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We define the class of almost α-hyponormal operators and prove that for an operator T in this
class, (T∗T)α − (TT∗)α is trace-class and its trace is zero when α ∈ (0, 1] and the area of the Weyl
spectrum is zero.

This note is dedicated to Professor Carl M. Pearcy with the occasion of his 75th birthday.

Let H be a complex, separable, infinite-dimensional Hilbert space, and let L(H) denote the
algebra of all linear bounded operators on H, and for 1 ≤ p < ∞, let Cp(H) denote the
p-Schatten class on H. For K ∈ Cp(H), the expression ||K||p := (

∑∞
n=1 μn(K)p )1/p, where

μ1(K) ≥ μ2(K) ≥ · · · are the singular values ofK, is a norm for p ≥ 1, and is only a quasinorm
for 0 < p < 1 (it does not satisfy the triangle inequality). Nevertheless, the latter case will be
used in what follows.

For T ∈ L(H), σ(T) and σw(T) will denote the spectrum and the Weyl spectrum,
respectively. Recall that Weyl spectrum is the union of the essential spectrum, σe(T), and
all bounded components of � \ σe(T) associated with nonzero Fredholm index. An operator
T ∈ L(H) is called (Cp, α)-normal (notation: T ∈ Nα

p (H)) if Cα
T := (T∗T)α − (TT∗)α belongs

to Cp(H), and T is called (Cp, α)-hyponormal (notation: T ∈ Hα
p (H)) if Cα

T is the sum of a
positive definite operator and an operator in Cp(H), or equivalently, (Cα

T )− (the negative part
of Cα

T ) belongs to Cp(H), where α is a positive number. This note will be concerned with
the particular class Hα

1 (H), which by some parallelism with some terminology used in [1],
would be appropriate to be referred as almost α-hyponormal operators.

Voiculescu’s [1] generalization of Berger-Shaw inequality gives an estimate for the
trace of C1

T . The result was extended in [2]. The combination of these results will be stated
after recalling some terminology and notation. The rational cyclic multiplicity of an operator
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T in L(H), denoted by m(T), is the smallest cardinal number m with the property that there
arem vectors x1, . . . , xm in H such that

∨{f(T)xj | 1 ≤ j ≤ m, f ∈ Rat(σ(T))
}
= H, (1)

where Rat(σ(T)) is the algebra of complex-valued rational functions with poles off σ(T).
For a Borel subset E ⊆ � and α > 0, denote μα(E) = (α/2)

∫∫
Eρ

α−1 dρdθ. In particular,
μ2 is the planar Lebesgue measure.

Theorem A (see [1, 2]). Suppose T ∈ H1
1(H). If there exists K ∈ C2(H) such that either m(T +

K) < ∞ or μ2(σ(T +K)) = 0, then T ∈ N1
1(H). Moreover, when m(T +K) < ∞,

tr
(
C1

T

)
≤ m(T +K)

π
· μ2(σ(T +K)), (2)

and when μ2(σ(T +K)) = 0, tr(C1
T ) ≤ 0, and consequently, tr(C1

T ) = 0.

In fact, it was observed in [2] that the inequality can be improved by replacingm(T+K)
with τ(T +K), where

τ(S) := lim inf [rank(I − P)SP], (3)

and the lim inf is taken over all sequences of finite-rank orthogonal projections such that
P → I in the strong operator topology.

Corollary B (see [2]). Let T ∈ H1
1(H) such that μ2(σw(T)) = 0. Then T ∈ N1

1(H) and tr(C1
T ) = 0.

On the other hand, Berger-Shaw inequality was extended to operators inHα
1 (H) using

similar circle of ideas used in [1]. This was done in [3] for the case α ∈ [(1/2), 1] and later on
in [4] for the case α ∈ (0, (1/2)].

Theorem C (see [3, 4]). Let 0 < α ≤ 1, and let T ∈ Hα
1 (H) andK ∈ C2α(H) withm(T +K) < ∞.

Then T ∈ Nα
1 (H) and

tr
(
Cα

T

) ≤ m(T +K)
π

· μ2α(σ(T +K)). (4)

The case in whichm(T +K) = ∞ and μ2α(σ(T +K)) = 0 was not discussed in [4] or [3].
It is the goal of this note to make some progress towards this case. We have the following.

Theorem 1. Let α ∈ (0, 1) and let T ∈ Hα
1 (H) and K ∈ Cα(H) with μ2α(σ(T + K)) = 0. Then

T ∈ Nα
1 (H) and tr(Cα

T ) = 0.

Remark. It would have been desirable that Theorem 1 be proved with the hypothesis that
K ∈ C2α(H).

Before we prove Theorem 1, we extract a similar consequence to Corollary B.
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Corollary 2. Let α ∈ (0, 1] and let T ∈ Hα
1 (H) such that μ2(σw(T)) = 0. Then T ∈ Nα

1 (H) and
tr (Cα

T ) = 0.

Proof. If α = 1, then conclusion holds according to Corollary B. Let α ∈ (0, 1). First, a careful
inspection of the proof of a result of Stampfli [5] leads to the following. For T ∈ L(H) and
α > 0, there exists Kα ∈ Cα(H) such that σ(T +Kα) \ σw(T) consists of a countable set which
clusters only on σw(T). Therefore μ2(σ(T +Kα)) = 0 and thus Theorem 1 applies.

The proof of Theorem 1 makes use of the following three inequalities.

Proposition D (Hansen’s inequality [6]). If A,B ∈ L(H), A ≥ 0, ||B|| ≤ 1, and α ∈ (0, 1], then
B∗AαB ≤ (B∗AB)α.

Proposition E (Lowner’s inequality [7]). If A,B ∈ L(H), A ≥ B ≥ 0, and α ∈ (0, 1], then
Aα ≥ Bα.

The following is a consequence of Theorem 3.4 of [8].

Proposition F (Jocic’s inequality [8]). Let A,B ∈ L(H), A, B ≥ 0, α ∈ (0, 1], and 1 ≤ p < ∞. If
A − B ∈ Cαp(H), then Aα − Bα ∈ Cp(H) and ||Bα −Aα||p ≤ || |B −A|α ||p.

Proof of Theorem 1. Let α ∈ (0, 1), T ∈ Hα
1 (H), and K ∈ Cα(H) with μ2α(σ(T + K)) = 0, and

assume m(T +K) = ∞, otherwise Theorem C implies T ∈ Nα
1 (H).

Let {en}n∈� be an orthonormal basis of H and let

Hn = ∨{r(T +K)ej | j = 1, . . . , n, r ∈ Rat(σ(T +K))
}
. (5)

Assume that with respect to the decomposition H = Hn ⊕H⊥
n, operators T andK are written

as

T =

(
T1n T2n

T3n T4n

)

, K =

(
K1n K2n

K3n K4n

)

. (6)

Since Hn is a rationally invariant subspace for T + K, we have T3n +K3n = 0, and thus T3n =
−K3n ∈ Cα(Hn) ⊆ C2α(Hn), and σ(T1n +K1n) ⊆ σ(T +K), which implies μ2α(σ(T1n +K1n)) = 0.

Let Pn be the orthogonal projection onto Hn, and thus Pn ↑ I strongly. We will prove
next that T1n ∈ Hα

1 (Hn) by first establishing that

PnC
α
TPn − Cα

T1n
= −Q′

n +K′
n, (7a)

where Q′
n ∈ L(Hn) is positive semidefinite andK′

n ∈ C1(Hn).
Assuming that equality (7a) was already proved and writing Cα

T = Q + K with Q ≥ 0
and K ∈ C1(H), then we have

Cα
T1n

= PnQPn + PnKPn +Q′
n −K′

n, (7b)

that is,Cα
T1n

is the sum of PnQPn+Q′
n, which is a positive semidefinite operator, and of PnKPn−

K′
n, which is a trace-class operator.



4 International Journal of Mathematics and Mathematical Sciences

Indeed, the expression PnC
α
TPn − Cα

T1n
can be written as D1 −D2, where

D1 = Pn(T∗T)αPn −
(
T∗
1nT1n

)α
,

D2 = Pn(TT∗)αPn −
(
T1nT

∗
1n

)α
.

(8)

We can write D1 = −Q′′
n +K′′

n, where

Q′′
n =

[
(PnT

∗TPn)
α − Pn(T∗T)αPn

]
, (9)

which according to Hansen’s inequality is a positive semidefinite operator, and

K′′
n =

[
(PnT

∗TPn)
α − (PnT

∗PnTPn)
α], (10)

which according to Jocic’s inequality is a trace-class operator that satisfies

∥
∥K′′

n

∥
∥
1 ≤

∥
∥|((PnT

∗TPn − PnT
∗PnTPn))|α

∥
∥
1 =

∥
∥(T∗

3nT3n)
α
∥
∥
1

=
∥
∥T∗

3nT3n
∥
∥α

α ≤ ∥
∥T∗

3n

∥
∥α · ‖T3n‖αα ≤ ‖T‖α · ‖T3n‖αα.

(11)

Concerning operatorD2, we can writeD2 = Q′′′
n +K′′′

n , where

Q′′′
n = Pn(TT∗)αPn − Pn(TPnT

∗)αPn, (12)

which according to Lowner’s inequality is a positive semidefinite operator, and

K′′′
n = Pn(TPnT

∗)αPn − (PnTPnT
∗Pn)

α = Pn

[
(TPnT

∗)α − (PnTPnT
∗Pn)

α]Pn, (13)

which is also a trace-class operator since

TPnT
∗ − PnTPnT

∗Pn = (TPnT
∗ − TPnT

∗Pn) + (TPnT
∗Pn − PnTPnT

∗Pn)

= TPnT
∗(I − Pn) + (I − Pn)TPnT

∗Pn

= TT∗
3n + T3nT

∗Pn ∈ Cα(H),

(14)

and according to Jocic’s inequality

∥
∥K′′′

n

∥
∥
1 ≤

∥
∥(TPnT

∗)α − (PnTPnT
∗Pn)α

∥
∥
1 ≤

∥
∥
∣
∣ TT∗

3n + T3nT
∗Pn

∣
∣α
∥
∥
1

=
∥
∥TT∗

3n + T3nT
∗Pn

∥
∥α

α ≤ C
(∥
∥TT∗

3n

∥
∥α

α + ‖T3nT∗Pn‖αα
)

≤ C ‖T‖α(∥∥T∗
3n

∥
∥α

α + ‖T3n‖αα
)
= 2C ‖T‖α‖T3n‖αα.

(15)
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Therefore,

D2 = Q′′′
n +K′′′

n , with Q′′′
n ≥ 0, K′′′

n ∈ C1(H), (16)

and consequently, D1 − D2 = (−Q′′
n + K′′

n) − (Q′′′
n + K′′′

n ) = −(Q′′
n + Q′′′

n ) + (K′′
n − K′′′

n ), where
Q′′

n + Q′′′
n =: Q′

n is positive semidefinite and K′′
n − K′′′

n =: K′
n is trace-class, which establishes

equality (7a).
According to (7b), T1n ∈ Hα

1 (Hn), and since m(T1n + K1n) ≤ n and σ(T1n + K1n) ⊆
σ(T +K), Theorem C implies that tr(Cα

T1n
) ≤ 0, and furthermore, by replacing T1n with T∗

1n,
tr(Cα

T1n
) = 0. Furthermore, equality (7a) implies

PnC
α
TPn ≤ Cα

T1n
+K′

n, (17)

which further implies

tr
(
PnC

α
TPn

) ≤ tr
(
K′

n

)
. (18)

Similar utilization of Lowner’s and Hansen’s inequalities implies that K′′
n and −K′′′

n are
positive semidefinite, and thus so is K′

n = K′′
n −K′′′

n . Therefore

tr
(
K′

n

) ≤ ∥
∥
(
K′′

n

)∥
∥
1 +

∥
∥
(
K′′′

n

)∥
∥
1 ≤ (1 + 2C)‖T‖α‖T3n‖αα. (19)

Since T3n = −K3n ∈ Cp(Hn) and K3n → 0 weakly and both |T3n| and |T∗
3n| ≤ ||T || I, we have

||T3n||α → 0, and thus tr(Cα
T ) ≤ 0. Replacing T with T∗ we conclude that tr(Cα

T ) = 0.
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