

t

R(s)R(σ(s))F
(
Γ−1
a

(∫ρ(s)
t1

(
R(u)Δu/p(u)

)))

p(s)
Δs ∀t ∈ [σ(t1),∞)

�
. (3.30)

Let us now define R0(t) by

R0(t) =
∫∞

t

R(s)R(σ(s))F
(
Γ−1
a

(∫ρ(s)
t1

(
R(u)Δu/p(u)

)))

p(s)
Δs, t ∈ [σ(t1),∞)�. (3.31)

Then, in view of (3.2) and (3.30), we have

Q0(t) +Q1(t) ≤ Q0(t) + R0(t) = R(t) ∀t ∈ [σ(t1),∞)�. (3.32)

By the mathematical induction again we educe

Q0(t) +Qn(t) ≤ R(t) ∀t ∈ [σ(t1),∞)
�
, n = 1, 2, 3, . . . . (3.33)

Now we learn from (3.28) and (3.33) that {Qn(t)}∞0 is well defined and converges to
some function Q(t) when x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)�.

Conversely, suppose that {Qn(t)}∞n=0 is well defined and

lim
n→∞

Qn(t) = Q(t) < ∞ on [σ(t1),∞)
�
. (3.34)
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Then, by (3.28), we haveQn(t) ≤ Q(t) for all n ≥ 1. Hence, by Lebesgue’s domination conver-
gence theorem on time scales, we may obtain from (3.27) that

Q(t) =
∫∞

t

[Q0(s) +Q(s)][Q0(σ(s)) +Q(σ(s))]F
(
Γ−1
α

(∫ρ(s)
t1

(
(Q0(u) +Q(u))/p(u)

)
Δu

))

p(s)
Δs.

(3.35)

Let ϕ(t) = Q0(t) + Q(t). Then, from (3.35) we see that (3.13) holds. Furthermore, by
means of Theorem 3.2, (1.2) has a solution x(t) > 0 on [σ(t1),∞)

�
.

To sum up, we obtain our last result as follows.

Corollary 3.3. Suppose that t1 ∈ �. Then x(t) is a solution of (1.2) with x(t) > 0 on [t1,∞)
�
(or, on

[σ(t1),∞)
�
) if and only if there exists a constant α > 0 such that the sequence of functions {Qn(t)}∞n=0

defined as in (3.25)–(3.27) is well defined and

lim
n→∞

Qn(t) = Q(t) < ∞ on [σ(t1),∞)
�
. (3.36)

Example 3.4. Let� = [0,∞). Suppose in (1.2) that p(t) = t+1, q(t) = 1/(4t2), ψ(x) = 1/2(1+|x|),
and f(x) = x. Let ϕ(t) = 1/(2t). It is easy to verify that

Γ−1
1

(∫ s

1

ϕ(s)ds
p(s)

)
= s, F

(
Γ−1
1

(∫ s

1

ϕ(u)du
p(u)

))
=

1
2(1 + |s|) for s ≥ 1 (3.37)

as well as

∫∞

t

q(s)ds +
∫∞

t

ϕ2(s)
p(s)

F

(
Γ−1
1

(∫ s

1

ϕ(u)du
p(u)

))
ds =

3
8t

≤ ϕ(t), t ≥ 1. (3.38)

By Theorem 3.2, (1.2) has a solution x(t) > 0 on [1,∞).

Example 3.5. Let h > 0 and q0 > 1, and let � 0 be a set of nonnegative integers. Suppose in (1.2)
that ψ(x) = 1 and f(x) = x.

In case � = h� 0 , let

p(t) = 1, q(t) =
1

(2t + 2h)(2t + h)
. (3.39)

Then, for a given ϕ(t) = 1/(2t + h) and any given α > 0, we have

∫∞

t

q(s)Δs ≤
∫∞

t

Δt
σ(2s + h)(2s + h)

=
1

2(2t + h)
,

∫∞

t

ϕ(s)ϕ(σ(s))
p(s)

F

(
Γ−1
α

(∫ρ(s)

0

ϕ(u)Δu
p(u)

))
Δs =

∫∞

t

Δs
(2s + h)(2σ(s) + h)

≤ 1
2(2t + h)

(3.40)
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and hence (3.13) holds. By means of Theorem 3.2, (1.2) has a solution x(t) > 0 on � = h� 0 .
In case � = {qk0 : k ∈ � 0}, let

p(t) = 2, ϕ(t) =
1
t
, q(t) =

1
2σ(t)t

. (3.41)

Then, for any given α > 0, we have

∫∞

t

q(s)Δs +
∫∞

t

ϕ(s)ϕ(σ(s))
p(s)

F

(
Γ−1
α

(∫ρ(s)

1

ϕ(u)Δu
p(u)

))
Δs = ϕ(t), (3.42)

and hence Theorem 3.2 implies that (1.2) has a solution x(t) > 0 on � = {qk0 : k ∈ � 0}.
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