
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2011, Article ID 793848, 9 pages
doi:10.1155/2011/793848

Research Article
The Bolzano-Poincaré Type Theorems
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College of Science, Cardinal Stefan Wyszyński, University in Warsaw, ul. Dewajtis 5,
01-815 Warszawa, Poland

Correspondence should be addressed to Marian Turzański, m.turzanski@uksw.edu.pl
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In 1883–1884, Henri Poincaré announced the result about the structure of the set of zeros of function
f : In → Rn, or alternatively the existence of solutions of the equation f(x) = 0. In the case n = 1
the Poincaré Theorem is well known Bolzano Theorem. In 1940Miranda rediscovered the Poincaré
Theorem. Except for few isolated results it is essentially a non-algorithmic theory. The aim of this
article is to introduce an algorithmical proof of the Theorem “On the existence of a chain” and
for n = 3 an algorithmical proof of the Bolzano-Poincaré Theorem and to show the equivalence of
Poincaré, Brouwer and “On the existence of a chain” theorems.

1. Introduction

It is well known how influential topology was for the development of many other branches
of mathematics and economics. Among many others, let us recall significant place of fixed
point theorems of Brouwer and Banach which served as a main tool in solving problems
in differential equations, theory of fractals and problems of market equilibrium. Some of
these applications raised a question of computability of the fixed points. In [1, 2] Steinhaus
presented following conjecture: Let some segments of the chessboard be mined. Assume that the
king cannot go across the chessboard from the left edge to the right one without meeting a mined
square. Then the rook can go from upper edge to the lower one moving exclusively on mined segments.

According to Surówka [3] several proofs of the Steinhaus Chessboard Theorem seem
to be incomplete or use induction on the size of the chessboard [4].

The simple proof of the Steinhaus Chessboard Theorem was presented in [5]. In [6]
the following generalization of the Steinhaus Chessboard Theorem was published: Theorem
[On the existence of a chain] For an arbitrary decomposition of n-dimensional cube In onto kn cubes
and an arbitrary coloring function F : T(k) → {1, . . . , n} for some natural number i ∈ {1, . . . , n}
there exists an ith colored chain P1, . . . , Pr such that P1 ∩ I+i /= ∅ and Pr ∩ I−i /= ∅.

This theorem was the main tool in the proof (see [6]) of the Bolzano-Poincaré theorem
(see [7, 8]). In the first part of our paper an algorithm of finding the chain will be presented
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and will be shown that the theorem “on the existence of a chain”, the Bolzano-Poincaré
theorem, and the Brouwer fixed point theorem are equivalent (for more informations see
[9, 10]).

2. Theorems

Let In := [0, 1]n be the n-dimensional cube in Rn.
Its ith opposite faces are defined as follows:

I−i := {x ∈ In : x(i) = 0}, I+i := {x ∈ In : x(i) = 1}. (2.1)

Let

∂In :=
n⋃

i=1

(
I−i ∪ I+i

)
(2.2)

be the boundary of the cube In.
Let k be an arbitrary natural number.
We call the family

T(k) :=
{[

i1
k
,
i1 + 1
k

]
× · · · ×

[
in
k
,
in + 1
k

]
: ij ∈ {0, . . . , k − 1}

}
(2.3)

the decomposition of In into kn cubes.
The map F : T(k) → {1, . . . , n} is said to be a coloring function of the decomposition

T(k).
The sequence P1, . . . , Pr where Pl ∈ T(k) for l = 1, . . . , r is said to be an ith colored chain,

if for all l ∈ {1, . . . , r} F(Pl) = i and Pj ∩ Pj+1 /= ∅ for j = 1, . . . , r − 1.
The set C = {−1/2k, 1/2k, . . . , 1 + 1/2k}n is said to be the n-dimensional combinatorial

cube.
Its ith opposite faces are defined as follows:

C−
i =
{
z ∈ C : z(i) = − 1

2k

}
,

C+
i =
{
z ∈ C : z(i) = 1 +

1
2k

}
.

(2.4)

Let

∂C =
n⋃

i=1

C−
i ∪ C+

i (2.5)

be the boundary of the n-dimensional combinatorial cube.
Let ei = (0, . . . , 0, 1/k, 0, . . . , 0), ei(i) = 1/k be the ith basic vector.
An ordered set S = [z0, . . . , zn] ⊂ C is said to be an n-simplex if there exists permutation

α of set {1, . . . , n} such that z1 = z0 + eα(1) · · · zn = zn−1 + eα(n).
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Any subset [z0, . . . , zi−1, zi+1, . . . , zn] ⊂ S, i = 0, . . . , n is said to be an (n−1)-face of the
n-simplex S.

Every map Φ : C → {1, . . . , n} is said to be a coloring map of C.
The set A ⊂ C we call n’-colored if Φ(A) = {1, . . . , n′}.

Observation 1. Let S = [z0, . . . , zn] ⊂ C be an n-simplex. Then for each zi ∈ S if
[z0, . . . , zi−1, zi+1, . . . , zn] /⊂ Cε

p for each p ∈ {1, . . . , n}, ε ∈ {+,−} then there exists exactly one
n-simplex S[i] ⊂ C such that S ∩ S[i] = [z0, . . . , zi−1, zi+1, . . . , zn] else there does not exist such
S[i] ⊂ C.

Observation 2. Any (n−1)-face of an n-simplex S ⊂ C is an (n−1)-face of exactly one or of
two n-simplexes from C depending on whether or not it lies on Cε

p for some p ∈ {1, . . . , n},
ε ∈ {+,−}.
Observation 3. Each n-colored n-simplex has exactly two n-colored (n−1)-faces.

Theorem 2.1 (on the existence of a chain). For an arbitrary decomposition of n- dimensional cube
In onto kn cubes and an arbitrary coloring function F : T(k) → {1, . . . , n} for some natural number
i ∈ {1, . . . , n} there exists an ith colored chain P1, . . . , Pr such that P1 ∩ I+i /= ∅ and Pr ∩ I−i /= ∅.

The algorithm (based on the proof from [6]) is as follows.

Step 1. Let us define the coloring map Φ : C → {1, . . . , n}:

Φ(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(t) for z ∈ C \ ∂C and z ∈ t

1 for z ∈ C−
1 ∪ C+

2

j for z ∈
(
C−

j ∪ C+
j+1

)
\
(

j−1⋃

l=1

(
C−

l ∪ C+
l+1

)
)
, j = 2, . . . , n − 1

n for z ∈ (C−
n ∪ C+

1

) \
(

n−1⋃

l=1

(
C−

l ∪ C+
l+1

)
)
.

(2.6)

Step 2. Let us take n-colored n-simplex S1 = [z10, . . . , z
1
n−1, z

1
n] where z10 = (−1/2k,−1/2k, . . . ,

−1/2k),
z11 = z10 + e1, . . . , z

1
n−1 = z1n−2 + en−1,

z1n =
(

1
2k

,
1
2k

, . . . ,
1
2k

)
= z1n−1 + en.

(2.7)

We say that the n-colored (n−1)-face [z10, . . . , z1n−1] is “used”.
Let S = S1.

Step 3. Take “unused” n-colored (n−1)-face of the n-simplex S.
If this face is contained in Cε

p for some p ∈ {1, . . . , n}, ε ∈ {+,−} then go to Step 5. Else
this is (n−1)-face of exactly one n-simplex S′ different to S.

Since that moment this (n−1)-face is said to be “used”. Go to the Step 4.

Step 4. Let us create the sequence of n-simplexes S1, . . . , Sl, S
′.

Let S = S′.
Go to Step 3.
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Step 5. After finitely many iterations we obtain the sequence S1, . . . , Sm ⊂ C such that Φ(Sl ∩
Sl+1) = {1, . . . , n} for l = 1, . . . , m − 1. And the n-simplex Sm has the n-colored (n−1)-face
which is a subset of Cε

p for some p ∈ {1, . . . , n}, ε ∈ {+,−}. Hence Sm = [zm0 , z
m
1 , . . . , z

m
n ]where

zm0 = (1 − 1/2k, 1 − 1/2k, . . . , 1 − 1/2k), zm1 = zm0 + e1, z
m
2 = zm1 + e2, . . . , z

m
n = zmn−1 + en.

Let us take the smallest index l1 ∈ {1, 2, . . . , m} such that Sl1 ∩ C+
i /= ∅ for some i ∈

{1, . . . , n}, then let us find the biggest index l2 ∈ {1, 2, . . . , l1} such that Sl2 ∩ C−
i /= ∅.

Step 6. Then from the chain Sl2+1, . . . , Sl1 choose successively points z1, z2, . . . , zr in the way
that Φ(zj) = i for j = 1, 2, . . . , r and zj /= zj+1 for j = 1, 2, . . . , r − 1, z1 ∈ C \ ∂C and z1 − ei ∈ C−

i ,
zr ∈ Sl1 .

Step 7. For the sequence z1, . . . , zr we have the chain P1, . . . , Pr where Pj ∈ T(k) and zj ∈ Pj

for j = 1, . . . , r.
END

Theorem 2.2 (Bolzano-Poincaré). Let f : In → Rn, f(x) = (f1(x), . . . , fn(x)) be a continuous
map such that fi(I−i ) ⊂ (−∞, 0] and fi(I+i ) ⊂ [0,∞) for i = 1, . . . , n then there exists x0 ∈ In such
that f(x0) = (0, . . . , 0).

Theorem 2.3 (Brouwer fixed point theorem). Let g : In → In, g(x) = (g1(x), . . . , gn(x)) be a
continuous map then there exists x0 ∈ In such that g(x0) = x0.

Theorem 2.4. The following theorems are equivalent:

(1) Theorem on the existence of a chain

(2) Bolzano-Poincaré theorem

(3) Brouwer fixed point theorem.

Proof. “(1)⇒(2)” let us assume that for each x ∈ In f(x)/= (0, . . . , 0). Let us define sets:
Ui = {x ∈ In : fi(x)/= 0} for i = 1, . . . , n, each set Ui is open.
We have In = U1 ∪ · · · ∪Un.
Let us consider the space Rn with the metric δ(x, y) = max{|xi−yi| : i = 1, . . . , n}. From

the Lebesgue lemma of covering it follows that there exists λ > 0 such that for every k ∈ N
and 1/k < λ we have for every t ∈ T(k) there exist j ∈ {1, . . . , n} such that t ⊂ Uj .

Let us define coloring function F : T(k) → {1, . . . , n}:

F(t) := min
{
j : t ⊂ Uj

}
. (2.8)

From theorem “on the existing of a chain” there exists ith colored sequence P1(k), . . . , Pr(k)(k)
connecting ith opposite faces of the cube In.

The set W :=
⋃r(k)

l=1 Pl(k) is closed and connected.
The intersections W ∩ I−i /= ∅/=W ∩ I+i , Hence there exists x, y ∈ W such that fi(x) < 0

and fi(y) > 0. Since f(x) is the continuous map, hence fi(W) is connected in R. Hence the set
fi(W) is an interval containing [fi(x), fi(y)]. From the Bolzano theorem there exists c ∈ W
such that fi(c) = 0.

Contradiction.
“(2)⇒(3)” let f(x) = x−g(x). The function f(x) fulfills the assumptions of the Bolzano-

Poincaré theorem. hence there exist c ∈ In such that f(c) = 0.
So g(c) = c.
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“(3)⇒(1)” let us assume that there exists decomposition of n-dimensional cube In onto
kn cubes and a coloring function F : T(k) → {1, . . . , n} such that for each i ∈ {1, . . . , n} there
is no ith colored chain connecting I−i and I+i .

Let Ci = {t ∈ T(k) : F(t) = i}.
Let Li be the family of components of

⋃
Ci ⊂ In.

C−
i =
{
l ∈ Li : l ∩ I−i /= ∅},

C+
i =
{
l ∈ Li : l ∩ I+i /= ∅},

C0
i =
{
l ∈ Li : l ∩

(
I−i ∪ I+i

)
= ∅}.

(2.9)

The subsets of In:

Ai =
⋃

C−
i ∪
⋃

C0
i ∪
{
x ∈ In : x(i) ∈

[
0,

1
2k

]}
,

Bi =
⋃

C+
i ∪
{
x ∈ In : x(i) ∈

[
1 − 1

2k
, 1
]} (2.10)

are closed and disjoint.
In with the Euclidean metric is a normal space, hence there exists a continuous map

fi : In → [−1/2k, 1/2k] such that fi(Ai) = 1/2k and fi(Bi) = −1/2k.
For each x ∈ In let us define the map g(x) := x + f(x)where f(x) = (f1(x), . . . , fn(x)).
Observe that g : In → In is continuous map. Take an arbitrary x ∈ In.
There exists t ∈ T(k) such that x ∈ t. The cube t is a subset of Ai or Bi for some

i ∈ {1, . . . , n}. We have gi(x) = x(i) + 1/2k or gi(x) = x(i) − 1/2k.
Hence the function g(x) has no fixed point. Contradiction.

3. Poincaré Theorem for n = 3

3.1. The Basic Algorithm

Let k be an arbitrary natural number.
We have the decomposition of I3 into k3 cubes.
Assume w.l.o.g. that fi(I−i ) ⊂ (−∞, 0) and fi(I+i ) ⊂ (0,∞) for i = 1, 2, 3. Let d : I3 × I3 →

R be the Euclidean metric.
Observe that there exist ε∗ > 0 such that for each x ∈ I3, d(x, I−i ) < ε∗ and for each

y ∈ I3, d(y, I+i ) < ε∗ we have fi(x) < 0, fi(y) > 0, i = 1, 2, 3.

3.1.1. Surface

Let k be a natural number, such that 1/k < ε∗.
The center of each t ∈ T(k), t = [i1/k, (i1 + 1)/k] × · · · × [i3/k, (i3 + 1)/k] is defined as

follows:

tc =
(
i1
k
+

1
2k

,
i2
k
+

1
2k

,
i3
k
+

1
2k

)
. (3.1)
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Let us define coloring map φ1 : T(k) → {0, 1}

φ1(t) =

⎧
⎨

⎩
0 f1(tc) ≤ 0

1 f1(tc) > 0.
(3.2)

Algorithm for surface is as follows.

Step 1. Let

A0 =
{
t ∈ T(k) : t ∩ I−1 /= ∅},

A1 =
{
t ∈ T(k) : t ∩A0 /= ∅, φ1(t) = 1

}
,

B =
{
t ∩ t′ : t ∈ A0, t

′ ∈ A1
}
.

(3.3)

Step 2. If C = {t ∈ T(k) \A0 : dim[t ∩A0] = 2, φ1(t) = 0} = ∅ then END.
Otherwise do Step 3.

Step 3. Add elements of the set C to A0.
Next

A1 =
{
t ∈ T(k) : t ∩A0 /= ∅, φ1(t) = 1

}
,

B =
{
t ∩ t′ : t ∈ A0, t′ ∈ A1, t ∩ t′ /= ∅}

(3.4)

and go to Step 2.
Since T(k) is finite, hence after finitely many steps setC is empty (the procedure ends).
Let us consider the family B. Wemay assume that B is closed under finite intersections.
The elements b ∈ B, such that dim[b] = 2, dim[b] = 1, dim[b] = 0 are called squares,

edges, and vertices.

Observation 4. The
⋃
B separates cube I3 between I−1 and I+1 .

Observation 5. Each edge b ∈ B if b ⊂ ∂I3 it is an edge of exactly 1 square, else it is an edge of
2 or 4 squares.

3.1.2. Modification of B

Let us divide each element of {a ∈ A0 : a ∩⋃B /= ∅} onto 27 cubes (in the natural way).
Denote the set consisting of all this cubes by T ′.
Create coloring map φ′

1 : T
′ → {0, 1} as follows:

φ′
1

(
t′
)
=

⎧
⎨

⎩
0 t′ ∩A1 = ∅
1 t′ ∩A1 /= ∅.

(3.5)

NowB′ = {t ∩ t′ : t, t′ ∈ T ′, φ′
1(t) = 0, φ′

1(t
′) = 1, t ∩ t′ /= ∅}.
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Observation 6. Any edge of B′ is an edge of exactly one or of two squares from B′ depending
on whether or not it lies on ∂I3.

Let us define coloring φ2 : {t ∈ B′ : t is a square} → {0, 1}:

φ2(t) =

⎧
⎨

⎩
0 f2(tc) ≤ 0

1 f2(tc) > 0,
(3.6)

where tc is the center of square t.
The edge t ∈ B′ is said to be 2-coloured if there exists squares s, s′ ∈ B′ such that s∩s′ = t

and φ2({s, s′}) = {0, 1}.

Observation 7. The vertex of 2-coloured edge is a subset of exactly one or even number of
2-coloured edges depending on whether or not it lies on ∂I3.

Observation 8. The components of
⋃
B′ ∩ ∂I3 are broken lines without self-cutting.

Observation 9. The number of broken lines lying on I−3 and connecting I−2 and I+2 is odd.

Lemma 3.1. The number of 2-coloured edges from B′, which one of vertices lies on I−3 is odd.

Proof. Let us consider components of the set
⋃
B′ ∩ I−3 .

We have odd number of broken lines connecting I−2 and I+2 and the number of the rest
components is arbitrary.

Let us see that
⋃
B′ ⊂ I3 \ I−1 ∪ I+1 .

So, the number of 2-coloured edges from B′, which one of vertices lies on I−3 is odd if it
lies on broken line connecting I−2 and I+2 else it is even (using the definition of φ2).

According to Observation 9 this ends the proof.

3.1.3. Broken Line Connecting I−3 and I+3

Step 1. Let E0 = {t ∈ B′ : t is a 2-coloured edge, t ∩ I−3 /= ∅},

E1 = ∅. (3.7)

Step 2. Take e ∈ E0 \ E1.
Add e to E1.
The vertex v ∈ e ∩ I−3 is said to be used.
Go to Step 3.

Step 3. Take unused vertex u of the last added edge to the set E1.
If u ∈ I+3 END.
Otherwise,
If u ∈ I−3 go to Step 2.
Else go to Step 4.

Step 4. Take unused vertex u of the last added edge to the set E1.
Next take 2-coloured edge e ∈ B′ \ E1 such that v ∈ e.
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Now vertice v is said to be used.
Add e to the set E1.
Go to Step 3.

First of all the number of 2-coloured edges from B′, which one of vertices lies on I−3 is
odd (Lemma 3.1).

The second each vertex of 2-coloured edge is a subset of exactly one or even number
of 2-coloured edges depending on whether or not it lies on ∂I3 (Observation 7).

This arguments allows one to say that procedure is well defined.
Now our broken line connecting I+3 and I−3 is created as follows:
let e1 be the last added element to E1.
If ei ∩ I−3 = ∅ then ei+1 is previous added element to E1

else Stop.
We obtained the sequence of edges {e1, e2, . . . , em} ⊂ B′. Let us define coloring φ3 : {t ∈

B′ : t is an edge of ei} → {0, 1} where i ∈ {1, . . . , m}:

φ3(t) =

⎧
⎨

⎩
0 f3(t) ≤ 0

1 f3(t) > 0.
(3.8)

It is easy to see that φ3(e1) = {1} and φ3(em) = {0}.
So starting from e1 we search with order the first edge ek ∈ {e1, e2, . . . , em} such that

φ3(ek) = {0, 1}.

3.2. Topological Part

For each k ∈ N, 1/k < ε∗ we have

(i) vk, v
′
k ∈ ek such that f3(vk) ≤ 0 and f3(v′

k) > 0,

(ii) uk, u
′
k
∈ tu ∪ t′u such that f2(uk) ≤ 0 and f2(u′

k
) > 0 where tu, t

′
u are squares from B

and ek ∩ tu /= ∅/= ek ∩ t′u,

(iii) wk,w
′
k ∈ tw ∪ t′w such that f1(wk) ≤ 0 and f1(w′

k) > 0 where tw is a cube fromA0, t′w
is a cube from A1 and ek ∩ tw /= ∅/= ek ∩ t′w.

Define the sets Wk := conv{vk, v
′
k
, uk, u

′
k
,wk,w

′
k
}.

For each Wk there exist c1k, c
2
k, c

3
k ∈ Wk such that

f1
(
c1k

)
= f2
(
c2k

)
= f3
(
c3k

)
= 0. (3.9)

Without loss of generality we can assume that limk→∞c1k = c.
Moreover, limk→∞ diam[Wk] = 0. So for each c′

k
∈ Wk the fact d(c, c′

k
) ≤ d(c, c1

k
) +

d(c1
k
, c′

k
) yields

lim
k→∞

c1k = lim
k→∞

c2k = lim
k→∞

c3k = c. (3.10)

So f(c) = 0 ends proof.
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