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We present a systematic study of a regular linear functional v to find all regular forms u which
satisfy the equation x2u = λxv, λ ∈ C − {0}. We also give the second-order recurrence relation of
the orthogonal polynomial sequence with respect to u and study the semiclassical character of the
found families. We conclude by treating some examples.

1. Introduction

In the present paper, we intend to study the following problem: let v be a regular form (linear
functional), and R and D nonzero polynomials. Find all regular forms u satisfying

Ru = Dv. (1.1)

This problem has been studied in some particular cases. In fact the product of a linear form by
a polynomial (R(x) = 1) is studied in [1–3] and the inverse problem (D(x) = λ, λ ∈ C − {0})
is considered in [4–7]. More generally, when R and D have nontrivial common factor the
authors of [8] found necessary and sufficient conditions for u to be a regular form. The case
where R = D is treated in [4, 9–11]. The aim of this contribution is to analyze the case in
which R(x) = x2 and D(x) = λx, λ ∈ C − {0}. We remark that R and D have a common
factor and R/=D (see also [7]). In fact, the inverse problem is studied in [12]. On the other
hand, this situation generalize the case treated in [13] (see (2.9)). In Section 1, we will give
the regularity conditions and the coefficients of the second-order recurrence relation satisfied
by the monic orthogonal polynomial sequence (MOPS) with respect to u. We will study the
case where v is a symmetric form; thus regularity conditions become simpler. The particular
case when v is a symmetric positive definite form is analyzed. The second section is devoted
to the case where v is semi-classical form. We will prove that u is also semi-classical and some
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results concerning the class of u are given. In the last section, some examples will be treated.
The regular forms u found in theses examples are semi-classical of class s ∈ {1, 2, 3} [14].
The integral representations of these regular forms and the coefficients of the second-order
recurrence satisfied by the MOPS with respect to u are given.

2. The Problem x2u = λxv

Let P be the vector space of polynomials with coefficients in C and P′ its algebraic dual. We
denote by 〈u, f〉 the action of u ∈ P′ on f ∈ P. In particular, we designate by (u)n := 〈u, xn〉,
n ≥ 0, the moments of u. For any form u, any polynomial g, any c ∈ C, a ∈ C− {0}, let u′, hau,
gu, and (x − c)−1u be the forms defined by duality:

〈
u′, p

〉
:= −〈u, p′〉; 〈

hau, p
〉
:=

〈
u, hap

〉
;

〈
gu, p

〉
:=

〈
u, gp

〉
;

〈
(x − c)−1u, p

〉
:=

〈
u, θcp

〉
, p ∈ P,

(2.1)

where (θcp)(x) = (p(x) − p(c))/(x − c); (hap)(x) = p(ax).
We define a left multiplication of a form u by a polynomial p as

(
up

)
(x) :=

〈
u,

xp(x) − ξp(ξ)
x − ξ

〉
, u ∈ P′, p ∈ P. (2.2)

Let us recall that a form u is called regular if there exists amonic polynomial sequence {Pn}n≥0,
degPn = n, such that

〈u, PnPm〉 = rnδn,m, n,m ≥ 0, rn /= 0, n ≥ 0. (2.3)

We have the following result.

Lemma 2.1 (see [15]). Let u ∈ P′, f ∈ P, and c ∈ C. The following formulas hold:

(
vf

)′(x) =
(
v′f

)
(x) +

(
vf ′)(x) +

(
vθ0f

)
(x), f ∈ P. (2.4)

(
δf

)
(x) = f(x), f ∈ P. (2.5)

(x − c)−1((x − c)u) = u − (u)0δc, (2.6)

where 〈δc, p〉 = p(c), p ∈ P.

We consider the following problem: given a regular form v, find all regular forms u
satisfying

x2u = λxv, λ ∈ C − {0}, (2.7)
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with constraints (u)0 = 1, (v)0 = 1. From (2.6) we can deduce that

xu = ((u)1 − λ)δ + λv, (2.8)

u = δ + (λ − (u)1)δ
′ + λx−1v. (2.9)

Then the form u depends on two arbitrary parameters (u)1 and λ.
We notice that when (u)1 = λ, we encounter the problem studied in [13] again.
We suppose that the form v has the following integral representation:

〈
v, f

〉
=
∫+∞

−∞
V (x)f(x)dx, for each polynomial f, (2.10)

where V is a locally integrable function with rapid decay, continuous at the origin; then the
form u is represented by

〈
u, f

〉
=
(
1 − λP

∫+∞

−∞

V (x)
x

dx

)
f(0) + ((u)1 − λ)f ′(0) + λP

∫+∞

−∞

V (x)f(x)
x

dx, (2.11)

where [16, 17]

P

∫+∞

−∞

V (x)
x

dx = lim
ε→ 0+

(∫−ε

−∞

V (x)
x

dx +
∫+∞

ε

V (x)
x

dx

)
. (2.12)

Let {Sn}n≥0 denote the sequence of monic orthogonal polynomials with respect to v; we have

S0(x) = 1, S1(x) = x − ξ0,

Sn+2(x) = (x − ξn+1)Sn+1(x) − σn+1Sn(x), n ≥ 0,
(2.13)

with

ξn =

〈
v, xS2

n(x)
〉

〈
v, S2

n

〉 , σn+1 =

〈
v, S2

n+1

〉

〈
v, S2

n

〉 , n ≥ 0. (2.14)

When u is regular, let {Zn}n≥0 be the corresponding MOPS:

Z0(x) = 1, Z1(x) = x − β0.

Zn+2(x) =
(
x − βn+1

)
Zn+1(x) − γn+1Zn(x), n ≥ 0.

(2.15)
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From (2.7), we know that the existence of the sequence {Zn}n≥0 is among all the strictly quasi-
orthogonal sequences of order two with respect to λxv = w (w is not necessarily a regular
form) [15, 18–20]. That is,

xZ0(x) = S1(x) + c0, xZ1(x) = S2(x) + c1S1(x) + b0.

xZn+2(x) = Sn+3(x) + cn+2Sn+2(x) + bn+1Sn+1(x) + anSn(x), n ≥ 0,
(2.16)

with an /= 0, n ≥ 0.
From (2.16), we have

Z1(x) = (θ0S2)(x) + c1, (2.17)

Zn+2(x) = (θ0Sn+3)(x) + cn+2(θ0Sn+2)(x) + bn+1(θ0Sn+1)(x) + an(θ0Sn)(x), n ≥ 0. (2.18)

Lemma 2.2. Let {Zn}n≥0 be a sequence of polynomials satisfying (2.16) where an, bn, and cn are
complex numbers such that an /= 0 for all n ≥ 0. The sequence {Zn}n≥0 is orthogonal with respect to u
if and only if

〈u,Zn〉 = 0, n ≥ 1,

〈u, xZn(x)〉 = 0, n ≥ 2, 〈u, xZ1(x)〉/= 0.
(2.19)

Proof. The conditions (2.19) are necessary from the definition of the orthogonality of {Zn}n≥0
with respect to u.

For k ≥ 2, we have (by (2.7))

〈
u, xkZn+2(x)

〉
=
〈
x2u, xk−2Zn+2(x)

〉
= λ

〈
v, xk−1Zn+2(x)

〉
, n ≥ 0, (2.20)

and from (2.16), we get

〈
u, xkZn+2(x)

〉
= λ

〈
v, xk−2Sn+3(x)

〉
+ λcn+2

〈
v, xk−2Sn+2(x)

〉

+ λbn+1
〈
v, xk−2Sn+1(x)

〉
+ λan

〈
v, xk−2Sn(x)

〉
, n ≥ 0.

(2.21)

Taking into account the orthogonality of {Sn}n≥0, we obtain

〈
u, xkZn+2(x)

〉
= 0, 2 ≤ k ≤ n + 1, n ≥ 1,

〈
u, xn+2Zn+2(x)

〉
= λan

〈
v, S2

n

〉
/= 0, n ≥ 0.

(2.22)
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By (2.19), it follows that

〈u,Z1〉 = 0, 〈u, xZ1(x)〉/= 0,

〈u,Zn+2〉 = 〈u, xZn+2(x)〉 = 0, n ≥ 0.
(2.23)

Consequently, the previous relations and (2.22) prove that {Zn}n≥0 is orthogonal with respect
to u, which proves the Lemma.

Remark 2.3. When u is regular, from Theorem 5.1 in [21], there exist complex numbers rn+2 /= 0,
tn+2 and vn+2 /= 0 such that

Zn+2(x) + rn+2Zn+1(x) = Sn+2(x) + tn+2Sn+1(x) + vn+2Sn(x), n ≥ 0. (2.24)

From (2.16), (2.24), and (2.15) we obtain the following relations:

rn+2 − tn+2 + cn+2 − ξn+2 = 0, n ≥ 0,

rn+2cn+1 − tn+2ξn+1 − vn+2 + bn+1 − σn+2 = 0, n ≥ 0,

rn+2bn − tn+2σn+1 − vn+2ξn + an = 0, n ≥ 0,

rn+2an−1 − vn+2σn = 0, n ≥ 1.

(2.25)

Taking into account (2.16), (2.18) and (2.19), we get

0 = 〈u, xZn+2(x)〉

= 〈u, Sn+3〉 + cn+2〈u, Sn+2〉 + bn+1〈u, Sn+1〉 + an〈u, Sn〉 = 0, n ≥ 0,

0 = 〈u,Zn+2〉

= 〈u, θ0Sn+3〉 + cn+2〈u, θ0Sn+2〉 + bn+1〈u, θ0Sn+1〉 + an〈u, θ0Sn〉, n ≥ 0,

0 = Sn+3(0) + cn+2Sn+2(0) + bn+1Sn+1(0) + anSn(0), n ≥ 0,

(2.26)

with the initial conditions:

0 = S1(0) + c0,

0 = S2(0) + c1S1(0) + b0,

0 = 〈u,Z1〉 = 〈u, (θ0S2)〉 + c1,

0/= 〈u, xZ1(x)〉 = 〈u, S2〉 + c1〈u, S1〉 + b0.

(2.27)
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If we denote

Δn :=

∣∣
∣
∣
∣
∣
∣
∣

Sn+2(0) Sn+1(0) Sn(0)

〈u, Sn+2〉 〈u, Sn+1〉 〈u, Sn〉
〈u, θ0Sn+2〉 〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣∣
∣
∣
∣
∣
∣
∣

, n ≥ 0, (2.28)

from the Cramer rule we have

Δnan = −Δn+1, n ≥ 0, (2.29)

Δnbn+1 =

∣
∣
∣
∣
∣
∣
∣∣

Sn+2(0) −Sn+3(0) Sn(0)

〈u, Sn+2〉 −〈u, Sn+3〉 〈u, Sn〉
〈u, θ0Sn+2〉 −〈u, θ0Sn+3〉 〈u, θ0Sn〉

∣
∣
∣
∣
∣
∣
∣∣

, n ≥ 0, (2.30)

Δncn+2 =

∣∣∣∣∣∣∣∣

−Sn+3(0) Sn+1(0) Sn(0)

−〈u, Sn+3〉 〈u, Sn+1〉 〈u, Sn〉
−〈u, θ0Sn+3〉 〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣∣∣∣∣∣∣∣

, n ≥ 0. (2.31)

Lemma 2.4. The following formulas hold:

〈u, Sn〉 = Sn(0) + ((u)1 − λ)S′
n(0) + λS

(1)
n−1(0), n ≥ 0, (2.32)

〈u, xSn(x)〉 = ((u)1 − λ)Sn(0), n ≥ 1, (2.33)

〈u, (θ0Sn)〉 = S′
n(0) +

1
2
((u)1 − λ)S′′

n(0) + λ
(
S
(1)
n−1

)′
(0), n ≥ 0, (2.34)

S
(1)
n (0)Sn(0) − S

(1)
n−1(0)Sn+1(0) =

〈
v, S2

n

〉
, n ≥ 0, (2.35)

where S(1)
n (x) := (vθ0Sn+1)(x), n ≥ 0, and S

(1)
−1 (x) = 0.

Proof. Equations (2.32) and (2.33) are deduced, respectively, from (2.9) and (2.8).
We have

〈
v, θ2

0Sn

〉
= 〈v, θ0S′

n − (θ0Sn)
′〉 = 〈v, θ0S′

n〉 +
〈
v′, θ0Sn

〉

=
(
xθ0S

′
n

)
(0) +

(
v′θ0Sn

)
(0), n ≥ 0.

(2.36)

Using (2.4), we get

〈
v, θ2

0Sn

〉
= (vθ0Sn)

′(0) =
(
S
(1)
n−1

)′
(0), n ≥ 0. (2.37)
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From (2.9), we obtain

〈u, θ0Sn〉 = 〈δ, θ0Sn〉 + ((u)1 − λ)
〈
δ, (θ0Sn)

′〉 + λ
〈
v, θ2

0Sn

〉
, n ≥ 0. (2.38)

According to (2.5) and (2.37), we can deduce (2.34).
We have

S
(1)
0 (x) = 1, S

(1)
1 (x) = x − ξ2,

S
(1)
n+2(x) = (x − ξn+2)S

(1)
n+1(x) − σn+2S

(1)
n (x), n ≥ 0.

(2.39)

Then (by (2.39))

S
(1)
n (0)Sn(0) − S

(1)
n−1(0)Sn+1(0) = σnS

(1)
n−1(0)Sn−1(0) + Sn(0)

(
S
(1)
n (0) + ξnS

(1)
n−1(0)

)

= σn

(
S
(1)
n−1(0)Sn−1(0) − S

(1)
n−2(0)Sn(0)

)
.

(2.40)

It follows that

S
(1)
n (0)Sn(0) − S

(1)
n−1(0)Sn+1(0) =

n∏

μ=0

σμ =
〈
v, S2

n

〉
, n ≥ 0, (2.41)

hence (2.35).

Proposition 2.5. One has

Δn = Enλ
2 + Fnλ +Gn, n ≥ 0, (2.42)

where

En = Sn+1(0)
{
μn(0) +

1
2
χ′
n(0)

}
+
{
S
(1)
n (0) − S′

n+1(0)
}{

χn(0) −
〈
v, S2

n

〉}
, n ≥ 0,

Fn = −Sn+1(0)
{
(u)1

(
μn(0) + χ′

n(0)
)
+
〈
v, S2

n

〉}

− (u)1
{
S
(1)
n (0)χn(0) − 2S′

n+1(0)χn(0) + S′
n+1(0)

〈
v, S2

n

〉}
, n ≥ 0,

Gn = (u)21

{
1
2
Sn+1(0)χ′

n(0) − S′
n+1(0)χn(0)

}
, n ≥ 0,

(2.43)

with

χn(x) = Sn(x)S′
n+1(x) − Sn+1(x)S′

n(x), n ≥ 0,

μn(x) = Sn+1(x)
(
S
(1)
n−1

)′
(x) − Sn(x)

(
S
(1)
n

)′
(x), n ≥ 0.

(2.44)
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Proof. Using (2.13), we, respectively, obtain

Sn+2(0) = −ξn+1Sn+1(0) − σn+1Sn(0), n ≥ 0,

〈u, Sn+2〉 = 〈u, xSn+1(x)〉 − ξn+1〈u, Sn+1〉 − σn+1〈u, Sn〉, n ≥ 0,

〈u, θ0Sn+2〉 = 〈u, Sn+1〉 − ξn+1〈u, θ0Sn+1〉 − σn+1〈u, θ0Sn〉, n ≥ 0.

(2.45)

Taking into account previous relations, we obtain for (2.28) the following:

Δn =

∣
∣
∣
∣
∣
∣
∣∣

0 Sn+1(0) Sn(0)

〈u, xSn+1(x)〉 〈u, Sn+1〉 〈u, Sn〉
〈u, Sn+1〉 〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣
∣
∣
∣
∣
∣
∣∣

, n ≥ 0, (2.46)

that is,

Δn = −〈u, xSn+1(x)〉
∣∣∣∣∣

Sn+1(0) Sn(0)

〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣∣∣∣∣
+ 〈u, Sn+1〉

∣∣∣∣∣

Sn+1(0) Sn(0)

〈u, Sn+1〉 〈u, Sn〉

∣∣∣∣∣
, n ≥ 0. (2.47)

Let n ≥ 0; based on the relations (2.32)–(2.34), it follows that

∣∣∣∣∣

Sn+1(0) Sn(0)

〈u, θ0Sn+1〉 〈u, θ0Sn〉

∣∣∣∣∣
=
{
μn(0) +

1
2
χ′
n(0)

}
λ − χn(0) − 1

2
(u)1χ

′
n(0),

∣∣∣∣∣

Sn+1(0) Sn(0)

〈u, Sn+1〉 〈u, Sn〉

∣∣∣∣∣
=
{
χn(0) −

〈
v, S2

n

〉}
λ − (u)1χn(0).

(2.48)

From (2.48) and (2.47), we obtain the desired results.

Proposition 2.6. The form u is regular if and only if Δn /= 0, n ≥ 0. Then, the coefficients of the
three-term recurrence relation (2.15) are given by

γ1 = Δ0, γ2 = −λΔ1Δ−2
0 , (2.49)

γn+3 =
ΔnΔn+2

Δ2
n+1

σn+1, n ≥ 0, (2.50)

β0 = (u)1, β1 = c1 − ξ0 − ξ1 + λb0Δ−1
0 , (2.51)

βn+2 = cn+2 − ξn+1 − ξn+2 − bn+1ΔnΔ−1
n+1σn+1, n ≥ 0. (2.52)
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Proof

Necessity. From (2.27) and Lemma 2.4, we get

〈u, xZ1(x)〉 = 〈u, S2〉 + 〈u, θ0S2〉(S1(0) − 〈u, S1〉) − S2(0) = λS1(0) − (u)21, (2.53)

and again with (2.27) and (2.42), we can deduce that

Δ0 = 〈u, S2〉 + 〈u, θ0S2〉(S1(0) − 〈u, S1〉) − S2(0) = 〈u, xZ1(x)〉/= 0. (2.54)

Moreover, {Zn}n≥0 is orthogonal with respect to u, therefore it is strictly quasiorthogonal of
order two with respect to xv, and then it satisfies (2.16)with an /= 0, n ≥ 0. This impliesΔn /= 0,
n ≥ 0. Otherwise, if there exists an n0 ≥ 1 such that Δn0 = 0, from (2.29), Δ0 = 0, which is a
contradiction.

Sufficiency. Let

c0 = −S1(0) = ξ0, (2.55)

c1 = −〈u, (θ0S2)〉, (2.56)

b0 = Δ0 − 〈u, S2〉 − c1〈u, S1〉. (2.57)

We get

〈u, xZ1(x)〉 = 〈u, S2〉 + c1〈u, S1〉 + b0 = Δ0 /= 0. (2.58)

We have 〈u,Z1〉 = c1 + 〈u, θ0S2〉 = 0.
From (2.56) and (2.57) we get

S2(0) + c1S1(0) + b0 = S2(0) − 〈u, S2〉 − 〈u, θ0S2〉(S1(0) − 〈u, S1〉) + Δ0. (2.59)

On account of (2.54), we can deduce that S2(0) + c1S1(0) + b0 = 0.
Then we had just proved that the initial conditions (2.27) are satisfied.
Furthermore, the system (2.26) is a Cramer system whose solution is given by (2.29),

(2.30), and (2.31); with all these numbers an, bn, and cn (n ≥ 0), define a sequence polynomials
{Zn}n≥0 by (2.16). Then it follows from (2.26) and Lemma 2.2 that u is regular and {Zn}n≥0 is
the corresponding MOPS.

Moreover, by (2.22)we get

〈
u,Z2

n+2

〉
= λan

〈
v, S2

n

〉
, n ≥ 0. (2.60)

Making n = 0 in (2.60), it follows that

〈
u,Z2

2

〉
= λa0. (2.61)
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Based on relations (2.58), (2.60), (2.61), and (2.29), we, respectively, obtain

γ1 = 〈u, xZ1(x)〉 = Δ0; γ2 =

〈
u,Z2

2

〉

〈u, xZ1(x)〉 = −λΔ1Δ−2
0 ,

γn+3 =

〈
u,Z2

n+3

〉

〈
u,Z2

n+2

〉 =
ΔnΔn+2

Δ2
n+1

σn+1, n ≥ 0.

(2.62)

We have proved (2.49) and (2.50).
When {Zn}n≥0 is orthogonal, we have

β0 = (u)1. (2.63)

By (2.16) and the orthogonality of {Zn}n≥0, we get

〈
u, xZ2

1(x)
〉
= c1

〈
u,Z2

1

〉
+ 〈u, S2Z1〉. (2.64)

By virtue of (2.13) and the regularity of u we obtain

〈u, S2Z1〉 =
〈
x2u,Z1

〉
− (ξ0 + ξ1)

〈
u,Z2

1

〉
= λ〈v, xZ1(x)〉 − (ξ0 + ξ1)

〈
u,Z2

1

〉

= λb0 − (ξ0 + ξ1)
〈
u,Z2

1

〉
,

(2.65)

and consequently, we get the second result in (2.51) from (2.58), and (2.64).
From (2.16), and the orthogonality of {Zn}n≥0, we have

βn+2
〈
u,Z2

n+2

〉
= cn+2

〈
u,Z2

n+2

〉
+ 〈u, Sn+3Zn+2〉, n ≥ 0. (2.66)

Using (2.13), (2.16), and the the orthogonality of {Sn}n≥0, we have

〈u, Sn+3Zn+2〉 = λbn+1
〈
v, S2

n+1

〉
− (ξn+1 + ξn+2)

〈
u,Z2

n+2

〉
, n ≥ 0. (2.67)

Taking into account the previous relation, (2.66) becomes

βn+2 = cn+2 − ξn+1 − ξn+2 + λbn+1

〈
v, S2

n+1

〉

〈
u,Z2

n+2

〉 , n ≥ 0. (2.68)

From (2.60) and (2.29), we have

〈
v, S2

n+1

〉

〈
u,Z2

n+2

〉 = −λ−1ΔnΔ−1
n+1σn+1, n ≥ 0. (2.69)

Last equation and (2.68) give (2.52).
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Moreover, if the form u is regular, for (2.29), (2.30), and (2.31), we get

an = −Δn+1

Δn
, n ≥ 0, (2.70)

bn+1 =
(
Dnλ

2 +Hnλ + In
)
Δ−1

n + σn+2, n ≥ 0, (2.71)

cn+2 = −
(
Jnλ

2 + Lnλ +Kn

)
Δ−1

n + ξn+2, n ≥ 0, (2.72)

where

Dn = Sn(0)
(〈

v, S2
n+1

〉
− χn+1(0)

)
− ξn+1Sn+2(0)

(
μn(0) +

1
2
χ′
n(0)

)

− ξn+1
(
S
(1)
n+1(0) − S′

n+2(0)
)(

χn(0) −
〈
v, S2

n

〉)
, n ≥ 0,

Hn = (u)1Sn(0)
(
2χn+1(0) −

〈
v, S2

n+1

〉)
+ ξn+1Sn+2(0)

(
χn(0)

)

+ (u)1
(
χ′
n(0) + μn(0)

)
+ (u)1ξn+1χn(0)

(
S
(1)
n+1(0) − S′

n+2(0)
)

+ ξn+1
(〈

v, S2
n

〉
− χn(0)

)(
Sn+2(0) + (u)1S

′
n+2(0)

)
, n ≥ 0,

In = −(u)21
{
Sn(0)χn+1(0) +

1
2
ξn+1

(
Sn+2(0)χ′

n(0) − S′
n+2(0)χn(0)

)
}
, n ≥ 0,

Jn = Sn+2(0)
(
μn(0) +

1
2
χ′
n(0)

)
+ (S(1)

n+1

(
0 − S′

n+2(0)
)(

χn(0) −
〈
v, S2

n

〉)
, n ≥ 0,

Ln = (u)1χn(0)
(
2S′

n+2(0) − S
(1)
n+1(0)

)
− (u)1Sn+2(0)

(
μn(0) + χ′

n(0)
)

−
〈
v, S2

n

〉(
Sn+2(0) + (u)1S

′
n+2(0)

)
, n ≥ 0,

Kn = (u)21

{
1
2
Sn+2(0)χ′

n(0) − χn(0)S′
n+2(0)

}
, n ≥ 0.

(2.73)

In the sequel, we will assume that v is a symmetric linear form.
We need the following lemmas.

Lemma 2.7. If {yn}n≥0 and {bn}n≥0 are sequences of complex numbers fulfilling

yn+1 + anyn = bn+1, n ≥ 0, an /= 0, n ≥ 0,

y0 = b0,
(2.74)

then

yn = (−1)na−1
n

⎛

⎝
n∏

μ=0

aμ

⎞

⎠
n∑

ν=0
(−1)νaν

⎛

⎝
ν∏

μ=0

a−1
μ

⎞

⎠bν, n ≥ 0. (2.75)
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Lemma 2.8. When {Sn}n≥0 given by (2.13) is symmetric, one has

S2n(0) =
(−1)n
σ2n+1

n∏

μ=0

σ2μ+1, n ≥ 0, S2n+1(0) = 0, n ≥ 0,

S
(1)
2n (0) = (−1)n

n∏

μ=0

σ2μ, n ≥ 0, S
(1)
2n+1(0) = 0, n ≥ 0,

S′
2n+1(0) = (−1)n

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠Λn, n ≥ 0, S′
2n(0) = 0, n ≥ 0,

(
S
(1)
2n

)′
(0) = 0, n ≥ 0, S′′

2n+1(0) = 0, n ≥ 0.

(2.76)

Proof. As v is symmetric, then ξn = 0, n ≥ 0, and therefore from (2.13)we have

S0(0) = 1, S1(0) = 0, S
(1)
0 (0) = 1, S

(1)
1 (0) = 0,

Sn+2(0) = −σn+1Sn(0), n ≥ 0, S
(1)
n+2(0) = −σn+2S

(1)
n (0), n ≥ 0,

S′
0(0) = 0, S′

1(0) = 1, S′
n+2(0) = −σn+1S

′
n(0) + Sn+1(0), n ≥ 0,

(
S
(1)
0

)′
(0) = 0,

(
S
(1)
n+2

)′
(0) = −σn+2

(
S
(1)
n

)′
(0) + S

(1)
n+1(0), n ≥ 0,

S′′
0(0) = 0, S′′

1(0) = 0, S′′
n+2(0) = −σn+1S

′′
n(0) + 2S′

n+1(0), n ≥ 0.

(2.77)

Now, it is sufficient to use Lemma 2.7 in order to obtain the desired results.

Let

ω = λ−1(u)1. (2.78)

Corollary 2.9. If v is a symmetric form, one has

Δ2n = λ2
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2

{(ω − 1)Λn + 1}2, n ≥ 0,

Δ2n+1 = λ(−1)n
⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠, n ≥ 0,

(2.79)

where

Λn =
n∑

ν=0

1
σ2ν+1

ν∏

μ=0

σ2μ+1

σ2μ
, n ≥ 0, σ0 = 1. (2.80)
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Proof. Following Lemma 2.8, for (2.43) we have

E2n =
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠(1 −Λn), n ≥ 0; E2n+1 = 0, n ≥ 0,

F2n = 2ωλ
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠(1 −Λn)Λn+1, n ≥ 0,

F2n+1 = (−1)n
⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2

, n ≥ 0,

G2n = ω2λ2
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠Λ2
n, n ≥ 0; G2n+1 = 0, n ≥ 0.

(2.81)

As a consequence, relations (2.81) and (2.42) yield (2.79).

Theorem 2.10. The form u is regular if and only if (ω − 1)Λn + 1/= 0, n ≥ 0, where Λn is defined in
(2.80).

In this case one has

a2n =
σ2n+1

λΘn((ω − 1)Λn + 1)2
, a2n+1 = −λσ2

2n+2Θn((ω − 1)Λn + 1)2, n ≥ 0, (2.82)

b2n = σ2n+1, n ≥ 0, b2n+1 = σ2n+2
(ω − 1)Λn+1 + 1
(ω − 1)Λn + 1

, n ≥ 0, (2.83)

c0 = 0, c1 = −ωλ, c2n+2 =
1

λΘn((ω − 1)Λn + 1)2
, n ≥ 0,

c2n+3 = −λσ2n+2Θn((ω − 1)Λn+1 + 1)((ω − 1)Λn + 1), n ≥ 0,

γ1 = −λ2ω2, γ2 = − σ2
1

λ2ω4
, γ2n+4 =

1
λ2Θ2

n+1

((ω − 1)Λn+1 + 1)2, n ≥ 0,

γ2n+3 = λ2σ2
2n+2Θ

2
n((ω − 1)Λn + 1)2((ω − 1)Λn+1 + 1)2, n ≥ 0,

β0 = λω, β1 = −λω − σ1

λω2
,

(2.84)

β2n+2 =
1

λΘn((ω − 1)Λn + 1)2
+ λσ2n+2Θn((ω − 1)Λn + 1)((ω − 1)Λn+1 + 1),

β2n+3 =
1

λΘn+1((ω − 1)Λn+1 + 1)2
− λσ2n+2Θn((ω − 1)Λn + 1)((ω − 1)Λn+1 + 1), n ≥ 0,

(2.85)

where Θn =
∏n

μ=0 σ2μ/σ2μ+1, n ≥ 0.
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Proof. From Proposition 2.6 and Corollary 2.9, we can deduce that u is regular if and only if
(ω − 1)Λn + 1/= 0, n ≥ 0.

Moreover, from (2.70) we can deduce (2.82).
By (2.49), (2.51), (2.78), and (2.79), for (2.55), (2.56), and (2.57) we get

c0 = 0, c1 = −(u)1 = −ωλ,

b0 = σ1.
(2.86)

When n ≥ 0 by Lemma 2.8, for (2.73) we get

D2n =
(−1)n
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2

(1 −Λn); D2n+1 = 0,

H2n = ωλ
(−1)n
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2

(2Λn − 1); H2n+1 = 0,

I2n = ω2λ2
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2

Λn; I2n+1 = 0,

J2n = 0; J2n+1 = (−1)nσ2n+2

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠(1 −Λn)(1 −Λn+1),

L2n =
(−1)n+1
σ2n+1

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠

2

,

L2n+1 = ωλ(−1)nσ2n+2

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠(Λn+1 + (1 − 2Λn+1)Λn),

K2n = 0, n ≥ 0; K2n+1 = ω2λ2(−1)nσ2n+2

⎛

⎝
n∏

μ=0

σ2μ

⎞

⎠

2⎛

⎝
n∏

μ=0

σ2μ+1

⎞

⎠ΛnΛn+1.

(2.87)

Taking into account (2.79), (2.80), and (2.86)-(2.87), relations (2.70), (2.71) and (2.72) give
(2.82)–(2.84).

As a result of relations (2.82)–(2.84) and Proposition 2.6 we get (2.85).

Corollary 2.11. (1) If v is a symmetric positive definite form, then the form u is regular when ω ∈
C−] −∞, 1[.
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(2)When u is regular, it is positive definite form if and only if

λω2 < 0,
σ2
1

ω2
> 0,

1
λ2Θ2

n+1

((ω − 1)Λn+1 + 1)2, n > 0,

λ2σ2
2n+2Θ

2
n((ω − 1)Λn + 1)2((ω − 1)Λn+1 + 1)2, n > 0.

(2.88)

Proof. (1) If v is positive definite, then σn+1 > 0, n ≥ 0, therefore Λn > 0, n ≥ 0 and so
(ω − 1)Λn + 1/= 0, n ≥ 0 under the hypothesis of the corollary.

(2) If u is regular, it is positive definite if and only if γn+1 > 0, n ≥ 0. By Theorem 2.10,
we conclude the desired results.

3. Some Results on the Semiclassical Case

Let us recall that a form v is called semiclassical when it is regular and its formal Stieltjes
function S(·;v) satisfies [15]

φ(z)S′(z;v) = C(z)S(z;v) +D(z), (3.1)

where φ monic, C, and D are polynomials with

D(z) = −(vθ0φ
)′(z) + (vθ0C)(z),

S(z;v) = −
∑

n≥0

(v)n
zn+1

.
(3.2)

The class of the semi-classical form v is s = max(degφ−2,degC−1) if and only if the following
condition is satisfied [22]:

∏

c

(|C(c)| + |D(c)|) > 0, (3.3)

where c ∈ {x : φ(x) = 0}, that is, φ, C, and D are coprime.
In the sequel, we will suppose that the form v is semi-classical of class s satisfying

(3.1).

Proposition 3.1. When u is regular, it is also semi-classical and satisfies

φ̃(z)S′(z;u) = C̃(z)S(z;u) + D̃(z), (3.4)

where

φ̃(z) = z3φ(z), C̃(z) = z3C(z) − z2φ(z),

D̃(z) = z(z + (u)1 − λ)C(z) + λz2D(z) + ((u)1 − λ)φ(z).
(3.5)

Moreover, the class of u depends on the zero x = 0 of φ.
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Proof. We need the following formula:

S
(
z; fw

)
= fS(z;w) +

(
wθ0f

)
(z), w ∈ P′, f ∈ P. (3.6)

From (2.7), we have S(z;x2u) = λS(z;xv). Using (3.6), we get

z2S(z;u) + z + (u)1 = λzS(z;v) + λ. (3.7)

Differentiating the previous equation, we obtain

z2S′(z;u) + 2zS(z;u) + 1 = λzS′(z;v) + λS(z;v). (3.8)

By (3.1)we can deduce (3.4) and (3.5).
Since v is a semi-classical, S(z;v) satisfies (3.1) where φ, C and D are coprime.
Let c be a zero of φ̃ different from 0, which implies that φ(c) = 0. We know that |C(c)|+

|D(c)|/= 0.
If C(c)/= 0, then C̃(c)/= 0. if C(c) = 0, then D̃(c) = λc2D(c)/= 0. Hence |C̃(c)|+ |D̃(c)|/= 0.

Corollary 3.2. Introducing

ϑ1 := ((u)1 − λ)φ(0), ϑ2 := ((u)1 − λ)
(
C(0) + φ′(0)

)
,

ϑ3 := C(0) + ((u)1 − λ)
(
C′(0) + φ′′(0)

)
+ λD(0),

(3.9)

(1) if ϑ1 /= 0, then s̃ = s + 3;

(2) if ϑ1 = 0 and ϑ2 /= 0, then s̃ = s + 2;

(3) if ϑ1 = ϑ2 = 0 and φ(0)/= 0 or ϑ3 /= 0, then s̃ = s + 1.

Proof. (1) From (3.9) and (3.5), we obtain C̃(0) = 0, D̃(0) = ϑ1 /= 0. Therefore, it is not possible
to simplify, which means that the class of u is s + 3.

(2) If ϑ1 = 0, then from (3.5) we have C̃(0) = D̃(0) = 0. Consequently, (3.4)–(3.6) is
divisible by z. Thus, u fulfils (3.4) with

φ̃(z) = z2φ(z), C̃(z) = z2C(z) − zφ(z),

D̃(z) = (z + (u)1 − λ)C(z) + λzD(z) + ((u)1 − λ)θ0φ(z).
(3.10)

If D̃(0) = ϑ2 /= 0, it is not possible to simplify, which means that the class of u is s + 2.
(3) When ϑ1 = ϑ2 = 0, then it is possible to simplify (3.4)–(3.10) by z. Thus, u fulfils

(3.4) with

φ̃(z) = zφ(z), C̃(z) = zC(z) − φ(z),

D̃(z) = ((u)1 − λ)
(
θ0C(z) + θ2

0φ(z)
)
+ λD(z) + C(z).

(3.11)
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Since we have C̃(0) = −φ(0), D̃(0) = ϑ3, then we can deduce that if φ(0)/= 0 or ϑ3 /= 0, it is not
possible to simplify, which means that the class of u is s + 1.

4. Some Examples

In the sequel the examples treated generalize some of the cases studied in [13].

4.1. v the Generalized Hermite Form

Let us describe the case v := H(τ), where H(τ) is the generalized Hermite form. Here is [1]

ξn = 0, n ≥ 0, σn+1 =
1
2
(
n + 1 + τ

(
1 + (−1)n)), n ≥ 0. (4.1)

From (4.1), we get

n∏

μ=0

σ2μ+1 =
Γ(n + τ + 3/2)
Γ(τ + 1/2)

, n ≥ 0,
n∏

μ=0

σ2μ = Γ(n + 1), n ≥ 0. (4.2)

We want Λn =
∑n

ν=0 1/σ2ν+1
∏ν

μ=0σ2μ+1/σ2μ, n ≥ 0.
But from (4.1) and (4.2), we have 1/σ2ν+1

∏ν
μ=0σ2μ+1/σ2μ = (1/Γ(τ + 1/2))hν, with

hn =
Γ(n + τ + 1/2)

Γ(n + 1)
, n ≥ 0, (4.3)

fulfilling

(n + 1)hn+1 − nhn =
(
τ +

1
2

)
hn, n ≥ 0, (4.4)

and so

Λn =
1

(τ + 1/2)Γ(τ + 1/2)

n∑

ν=0
(ν + 1)hν+1 − νhν =

1
Γ(τ + 3/2)

Γ(n + τ + 3/2)
Γ(n + 1)

, n ≥ 0. (4.5)

Then we get Table 1.

Proposition 4.1. If v = H(τ) is the generalized Hermite form, then the form u(τ,ω, λ) given by
(2.9) has the following integral representation:

〈
u(τ,ω, λ), f

〉
= f(0) + λ(ω − 1)f ′(0) +

λ

Γ(τ + 1/2)
P

∫+∞

−∞

|x|2τ
x

e−x
2
f(x)dx, ∀f ∈ P. (4.6)
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Table 1

Δn
Δ2n = (−1)n+1 λ2

Γ(τ + 1/2)
Γ(n + τ + 1/2)Γ2(n + 1)((ω − 1)Λn + 1)2, n ≥ 0,

Δ2n+1 = (−1)n λ

Γ2(τ + 1/2)
Γ2(n + τ + 3/2)Γ(n + 1), n ≥ 0.

an
a2n =

(n + τ + 1/2)2

λΓ(τ + 1/2)
hn

((ω − 1)Λn + 1)2
, n ≥ 0, a2n+1 = −λΓ(τ+1/2)n + 1

hn+1
((ω−1)Λn+1)

2, n ≥ 0.

bn b2n = n + τ + 1/2, n ≥ 0, b2n+1 = (n + 1)
(ω − 1)Λn+1 + 1
(ω − 1)Λn + 1

, n ≥ 0.

cn
c0 = 0, c1 = −ωλ, c2n+2 =

1
λ

n + τ + 1/2
Γ(τ + 1/2)

hn

((ω − 1)Λn + 1)2
, n ≥ 0,

c2n+3 = −λ (n + 1)Γ(τ + 1/2)
(n + τ + 1/2)hn

((ω − 1)Λn+1 + 1)((ω − 1)Λn + 1), n ≥ 0.

γ1 = −λ2ω2, γ2 = − (τ + 1/2)2

λ2ω4
,

γn+1 γ2n+3 = −λ
2Γ2(τ + 1/2)

h2
n+1

((ω − 1)Λn+1 + 1)2((ω − 1)Λn + 1)2, n ≥ 0,

γ2n+4 = − 1
λ2Γ2(τ + 1/2)

(n + τ + 3/2)2h2
n+1

((ω − 1)Λn+1 + 1)4
, n ≥ 0.

β0 = ωλ, β1 = −ωλ − τ + 1/2
λω2

,

βn β2n+3 = −λ(n + 1)Γ(τ + 1/2)
(n + τ + 1/2)hn

((ω−1)Λn+1+1)((ω−1)Λn+1)− n + τ + 3/2
λΓ(τ + 1/2)

hn+1

((ω − 1)Λn+1 + 1)2
, n ≥ 0,

β2n+2 =
1
λ

1
Γ(τ + 1/2)

(n + τ + 1/2)hn

((ω − 1)Λn + 1)2
+
λΓ(τ + 1/2)

hn+1
((ω − 1)Λn+1 + 1)((ω − 1)Λn + 1), n ≥ 0.

It is a quasi-antisymmetric ((u(τ,ω, λ))2n+2 = 0, n ≥ 0) and semi-classical form of class s satisfying
the following functional equation:

τ = 0, ω /= 1, z3S′(z;u(0, ω, λ)) = −z2
(
2z2 + 1

)
S(z;u(0, ω, λ))

− 2z3 − 2λωz2 + λ(ω − 1), s = 3,

τ = 0, ω = 1, zS′(z;u(0, 1, λ)) = −
(
2z2 + 1

)
S(z;u(0, 1, λ)) − 2z − 2λ, s = 1,

(4.7)

τ /= 0, ω /= 1, z3S′(z;u(τ,ω, λ)) = −z2
(
2z2 − 2τ + 1

)
S(z;u(τ,ω, λ)) − 2z3

− 2λωz2 + 2τz + 2τλ(ω − 1) + λ(ω − 1), s = 3,

τ /= 0, ω = 1, z2S′(z;u(τ, 1, λ)) = z
(
−2z2 + 2τ − 1

)
S(z;u(τ, 1, λ)) − 2z2 − 2λz + 2τ, s = 2.

(4.8)
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Proof. It is well known that the generalized Hermite form possesses the following integral
representation [1]:

〈v, f〉 =
∫+∞

−∞

1
Γ(τ + 1/2)

|x|2τe−x2
f(x)dx, R(τ) > −1

2
, ∀f ∈ P. (4.9)

Following (2.11), we obtain (4.6). Also the form u is quasi-antisymmetric because it satisfies

〈
u, x2n+2

〉
= λ

〈
v, x2n+1

〉
= 0, n ≥ 0, (4.10)

since v is symmetric by hypothesis.
When τ = 0, v is classical and satisfies (3.4)with [22]

φ(x) = 1, C(z) = −2z, D(z) = −2. (4.11)

Then, ϑ1 = λ(ω − 1), ϑ2 = 0.
Now, it is sufficient to use Corollary 3.2 and Proposition 3.1 in order to obtain (4.7).
If τ /= 0, the form v is semi-classical of class one and satisfies (3.4) with [23]

φ(x) = x, C(z) = −2z2 + 2τ, D(z) = −2z. (4.12)

Therefore ϑ1 = 0, ϑ2 = λ(ω − 1)(2τ + 1), ϑ3 = 2τ .
By Proposition 3.1 and Corollary 3.2 we can deduce (4.8).

4.2. v the Corecursive of the Second Kind Chebychev Form

Let us describe the case v := J(−1/2,1/2); it is the corecursive of the second kind Chebychev
functional. Here is [1]

ξ0 = −1
2
, ξn+1 = 0, n ≥ 0, σn+1 =

1
4
, n ≥ 0. (4.13)

In this case we have the following result.

Lemma 4.2. For n ≥ 0, one has

S2n(0) =
(−1)n
22n

, S2n+1(0) =
(−1)n
22n+1

, S
(1)
2n (0) =

(−1)n
22n

, S
(1)
2n+1(0) = 0,

S′
2n(0) = n

(−1)n+1
22n−1

, S′
2n+1(0) = (n + 1)

(−1)n
22n

,
(
S
(1)
2n

)′
(0) = 0,

(
S
(1)
2n+1

)′
(0) = (n + 1)

(−1)n
22n

, S′′
2n(0) = n(n + 1)

(−1)n+1
22n−2

, S′′
2n+1(0) = n(n + 1)

(−1)n+1
22n−1

.

(4.14)
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Proof. The proof is analogous for the demonstration of Lemma 2.8.

Following Lemma 4.2, for (2.44)we have

χ2n(0) =
2n + 1
24n

, n ≥ 0; χ2n+1(0) =
n + 1
24n+1

, n ≥ 0; χ′
2n(0) = 0, n ≥ 0;

χ′
2n+1(0) =

n + 1
24n

, n ≥ 0; μ2n(0) = − n

24n−1
, n ≥ 0; μ2n+1(0) = −n + 1

24n+1
, n ≥ 0.

(4.15)

Therefore, we get for (2.42)

Δ2n = n(2n + 1)
(−1)n+1
26n

λ2 + (8n(n + 1)(u)1 − 1)
(−1)n
26n+1

λ

+ (n + 1)(2n + 1)(u)21
(−1)n+1
26n

, n ≥ 0,

Δ2n+1 = (n + 1)(2n + 1)
(−1)n+1
26n+3

λ2

+
(
8(n + 1)2(u)1 + 1

) (−1)n
26n+4

λ(n + 1)(2n + 3)(u)21
(−1)n+1
26n+3

, n ≥ 0.

(4.16)

Then we obtain

Δ2n = 4
(−1)n+1
26n+1

(tn − x1)(tn − x2), n ≥ 0,

Δ2n+1 = 4
(−1)n+1
26n+4

(tn − x3)(tn − x4), n ≥ 0,

(4.17)

where

x1 =
1
4

{
−3t − 2λ +

(
t2 − 4λt − 4λ2 − 4λ

)1/2
}
, x2 =

1
4

{
−3t − 2λ −

(
t2 − 4λt − 4λ2 − 4λ

)1/2
}
,

x3 =
1
4

{
−5t − 2λ +

(
(t + 2λ)2 + 4λ

)1/2
}
, x4 =

1
4

{
−5t − 2λ −

(
(t + 2λ)2 + 4λ

)1/2
}
,

(u)1 = t + λ.

(4.18)

On account of Proposition 2.6, we can deduce that the form u given by (2.9) is regular if and
only if tn − xi /= 0, n ≥ 0, 1 ≤ i ≤ 4.

In the sequel, we suppose that the last condition is satisfied.
By virtue of (4.17) and Lemma 4.2, relations (2.49)–(2.52), and (2.55)–(2.57), (2.70)–

(2.72) give Table 2.
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Table 2

an a2n = −1
8
(tn − x3)(tn − x4)
(tn − x1)(tn − x2)

, n ≥ 0, a2n+1 =
1
8
(tn − x1)(tn − x2)
(tn − x3)(tn − x4)

, n ≥ 0.

bn b0 = −2x1x2 +
1
4
− t

2
+ (t + λ +

1
2
)2, b2n+1 =

1
4
+

t

8
2(n + 1)t − λ

(tn − x1)(tn − x2)
, n ≥ 0,

b2n+2 =
1
4
+

t

8
(2n + 3)t + λ

(tn − x3)(tn − x4)
, n ≥ 0.

cn c0 = −1
2
, c1 = −1

2
− t − λ, c2n+3 =

1
8
2t(2n + 1)((n + 1)t − λ) − λ

(tn − x3)(tn − x4)
, n ≥ 0,

c2n+2 = −1
8
2t(2n + 1)((n + 1)t + λ) − λ

(tn − x1)(tn − x2)
, n ≥ 0.

γ1 = −2x1x2, γ2 =
λ

16
x3x4

x2
1x

2
2

,

γn+1
γ2n+3 = −1

4
(tn − x1)(t(n + 1) − x1)(tn − x2)(t(n + 1) − x2)

(tn − x3)
2(tn − x4)

2
, n ≥ 0,

γ2n+4 = −1
4
(tn − x3)(t(n + 1) − x3)(tn − x4)(t(n + 1) − x4)

(t(n + 1) − x1)
2(t(n + 1) − x2)

2
, n ≥ 0.

β0 = t + λ, β1 = −t − λ − λ

2x1x2
{−2x1x2 +

1
4
− t

2
+ (t + λ +

1
2
)2},

β2n+3 =
1
8
2t(2n + 1)((n + 1)t − λ) − λ

(tn − x3)(tn − x4)
+
1
2

(tn − x3)(tn − x4)
(t(n + 1) − x1)(t(n + 1) − x2)

βn
+
t

4
(2n + 3)t + λ

(t(n + 1) − x1)(t(n + 1) − x2)
, n ≥ 0,

β2n+2 = −1
8
2t(2n + 1)((n + 1)t + λ) − λ

(tn − x1)(tn − x2)
− 1
2
(tn − x1)(tn − x2)
(tn − x3)(tn − x4)

− t

4
2(n + 1)t − λ

(tn − x3)(tn − x4)
, n ≥ 0.

Proposition 4.3. If v = J(−1/2,1/2) is the corecursive of the second kind Chebychev form, then the
form u(t, λ) given by (2.9) has the following integral representation:

〈
u(t, λ), f

〉
= (1 − λ)f(0) + tf ′(0) +

λ

π
P

∫1

−1

1
x

√
1 − x

1 + x
f(x)dx, ∀f ∈ P. (4.19)

It is a semi-classical form of class s satisfying the following functional equation:

t /= 0, z3
(
z2 − 1

)
S′(z;u(t, λ)) = −z2

(
z2 − z − 1

)
S(z;u(t, λ)) + (t − 2λ + 1)z2 + tz − t, s = 3

t = 0, z
(
z2 − 1

)
S′(z;u(0, λ)) =

(
−z2 + z + 1

)
S(z;u(0, λ)) − 2λ + 1, s = 1.

(4.20)
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Proof. It is well known that v = J(−/2,1/2) possesses the following integral representation [1]:

〈
v, f

〉
=
∫1

−1

1
π

√
1 − x

1 + x
f(x)dx, f ∈ P. (4.21)

From (2.11) we easily obtain (4.19).
The form v satisfies (3.4) with [15]

φ(x) = x2 − 1, C(z) = 1, D(z) = −2. (4.22)

Therefore, ϑ1 = −t, ϑ2 = t, φ(0)/= 0.
Now, we can simply use Proposition 3.1 and Corollary 3.2 in order to obtain (4.20).

Corollary 4.4. When t = 0 and λ = −1, one has

βn = (−1)n+1, n ≥ 0, γ1 = −1
2
, γn+2 = −1

4
, n ≥ 0,

z
(
z2 − 1

)
S′(z;u(0,−1)) =

(
−z2 + z + 1

)
S(z;u(0,−1)) + 3, s = 1.

(4.23)

Proof. From Table 2, we reach the desired results.

Remarks 4.5. (1) One has the form h−1u(0,−1) = L(−3/2, 1/2), where L(α, β) is studied in
[24].

(2) Let {Z(1)
n }n≥0 [15, 19] be the first associated sequence of {Zn}n≥0 orthogonal with

respect to u(0,−1) and β
(1)
n , γ (1)n+1 the coefficients of the three-term recurrence relations; we have

β
(1)
n = βn+1 = (−1)n, n ≥ 0; γ

(1)
n+1 = γn+2 = −1

4
, n ≥ 0. (4.24)

The sequence {Z(1)
n }n≥0 is a second-order self-associated sequence; that is, {Z(1)

n }n≥0 is
identical to its associated orthogonal sequence of second kind (see [25]).
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