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For the evolution equation y′(t) = Ay(t) with a scalar type spectral operatorA in a Banach space,
conditions on A are found that are necessary and sufficient for all weak solutions of the equation
on [0,∞) to be strongly infinite differentiable on [0,∞) or [0,∞). Certain effects of smoothness
improvement of the weak solutions are analyzed.

1. Introduction

Consider the evolution equation

y′(t) = Ay(t) (1.1)

with a scalar type spectral operator A in a complex Banach space X.
Following [1], we understand by a weak solution of equation (1.1) on an interval [0, T)

(0 < T ≤ ∞) such a vector function y : [0, T) → X that

(1) y(·) is strongly continuous on [0, T);

(2) for any g∗ ∈ D(A∗),

d

dt

〈
y(t), g∗〉 =

〈
y(t), A∗g∗〉, t ∈ [0, T). (1.2)

(D(·) is the domain of an operator, A∗ is the operator adjoint to A, and 〈·, ·〉 is the
pairing between the space X and its dual X∗).
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As was shown [2], Theorem 4.2, the general weak solution of (1.1) on [0, T) (0 < T ≤ ∞)
is as follows:

y(t) = etAf, t ∈ [0, T), f ∈
⋂

0≤t<T
D
(
etA
)
, (1.3)

the operator exponentials etA, 0 ≤ t < T , defined in the sense of the operational calculus for
scalar type spectral operators (see Section 2).

Here, we are to find conditions on A that are necessary and sufficient for all weak
solutions of (1.1) on [0,∞) to be strongly infinite differentiable on [0,∞) or (0,∞).

This goal attained; all the principal results of paper [3] and the corresponding ones of
[4] obtain their natural generalizations.

2. Preliminaries

Henceforth, unless specified otherwise, let A be a scalar type spectral operator in a complex
Banach space X with a norm ‖ · ‖, EA(·) its spectral measure (the resolution of the identity), and
σ(A) the operator’s spectrum, with the latter being the support for the former.

Observe that, in a Hilbert space, the scalar type spectral operators are those similar to the
normal ones [5].

For scalar type spectral operators, there has been developed an operational calculus for
Borel measurable functions defined on σ(A) [6, 7]. With F(·) being such a function, a new
scalar type spectral operator

F(A) def=
∫

σ(A)
F(λ)dEA(λ) (2.1)

is defined as follows:

F(A)f def= lim
n→∞

Fn(A)f, f ∈ D(F(A)),

D(F(A)) def=
{
f ∈ X | lim

n→∞
Fn(A)f exists

}
,

(2.2)

where

Fn(·) def= F(·)χ{λ∈σ(A)||F(λ)|≤n}(·), n = 1, 2, . . . , (2.3)

(χα(·) is the characteristic function of a set α) and

Fn(A) def=
∫

σ(A)
Fn(λ)dEA(λ), n = 1, 2, . . . , (2.4)

are bounded scalar type spectral operators on X defined in the same manner as for normal
operators (see, e.g., [8, 9]).



International Journal of Mathematics and Mathematical Sciences 3

In particular,

A =
∫

σ(A)
λ dEA(λ). (2.5)

The properties of the spectral measure, EA(·), and the operational calculus underlying our
discourse are exhaustively delineated in [6, 7]. We will outline here a few noteworthy facts.

Due to its strong countable additivity, the spectral measure EA(·) is bounded [10], that
is, there is anM > 0 such that

‖EA(α)‖ ≤ M, α ∈ B (2.6)

(B is the σ-algebra of Borel sets in the complex plane � ).
Observe that ‖ · ‖ is used in (2.6) to designate the norm in the space of bounded linear

operators on X. We will adhere to this rather common economy of symbols adopting the
same notation for the norm in the dual space X∗ as well.

For any f ∈ X and g∗ ∈ X∗, let v(f, g∗, ·) be the total variation of the complex-valued
measure 〈EA(·)f, g∗〉 on B.

As we discussed in [4, 11], with F(·) being an arbitrary Borel measurable function on
� , for any f ∈ D(F(A)), g∗ ∈ X∗, and δ ∈ B,

∫

δ

|F(λ)|dv(f, g∗, λ
) ≤ 4M

∥∥EA(δ)F(A)f
∥∥∥∥g∗∥∥, (2.7)

where M > 0 is the constant from (2.6).
In particular, for F(λ) = 1, λ ∈ � , and δ = � (or any Borel set containing σ(A)), we

have

v
(
f, g∗, δ

) ≤ 4M
∥∥f
∥∥∥∥g∗∥∥, f ∈ X, g∗ ∈ X∗. (2.8)

Further, for a Borel measurable nonnegative function F(·) on � , a δ ∈ B, and a sequence
{Δn}∞n=1 of pairwise disjoint Borel sets in � ,

∫

δ

F(λ)dv
(
EA

(∪∞
n=1Δn

)
f, g∗, λ

)

=
∞∑

n=1

∫

δ∩Δn

F(λ)dv
(
EA(Δn)f, g∗, λ

)
, f ∈ X, g∗ ∈ X∗.

(2.9)

Indeed, since for the spectral measure [6, 7]

EA(α)EA

(
β
)
= EA

(
α ∩ β

)
, α, β ∈ B, (2.10)

for the total variation, we have

v
(
EA

(
β
)
f, g∗, α

)
= v
(
f, g∗, α ∩ β

)
, α, β ∈ B. (2.11)
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Whence, due to nonnegativity of F(·) [12],
∫

δ

F(λ)dv
(
EA

(∪∞
n=1Δn

)
f, g∗, λ

)

=
∫

δ∩∪∞
n=1Δn

F(λ)dv
(
f, g∗, λ

)
=

∞∑

n=1

∫

δ∩Δn

F(λ)dv
(
f, g∗, λ

)

=
∞∑

n=1

∫

δ∩Δn

F(λ)dv
(
EA(Δn)f, g∗, λ

)
.

(2.12)

We shall need the following regions in the complex plane:

Lb+
def= {λ ∈ � | Re λ ≥ max(0, b+ ln|Imλ|)},

Lb− ,b+
def= {λ ∈ � | Re λ ≤ min(0,−b− ln|Imλ|) or Re λ ≥ max(0, b+ ln|Imλ|)},

(2.13)

where b+ and b− are positive constants.
The terms spectral measure and operational calculus frequently referred to will be ab-

breviated to s.m. and o.c., respectively.

3. Differentiability of a Particular Weak Solution

Proposition 3.1. Let n = 1, 2, . . . and I be a subinterval of an interval [0, T) (0 < T ≤ ∞). A weak
solution y(·) of (1.1) on [0, T) is n times strongly differentiable on I if and only if

y(t) ∈ D(An), t ∈ I, (3.1)

in which case,

y(k)(t) = Aky(t), k = 1, 2, . . . , n, t ∈ I. (3.2)

Proof. “Only if” part.
Let n = 1, 2, . . . and suppose that a weak solution y(·) of (1.1) on [0, T) is n times

strongly differentiable on a subinterval I ⊆ [0, T).
Then for any g∗ ∈ D(A∗),

〈
y′(t), g∗〉 =

d

dt

〈
y(t), g∗〉 =

〈
y(t), A∗g∗〉, t ∈ I. (3.3)

Hence, by the closedness of the operator A (cf. [1]),

y(t) ∈ D(A), y′(t) = Ay(t), t ∈ I. (3.4)
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This concludes proving the “only if” part for n = 1, in which case, as is to be noted, the
subinterval I can shrink to a single point t ∈ [0, T).

Let n ≥ 2 and let the interval I be not a singleton. Then differentiating (3.4) at an
arbitrary t ∈ I, we obtain

y′′(t) = lim
Δt→ 0

y′(t + Δt) − y′(t)
Δt

= lim
Δt→ 0

A
y(t + Δt) − y(t)

Δt
, (3.5)

with the increments Δt being such that t + Δ ∈ I.
Since

lim
Δt→ 0

y(t + Δt) − y(t)
Δt

= y′(t), t ∈ I, (3.6)

by the closedness of A, we infer that

y′(t) ∈ D(A), y′′(t) = Ay′(t), t ∈ I. (3.7)

Considering (3.4) and (3.7),

y(t) ∈ D
(
A2
)
, y′′(t) = A2y(t), t ∈ I. (3.8)

Continuing inductively in this manner, we arrive at

y(t) ∈ D
(
Ak
)
, y(k)(t) = Aky(t), k = 1, 2, . . . , n, t ∈ I. (3.9)

“If” part.
Let y(·) be a weak solution of (1.1) on an interval [0, T) (0 < T ≤ ∞) such that for an

n = 1, 2, . . . and a subinterval I ⊆ [0, T),

y(t) ∈ D(An), t ∈ I. (3.10)

As was discussed (see Section 1),

y(t) = etAf, t ∈ [0, T), (3.11)

with some f ∈ ⋂0≤t<T D(etA).
The fact that etAf ∈ D(An), t ∈ I, implies by the properties of the o.c. and [2],

Proposition 3.1, that, for any g∗ ∈ X∗,

∫

σ(A)
|λ|ketReλdv(f, g∗, λ

)
< ∞, k = 1, . . . , n, t ∈ I. (3.12)
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Given a k = 1, . . . , n and an arbitrary t ∈ I, let us choose a segment [a, b] ⊂ I (a < b) so that t
is its midpoint if 0 < t < T or a = 0 if t = 0. For increments Δt such that a ≤ t + Δt ≤ b and any
g∗ ∈ X∗, we have

∣∣∣∣
∣

〈
Ak−1y(t + Δt) −Ak−1y(t)

Δt
−Aky(t), g∗

〉∣∣∣∣
∣

by the properties of the o.c.;

=

∣
∣∣∣
∣

〈∫

σ(A)

[
λk−1e(t+Δt)λ − λk−1etλ

Δt
− λketλ

]

dEA(λ)f, g∗
〉∣∣∣∣
∣

by the properties of the o.c.;

=

∣∣∣∣
∣

∫

σ(A)

[
λk−1e(t+Δt)λ − λk−1etλ

Δt
− λketλ

]

d
〈
EA(λ)f, g∗〉

∣∣∣∣
∣

≤
∫

σ(A)

∣
∣∣∣
∣
λk−1e(t+Δt)λ − λk−1etλ

Δt
− λketλ

∣
∣∣∣
∣
dv
(
f, g∗, λ

)

by the Lebesgue Dominated Convergence Theorem;

−→ 0 as Δt −→ 0.
(3.13)

Indeed, for any k = 1, . . . , n and an arbitrary λ ∈ σ(A),

∣∣∣
∣∣
λk−1e(t+Δt)λ − λk−1etλ

Δt
− λketλ

∣∣∣
∣∣

≤
∣
∣∣∣
∣
λk−1e(t+Δt)λ − λk−1etλ

Δt

∣
∣∣∣
∣
+
∣∣∣λketλ

∣∣∣ by the Total Change Theorem;

≤ 2|λ|kmax
a≤s≤b

esReλ ≤ 2

⎧
⎪⎨

⎪⎩

|λ|keaRe λ if Re λ < 0,

|λ|kebRe λ if Re λ ≥ 0,
by (3.12), considering that a, b ∈ I;

∈ L1(σ(A), v
(
f, g∗, ·)),

∣∣
∣∣∣
λk−1e(t+Δt)λ − λk−1etλ

Δt
− λketλ

∣∣
∣∣∣
−→ 0 as Δt → 0.

(3.14)

Therefore, for any g∗ ∈ X∗,

dk

dtk
〈
y(t), g∗〉 =

〈
Aky(t), g∗

〉
, k = 1, . . . , n, t ∈ I. (3.15)
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For Δm := {λ ∈ � | |λ| ≤ m}, m = 1, 2, . . ., let us fix an arbitrary k = 1, . . . , n and consider the
sequence of vector functions

ym(t) := EA(Δm)Aky(t) = EA(Δm)AketAf, m = 1, 2, . . . , t ∈ I. (3.16)

Since f ∈ D(AketA), t ∈ I, by the properties of the o.c.,

EA(Δm)AketAf = [AEA(Δm)]ketAEA(Δm)f, m = 1, 2, . . . , t ∈ I. (3.17)

Due to the boundedness of Δm, m = 1, 2, . . ., by the properties of the o.c., AEA(Δm), m =
1, 2, . . ., is a bounded linear operator on X (‖AEA(Δm)‖ ≤ 4Mm, m = 1, 2, . . ., [7]). Hence, the
vector functions

ym(t) = EA(Δm)AketAf, m = 1, 2, . . . , t ∈ I, (3.18)

are strongly continuous on I.
For an arbitrary segment [a, b] ⊆ I, we have

sup
a≤t≤b

∥∥∥AketAf − EA(Δm)AketAf
∥∥∥ by the properties of the o.c.;

= sup
a≤t≤b

∥∥∥
∥∥

∫

{λ∈σ(A)||λ|>m}
λketλdEA(λ)f

∥∥∥
∥∥

as follows from the Hahn-Banach Theorem;

= sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∣∣∣
∣∣

〈∫

{λ∈σ(A)||λ|>m}
λketλdEA(λ)f, g∗

〉∣∣∣
∣∣

by the properties of the o.c.;

= sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∣
∣∣∣
∣

∫

{λ∈σ(A)||λ|>m}
λketλd

〈
EA(λ)f, g∗〉

∣
∣∣∣
∣

≤ sup
a≤t≤b

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|>m}
|λ|ketReλdv(f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

sup
a≤t≤b

[∫

{λ∈σ(A)||λ|>m, Reλ≤0}
|λ|ketRe λdv(f, g∗, λ

)

+
∫

{λ∈σ(A)||λ|>m, Reλ>0}
|λ|ketReλdv(f, g∗, λ

)
]
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≤ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|>m, Reλ≤0}
|λ|keaReλdv(f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|>m, Reλ>0}
|λ|mebReλdv(f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|>m}
|λ|keaReλdv(f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|>m}
|λ|kebReλdv(f, g∗, λ

)
by (2.7);

≤ 4M

⎡

⎣ sup
{g∗∈X∗|‖g∗‖=1}

∥∥
∥EA({λ ∈ σ(A) | |λ| > m})AkeaAf

∥∥
∥
∥∥g∗∥∥

+ sup
{g∗∈X∗|‖g∗‖=1}

∥
∥∥EA({λ ∈ σ(A) | |λ| > m})AkebAf

∥
∥∥
∥∥g∗∥∥

⎤

⎦

= 4M
[∥∥
∥EA({λ ∈ σ(A) | |λ| > m})AkeaAf

∥∥
∥ +

∥∥
∥EA({λ ∈ σ(A) | |λ| > m})AkebAf

∥∥
∥
]

by the strong continuity of the s.m.;

−→ 0 as m −→ ∞.

(3.19)

Hence, for any k = 1, . . . , n, the vector function AketAf , t ∈ I, is strongly continuous on
I, being the uniform limit of the sequence of strongly continuous on I vector functions
{ym(·)}∞m=1 on any segment [a, b] ⊆ I.

Let us fix an arbitrary a ∈ I and integrate (3.15) for k = 1 between a and an arbitrary
t ∈ I. Considering the strong continuity of AetAf , t ∈ I, we have

〈
etAf − eaAf, g∗

〉
=

〈∫ t

a

AesAf ds, g∗
〉

, g∗ ∈ X∗. (3.20)

Whence, as follows from the Hahn-Banach Theorem,

etAf − eaAf =
∫ t

a

AesAf ds, t ∈ I. (3.21)

By the strong continuity of AetAf , t ∈ I,

d

dt
etAf = AetAf, t ∈ I. (3.22)

Consequently, by (3.15), for n = 2,

d

dt

〈
d

dt
etAf, g∗

〉
=
〈
A2etAf, g∗

〉
, t ∈ I. (3.23)
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Whence, analogously,

d2

dt2
etAf = A2etAf, t ∈ I. (3.24)

Continuing inductively in this manner, we infer that, for any k = 1, . . . , n,

dk

dtk
etAf = AketAf, t ∈ I. (3.25)

Corollary 3.2. Let I be a subinterval of an interval [0, T) (0 < T ≤ ∞). A weak solution y(·) of (1.1)
on [0, T) is strongly infinite differentiable on I if and only if

y(t) ∈ C∞(A) def=
∞⋂

n=1

D(An), t ∈ I, (3.26)

in which case,

y(n)(t) = Any(t), n = 1, 2, . . . , t ∈ I. (3.27)

Thus, we have obtained generalizations of Proposition 4.1 and Corollary 4.1 of [3], respec-
tively.

4. Differentiability of Weak Solutions

Theorem 4.1. Every weak solution of (1.1) on [0,∞) is strongly infinite differentiable on [0,∞) if
and only if there is a b+ > 0 such that the set σ(A) \ Lb+ is bounded.

Proof. “If” part.
Let b+ > 0 be such that the set σ(A) \ Lb+ is bounded and y(·) a weak solution of (1.1)

on [0,∞). Then (see Section 1)

y(t) = etAf, 0 ≤ t < ∞, (4.1)

with some f ∈ ⋂0≤t<∞ D(etA).
For any n = 1, 2, . . ., t ≥ 0 and an arbitrary g∗ ∈ X∗,

∫

σ(A)
|λ|netReλdv(f, g∗, λ

)

=
∫

σ(A)\Lb+

|λ|netReλdv(f, g∗, λ
)
+
∫

σ(A)∩Lb+

|λ|netReλdv(f, g∗, λ
)
< ∞.

(4.2)

Indeed, the former integral is finite due to the boundedness of the set σ(A)\Lb+ , the finiteness
of the measure v(f, g∗, ·) and the continuity of the integrated function on � .
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For the latter one, we have

∫

σ(A)∩Lb+

|λ|netRe λdv(f, g∗, λ
)

≤
∫

σ(A)∩Lb+

[|Re λ|+|Imλ|]netRe λdv(f, g∗, λ
)

for λ ∈ σ(A) ∩ Lb+ ,Re λ≥0, |Imλ|≤eb−1+ Re λ;

≤
∫

σ(A)∩Lb+

[
Re λ + eb

−1
+ Re λ

]n
etRe λdv

(
f, g∗, λ

)
since x ≤ ex, x ≥ 0;

≤
∫

σ(A)∩Lb+

[
b+e

b−1+ Reλ + eb
−1
+ Re λ

]n
etRe λdv

(
f, g∗, λ

)

= [b+ + 1]n
∫

σ(A)
e[nb

−1
+ +t]Reλdv

(
f, g∗, λ

)
since f ∈

⋂

0≤t<∞
D
(
etA
)
, by [2],Proposition 3.1;

< ∞.

(4.3)

Further, for any n = 1, 2, . . . and t ≥ 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)\Lb+ ||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)∩Lb+ ||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

)

−→ 0 as m −→ ∞.

(4.4)

Indeed, since, due to the boundedness of the set σ(A)\Lb+ , the set {λ ∈ σ(A)\Lb+ | |λ|netRe λ >
m} is void for all sufficiently largem’s,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)\Lb+ ||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

) −→ 0 as m → ∞. (4.5)
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In addition to this

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)∩Lb+ ||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

)
analogously to (4.3);

≤ sup
{g∗∈X∗|‖g∗‖=1}

[b+ + 1]n
∫

{λ∈σ(A)∩Lb+ ||λ|netReλ>m}
e[nb

−1
+ +t]Reλdv

(
f, g∗, λ

)

since f ∈
⋂

0≤t<∞
D
(
etA
)
, by (2.7);

≤ [b+ + 1]n sup
{g∗∈X∗|‖g∗‖=1}

4M
∥∥∥EA

({
λ ∈ σ(A) ∩ Lb+ | |λ|netRe λ > m

})

e(nb
−1
+ +t)Af

∥∥
∥
∥∥g∗∥∥

= 4M[b+ + 1]n
∥∥∥EA

({
λ ∈ σ(A) ∩ Lb+ | |λ|netReλ > m

})
e(nb

−1
+ +t)Af

∥∥∥

by the strong continuity of the s.m.;

−→ 0 as m −→ ∞.

(4.6)

By the properties of the o.c. and [2], Proposition 3.1, (4.2) and (4.4) imply that

y(t) = etAf ∈ C∞(A), 0 ≤ t < ∞. (4.7)

Then, by Corollary 3.2, y(·) is strongly infinite differentiable on [0,∞).
“Only if” part.
We will prove this part by contrapositive.
Assume that, for any b+ > 0, the set σ(A) \ Lb+ is unbounded.
In particular, for any n = 1, 2, . . ., unbounded is the set σ(A) \ L(2n)−1 .
Hence, we can choose a sequence of points in the complex plane {λn}∞n=1 as follows:

λn ∈ σ(A), n = 1, 2, . . . ,

Re λn < max
(
0, (2n)−1 ln|Imλ|

)
, n = 1, 2, . . . ,

λ0 := 0, |λn| > max
[
n4, |λn−1|

]
, n = 1, 2, . . . .

(4.8)

The latter implies in particular that the points λn are distinct (λi /=λj , i /= j).
Since, for any n = 1, 2, . . ., the set

{
λ ∈ � | Re λ < max

(
0, (2n)−1 ln|Imλ|

)
, |λ| > max

[
n4, |λn−1|

]}
(4.9)
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is open in � , there exists an εn > 0 such that this set along with the point λn contains the open
disk of radius εn centered at λn

Δn := {λ ∈ � | |λ − λn| < εn}. (4.10)

Then, for any λ ∈ Δn, n = 1, 2, . . .,

Re λ < max
(
0, (2n)−1 ln|Imλ|

)
, |λ| > max

[
n4, |λn−1|

]
. (4.11)

Further, since the points λn, n = 1, 2, . . ., are distinct, we can regard the radii of the disks, εn,
n = 1, 2, . . ., to be small enough so that

0 < εn <
1
n
, n = 1, 2, . . . ,

Δi ∩Δj = ∅, i /= j
(
i.e., the disks are pairwise disjoint

)
.

(4.12)

Whence, by the properties of the s.m.,

EA(Δi)EA

(
Δj

)
= 0, i /= j. (4.13)

Observe also, that the subspaces EA(Δn)X, n = 1, 2, . . ., are nontrivial sinceΔn∩σ(A)/= ∅, with
Δn being an open set.

By choosing a unit vector en ∈ EA(Δn)X (‖en‖ = 1), n = 1, 2, . . ., we obtain a vector
sequence such that

EA(Δi)ej = δijei, i, j = 1, 2, . . . (4.14)

(δij is the Kronecker delta symbol).
As is readily verified, (4.14) implies that the vectors {e1, e2, . . .} are linearly

independent.
Moreover, there is an ε > 0 such that

dn := dist
(
en, span({ek | k = 1, 2, . . . , k /=n})) ≥ ε, n = 1, 2, . . . . (4.15)

Indeed, the opposite implies the existence of a subsequence {dn(k)}∞k=1 such that

dn(k) −→ 0 as k −→ ∞. (4.16)
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Then, for any k = 1, 2, . . ., by selecting a vector fn(k) ∈ span({ej | j = 1, 2, . . . , j /=n(k)}) such
that ‖en(k) − fn(k)‖ < dn(k) + 1/k, considering (4.14) and (2.6), we arrive at the contradiction:

1 =
∥∥en(k)

∥∥ =
∥∥EA

(
Δn(k)

)(
en(k) − fn(k)

)∥∥ ≤ M
∥∥en(k) − fn(k)

∥∥ −→ 0 as k −→ ∞. (4.17)

As follows from the Hahn-Banach Theorem, for any n = 1, 2, . . ., there is an e∗n ∈ X∗ such that

‖e∗n‖ = 1,
〈
ei, e

∗
j

〉
= δijdi, i, j = 1, 2, . . . . (4.18)

Concerning the sequence of the real parts, {Re λn}∞n=1, there are two possibilities: it is either
bounded or unbounded above.

Suppose that the sequence {Reλn}∞n=1 is bounded above, that is, there is such an ω > 0
that

Re λn ≤ ω, n = 1, 2, . . . . (4.19)

Let

f :=
∞∑

n=1

1
n2 en. (4.20)

By (4.14),

EA

(∪∞
n=1Δn

)
f = f, EA(Δn)f =

1
n2

en, n = 1, 2, . . . . (4.21)

For any t ≥ 0 and an arbitrary g∗ ∈ X∗,

∫

σ(A)
etReλdv

(
f, g∗, λ

)
by (4.21);

=
∫

σ(A)
etReλdv

(
EA

(∪∞
n=1Δn

)
f, g∗, λ

)
by (2.9);

=
∞∑

n=1

∫

Δn

etReλdv
(
EA(Δn)f, g∗, λ

)
by (4.21);

=
∞∑

n=1

1
n2

∫

Δn

etReλdv
(
en, g

∗, λ
)

for λ ∈ Δn, by (4.12), and (4.19),Re λ = Re λn + (Re λ − Re λn)

≤ Re λn + |λ − λn| ≤ ω + εn ≤ ω + 1;

≤ et(ω+1)
∞∑

n=1

1
n2v

(
en, g

∗,Δn

)
by (2.8);

≤ et(ω+1)
∞∑

n=1

1
n2 4M‖en‖

∥∥g∗∥∥ = 4Met(ω+1)∥∥g∗∥∥
∞∑

n=1

1
n2 < ∞.

(4.22)
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Similarly, for any t ≥ 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)|etReλ>n}
etRe λdv

(
f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

et(ω+1)
∞∑

n=1

1
n2

∫

Δn∩{λ∈σ(A)|etReλ>n}
1dv

(
en, g

∗, λ
)

by (2.9) and (4.21);

= et(ω+1) sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)|etReλ>n}
1v
(
f, g∗, λ

)
by (2.7);

≤ et(ω+1) sup
{g∗∈X∗|‖g∗‖=1}

4M
∥
∥∥EA

({
λ ∈ σ(A) | etReλ > n

})
f
∥
∥∥
∥∥g∗∥∥

= 4Met(ω+1)
∥∥
∥EA

({
λ ∈ σ(A) | etReλ > n

})
f
∥∥
∥ by the strong continuity of the s.m.;

−→ 0 as n −→ ∞.

(4.23)

By [2], Proposition 3.1, (4.22) and (4.23) imply that f ∈ ⋂0≤t<∞ D(etA).
Therefore (see Section 1), y(t) := etAf , 0 ≤ t < ∞, is a weak solution of (1.1) on [0,∞).
Let

h∗ :=
∞∑

n=1

1
n2 e

∗
n ∈ X∗, (4.24)

(cf. (4.18)).
Considering (4.18) and (4.15), we have

〈en, h∗〉 =
dn

n2 ≥ ε

n2 , n = 1, 2, . . . . (4.25)

Similarly to (4.22),

∫

σ(A)
|λ|dv(f, h∗, λ

)
=

∞∑

n=1

1
n2

∫

Δn

|λ|dv(en, h∗, λ) for λ ∈ Δn, by (4.11), |λ| ≥ n4;

≥
∞∑

n=1

n2v(en, h∗,Δn) ≥
∞∑

n=1

n2|〈EA(Δn)en, h∗〉| by (4.14) and (4.25);

≥
∞∑

n=1

n2 ε

n2 = ∞.

(4.26)

Whence, by [2], Proposition 3.1, y(0) = f /∈ D(A).
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Consequently, by Proposition 3.1, the weak solution y(t) = etAf , 0 ≤ t < ∞, of (1.1) on
[0,∞) is not strongly differentiable at 0.

Now, assume that the sequence {Re λn}∞n=1 is unbounded above.
Therefore, there is a subsequence {Re λn(k)}∞k=1 such that

Re λn(k) ≥ k, k = 1, 2, . . . . (4.27)

Then the vector

f :=
∞∑

k=1

e−n(k)Reλn(k)en(k) (4.28)

is well defined.
By (4.14),

EA

(∪∞
k=1Δn(k)

)
f = f,

EA

(
Δn(k)

)
f = e−n(k)Re λn(k)en(k), k = 1, 2, . . . .

(4.29)

For any t ≥ 0 and an arbitrary g∗ ∈ X∗, similar to (4.22),

∫

σ(A)
etReλdv

(
f, g∗, λ

)
=

∞∑

k=1

e−n(k)Reλn(k)
∫

Δn(k)

etReλdv
(
en(k), g

∗, λ
)

for λ ∈ Δn(k), by (4.12), Re λ = Re λn(k) +
(
Re λ − Re λn(k)

)

≤ Re λn(k) +
∣∣λ − λn(k)

∣∣ ≤ Re λn(k) + 1;

≤ et
∞∑

k=1

e−[n(k)−t]Reλn(k)v
(
en(k), g

∗,Δn(k)
)

by (2.8);

≤ et
∞∑

k=1

e−[n(k)−t]Reλn(k)4M
∥∥en(k)

∥∥∥∥g∗∥∥

= 4Met
∥∥g∗∥∥

∞∑

k=1

e−[n(k)−t]Reλn(k) by the Comparison Test;

< ∞.

(4.30)

Indeed, for all sufficiently large k’s, n(k) − t ≥ 1 and by (4.27),

e−[n(k)−t]Reλn(k) ≤ e−k. (4.31)
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Analogously, for an arbitrary t ≥ 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)|etReλ>n}
etReλdv

(
f, g∗, λ

) ≤ sup
{g∗∈X∗|‖g∗‖=1}

et
∞∑

k=1

e−[n(k)−t]Reλn(k)

∫

Δn(k)∩{λ∈σ(A)|etReλ>n}
1dv

(
en(k), g

∗, λ
)
= et sup

{g∗∈X∗|‖g∗‖=1}

∞∑

k=1

e−[(n(k)/2)−t] Reλn(k)e−(n(k)/2)Re λ(k)

∫

Δn(k)∩{λ∈σ(A)|etReλ>n}
1dv

(
en(k), g

∗, λ
)

due to (4.27), there is an L > 0 such that e−[(n(k)/2)−t]Re λn(k) ≤ L, k = 1, 2, . . . ;

≤ Let sup
{g∗∈X∗|‖g∗‖=1}

∞∑

k=1

e−(n(k)/2)Reλn(k)

∫

Δn(k)∩{λ∈σ(A)|etReλ>n}
1dv

(
en(k), g

∗, λ
)

for h :=
∞∑

k=1

e−(n(k)/2)Reλn(k)en(k), by (4.14) and (2.9);

= Let
∫

{λ∈σ(A)|etReλ>n}
1dv

(
h, g∗, λ

)
by (2.7);

≤ Let sup
{g∗∈|‖g∗‖=1}

4M
∥∥∥EA

({
λ ∈ σ(A) | etRe λ > n

})
h
∥∥∥
∥∥g∗∥∥

= 4LMet
∥∥∥EA

({
λ ∈ σ(A) | etReλ > n

})
h
∥∥∥ by the strong continuity of the s.m.;

−→ 0 as n −→ ∞.

(4.32)

From (4.30) and (4.32), by [2], Proposition 3.1, we infer that f ∈ ⋂0≤t<∞D(etA).
Therefore (see Section 1), y(t) := etAf , 0 ≤ t < ∞, is a weak solution of (1.1) on [0,∞).
For any λ ∈ Δn(k), k = 1, 2, . . ., by (4.11), (4.12), and (4.27),

Re λ = Re λn(k) −
(
Re λn(k) − Re λ

)

≥ Re λn(k) −
∣∣Re λn(k) − Re λ

∣∣

≥ Re λn(k) − εn(k) ≥ Re λn(k) − 1
n(k)

≥ k − 1 ≥ 0,

Re λ < max
(
0, (2n(k))−1 ln|Imλ|

)
.

(4.33)

Hence, for λ ∈ Δn(k), k = 1, 2, . . .,

|λ| ≥ |Imλ| ≥ e2n(k)Reλ ≥ e2n(k)(Re λn(k)−1/n(k)). (4.34)
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Using this estimate, we obtain

∫

σ(A)
|λ|dv(f, h∗, λ

)
=

∞∑

k=1

e−n(k)Re λn(k)
∫

Δn(k)

|λ|dv(en(k), h∗, λ
)

≥
∞∑

k=1

e−n(k)Reλn(k)e2n(k)(Re λn(k)−1/n(k))v
(
en(k), h

∗,Δn(k)
)

= e−2
∞∑

k=1

en(k)Re λn(k)
∣∣〈EA

(
Δn(k)

)
en(k), h

∗〉∣∣ by (4.14), (4.25), and (4.27);

≥ e−2ε
∞∑

k=1

en(k)

n(k)2
= ∞.

(4.35)

Whence, by [2], Proposition 3.1, y(0) = f /∈ D(A).
Therefore, by Proposition 3.1, the weak solution y(t) = etAf , 0 ≤ t < ∞, of (1.1) on

[0,∞) is not strongly differentiable at 0.
With every possibility concerning {Reλn}∞n=1 considered, we infer that the opposite to

the assumption that, for a certain b+ > 0, the set σ(A) \ Lb+ is bounded, allows to single out
a weak solution of (1.1) on [0,∞) that is not strongly differentiable at 0, much less strongly
infinite differentiable on [0,∞).

Thus, the “only if” part has been proved by contrapositive.

Theorem 5.1 of [3] has been generalized.

Theorem 4.2. Every weak solution of (1.1) on [0,∞) is strongly infinite differentiable on (0,∞) if
and only if there is a b+ > 0 such that, for any b− > 0, the set σ(A) \ Lb− ,b+ is bounded.

Proof. “If” part.
Let b+ > 0 be such that, for an arbitrary b− > 0, the set σ(A) \ Lb− ,b+ is bounded.
Let y(·) be a weak solution of (1.1) on [0,∞). Then (see Section 1)

y(t) = etAf, 0 ≤ t < ∞, (4.36)

with some f ∈ ⋂0≤t<∞ D(etA).
For any n = 1, 2, . . ., t > 0, and an arbitrary g∗ ∈ X∗,

∫

σ(A)
|λ|netReλdv(f, g∗, λ

)

=
∫

σ(A)\Lb− ,b+

|λ|netReλdv(f, g∗, λ
)
+
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ≥0}
|λ|netRe λdv(f, g∗, λ

)

+
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
|λ|netReλdv(f, g∗, λ

)
< ∞.

(4.37)

The first integral in this sum is finite due the boundedness of the set σ(A) \ Lb− ,b+ , the
finiteness of the measure v(f, g∗, ·), and the continuity of the integrated function on � .
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The finiteness of the second integral is proved in absolutely the same manner as for
the corresponding integral in the proof of the “if” part of Theorem 4.1.

Finally for the third one, considering that b− > 0 is arbitrary and setting b− := nt−1, we
have

∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
|λ|netReλdv(f, g∗, λ

)

≤
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
[|Re λ| + |Imλ|]netRe λdv(f, g∗, λ

)
for λ ∈ σ(A) ∩ Lb− ,b+

with Re λ < 0, |Imλ| ≤ eb
−1
− [−Re λ];

≤
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
[
−Re λ + eb

−1
− [−Re λ]

]n
etReλdv

(
f, g∗, λ

)
since x ≤ ex, x ≥ 0;

≤
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
[
b−eb

−1
− [−Reλ] + eb

−1
− [−Reλ]

]n
etReλdv

(
f, g∗, λ

)

= [b− + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
e[nb

−1
− −t][−Re λ]dv

(
f, g∗, λ

)
recall that b− := nt−1;

= [b− + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0}
1dv

(
f, g∗, λ

) ≤ [b− + 1]nv
(
f, g∗, σ(A)

)
by (2.8);

≤ 4M[b− + 1]n
∥∥f
∥∥∥∥g∗∥∥ < ∞.

(4.38)

Further, for any n = 1, 2, . . . and t > 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)\Lb− ,b+ ||λ|netReλ>m}
|λ|netRe λdv(f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)∩Lb− ,b+ ||λ|netReλ>m}
|λ|netRe λdv(f, g∗, λ

)

−→ 0 as m −→ ∞.

(4.39)

Indeed, since, due to the boundedness of the set σ(A) \ Lb− ,b+ , the set {λ ∈ σ(A) \ Lb− ,b+ |
|λ|netRe λ > m} is void for all sufficiently largem’s,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)\Lb− ,b+ ||λ|netReλ>m}
|λ|netReλdv(f, g∗, λ

) −→ 0 as m −→ ∞. (4.40)
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Similarly to the “if” part of Theorem 4.1 and (4.38), we have

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)∩Lb− ,b+ ||λ|netReλ>m}
|λ|netRe λdv(f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

[b+ + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ≥0, |λ|netReλ>m}
e[nb

−1
+ +t]Reλdv

(
f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

[b− + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0, |λ|netReλ>m}

e[nb
−1
− −t][−Reλ]dv

(
f, g∗, λ

)
with b− := nt−1;

= sup
{g∗∈X∗|‖g∗‖=1}

[b+ + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ≥0, |λ|netReλ>m}
e[nb

−1
+ +t]Reλdv

(
f, g∗, λ

)

+ sup
{g∗∈X∗|‖g∗‖=1}

[b− + 1]n
∫

{λ∈σ(A)∩Lb− ,b+ |Reλ<0, |λ|netReλ>m}
1dv

(
f, g∗, λ

)

since f ∈
⋂

0≤t<∞
D
(
etA
)
, by (2.7);

≤ [b+ + 1]n sup
{g∗∈X∗|‖g∗‖=1}

4M
∥∥
∥EA

({
λ ∈ σ(A) ∩ Lb− ,b+ | Re λ ≥ 0, |λ|netRe λ > m

})

e[nb
−1
+ +t]Af

∥
∥∥
∥∥g∗∥∥

+ [b− + 1]n sup
{g∗∈X∗|‖g∗‖=1}

4M
∥∥
∥EA

({
λ ∈ σ(A) ∩ Lb− ,b+ | Re λ < 0, |λ|netReλ > m

})
f
∥∥
∥
∥∥g∗∥∥

= 4M[b+ + 1]n
∥∥∥EA

({
λ ∈ σ(A) ∩ Lb− ,b+ | Re λ ≥ 0, |λ|netReλ > m

})
e[nb

−1
+ +t]Af

∥∥∥

+ 4M[b− + 1]n
∥
∥∥EA

({
λ ∈ σ(A) ∩ Lb− ,b+ | Re λ < 0, |λ|netReλ > m

})
f
∥
∥∥

by the strong continuity of the s.m.;

−→ 0 as m −→ ∞.

(4.41)

By the properties of the o.c. and [2], Proposition 3.1, (4.37) and (4.39) imply that

y(t) = etAf ∈ C∞(A), 0 < t < ∞. (4.42)

Whence, by Corollary 3.2, y(·) is strongly infinite differentiable on (0,∞).
“Only if” part.
As well as in Theorem 4.1, we will prove this part by contrapositive.
Thus, we assume that, for any b+ > 0, there is such a b− > 0 that the set σ(A) \ Lb− ,b+ is

unbounded.
Let us show that this assumption can even be strengthened. To wit: there is such a

b− > 0 that, for any b+ > 0, the set σ(A) \ Lb− ,b+ is unbounded.
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Indeed, there are two possibilities:

(1) for a certain b− > 0, the set {λ ∈ σ(A) | −b− ln | Imλ| < Re λ ≤ 0} is unbounded;
(2) for any b− > 0, the set {λ ∈ σ(A) | −b− ln | Imλ| < Re λ ≤ 0} is bounded.
In the first case, the set σ(A) \ Lb− ,b+ is unbounded with the very b− > 0, for which the

set {λ ∈ σ(A) | −b− ln | Imλ| < Re λ ≤ 0} is unbounded, and an arbitrary b+ > 0.
In the second case, based on the premise we infer that, for any b+ > 0, the set {λ ∈

σ(A) | 0 < Re λ < b+ ln | Imλ|} is unbounded. Then so is the set σ(A) \ Lb− ,b+ for any b− > 0
and b+ > 0.

Thus, let us fix a b− > 0 such that the set σ(A) \ Lb− ,b+ is unbounded for an arbitrary
b+ > 0.

In particular, for any n = 1, 2, . . ., the set σ(A) \ Lb− ,(2n)
−1 is unbounded.

Hence, we can select a sequence of points in the complex plane {λn}∞n=1 in the following
manner:

λn ∈ σ(A), n = 1, 2, . . . ,

min(0,−b− ln|Imλ|) < Re λn < max
(
0, (2n)−1 ln|Imλ|

)
n = 1, 2, . . . ,

λ0 := 0, |λn| > max
[
n4, |λn−1|

]
, n = 1, 2, . . . .

(4.43)

The latter, in particular, implies that the points λn are distinct.
Since, for any n = 1, 2, . . ., the set

{
λ ∈ � | min(0,−b− ln|Imλ|) < Re λ < max

(
0, (2n)−1 ln|Imλ|

)
, |λ| > max

[
n4, |λn−1|

]}
(4.44)

is open in � , there exists such an εn > 0 that this set, along with the point λn, contains the open
disk of radius εn centered at λn

Δn := {λ ∈ � | |λ − λn| < εn}. (4.45)

Hence, for any λ ∈ Δn, n = 1, 2, . . .,

min(0,−b− ln|Imλ|) < Re λ < max
(
0, (2n)−1 ln|Im λ|

)
,

|λ| > max
[
n4, |λn−1|

]
.

(4.46)

Since the points λn are distinct, we can regard the radii of the disks, εn, to be small enough so
that

0 < εn <
1
n
, n = 1, 2, . . . , Δi ∩Δj = ∅, i /= j. (4.47)

By the properties of the s.m., the latter implies

EA(Δi)EA

(
Δj

)
= 0, i /= j. (4.48)
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Observe that the subspaces EA(Δn)X, n = 1, 2, . . ., are nontrivial since Δn ∩σ(A)/= ∅,Δn being
an open set.

By choosing a unit vector en ∈ EA(Δn)X (‖en‖ = 1), n = 1, 2, . . ., we obtain a vector
sequence such that

EA(Δi)ej = δijei. (4.49)

In the same manner as in the proof of Theorem 4.1, one can show that there is an ε > 0 such
that

dn := dist
(
en, span({ek | k = 1, 2, . . . , k /=n})) ≥ ε, n = 1, 2, . . . . (4.50)

As follows from the Hahn-Banach Theorem, for any n = 1, 2, . . ., there is an e∗n ∈ X∗ such that

‖e∗n‖ = 1,
〈
ei, e

∗
j

〉
= δijdi. (4.51)

Concerning the sequence of the real parts, {Re λn}∞n=1, there are two possibilities: it is either
bounded or unbounded.

First, assume that the sequence {Re λn}∞n=1 is bounded, that is, there is an ω > 0 such
that

|Re λn| ≤ ω, n = 1, 2, . . . . (4.52)

Let

f :=
∞∑

n=1

1
n2 en. (4.53)

By (4.49),

EA

(∪∞
n=1Δn

)
f = f, EA(Δn)f =

1
n2 en, n = 1, 2, . . . . (4.54)

In absolutely the same fashion as it was done in the case of bounded above sequence
{Re λn}∞n=1 in the proof of the “only if” part of Theorem 4.1, it is shown that f ∈ ⋂0≤t<∞ D(etA).

Therefore (see Section 1), y(t) := etAf , 0 ≤ t < ∞, is a weak solution of (1.1) on [0,∞).
Let

h∗ :=
∞∑

n=1

1
n2 e

∗
n ∈ X∗ (4.55)

(cf. (4.51)).
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Taking (4.50) and (4.51) into account, we have

〈en, h∗〉 =
dn

n2 ≥ ε

n2 , n = 1, 2, . . . . (4.56)

Thus,

∫

σ(A)
|λ|eReλdv(f, h∗, λ

)
considering (4.54), by (2.9);

=
∞∑

n=1

1
n2

∫

Δn

|λ|eReλdv(en, h∗, λ) for λ ∈ Δn, by (4.46), |λ| ≥ n4;

for λ ∈ Δn, by (4.47) and (4.52), Re λ = Re λn − (Re λn − Re λ)

≥ Re λn − |Re λn − Re λ| ≥ −ω − εn ≥ −ω − 1;

≥ e−(ω+1)
∞∑

n=1

n2v(en, h∗,Δn) ≥ e−(ω+1)
∞∑

n=1

n2|〈EA(Δn)en, h∗〉| by (4.49) and (4.56);

≥ e−(ω+1)
∞∑

n=1

n2 ε

n2 = ∞.

(4.57)

Whence, by the properties of the o.c. and [2], Proposition 3.1, y(1) = eAf /∈ D(A).
Consequently, by Proposition 3.1, the weak solution y(t) = etAf, 0 ≤ t < ∞, of (1.1) on

[0,∞) is not once strongly differentiable on (0,∞).
Now, assume that the sequence {Re λn}∞n=1 is unbounded. Therefore, there is a

subsequence {Re λn(k)}∞k=1 such that

Re λn(k) −→ ∞ or Re λn(k) −→ −∞ as k −→ ∞. (4.58)

Suppose that Re λn(k) → ∞ as k → ∞.
Without restricting generality, we can regard that

Re λn(k) ≥ k, k = 1, 2, . . . . (4.59)

Considering this case just like the analogous one in the proof of the “only if” part of
Theorem 4.1, one can show that the vector

f :=
∞∑

k=1

e−n(k)Reλn(k)en(k) (4.60)

belongs to
⋂

0≤t<∞ D(etA) and, hence, (see Section 1) y(t) := etAf , 0 ≤ t < ∞, is a weak solution
of (1.1) on [0,∞).
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For any λ ∈ Δn(k), k = 1, 2, . . ., by (4.46), (4.47), and (4.59),

Re λ = Re λn(k) −
(
Re λn(k) − Re λ

)

≥ Re λn(k) −
∣∣Re λn(k) − Re λ

∣∣

≥ Re λn(k) − εn(k) ≥ Re λn(k) − 1
n(k)

≥ k − 1 ≥ 0,

Re λ < max
(
0, (2n(k))−1 ln|Imλ|

)
,

(4.61)

Hence, for λ ∈ Δn(k), k = 1, 2, . . .,

|λ| ≥ |Imλ| ≥ e2n(k)Reλ ≥ e2n(k)(Re λn(k)−1/n(k)). (4.62)

Using this estimate, we have

∫

σ(A)
|λ|eRe λdv(f, h∗, λ

)
considering (4.49), by (2.9);

=
∞∑

k=1

e−n(k)Reλn(k)
∫

Δn(k)

|λ|eReλdv(en(k), h∗, λ
)

≥
∞∑

k=1

e−n(k)Reλn(k)e2n(k)(Re λn(k)−1/n(k))v
(
en(k), h

∗,Δn(k)
)

= e−2
∞∑

k=1

en(k)Re λn(k)
∣∣〈EA

(
Δn(k)

)
en(k), h

∗〉∣∣ by (4.49), (4.56), and (4.59);

≥ e−2ε
∞∑

k=1

en(k)

n(k)2
= ∞.

(4.63)

Whence, by the properties of the o.c. and [2], Proposition 3.1, y(1) = eAf /∈ D(A).
Therefore, by Proposition 3.1, the weak solution y(t) = etAf , 0 ≤ t < ∞, of (1.1) on

[0,∞) is not once strongly differentiable on (0,∞).
Now, suppose that Re λn(k) → −∞ as k → ∞.
Without restricting generality, we can regard that

Re λn(k) ≤ −k, k = 1, 2, . . . . (4.64)

Let

f :=
∞∑

k=1

1
k2

en(k). (4.65)



24 International Journal of Mathematics and Mathematical Sciences

For any t ≥ 0 and an arbitrary g∗ ∈ X∗,

∫

σ(A)
etReλdv

(
f, g∗, λ

)
considering (4.49), by (2.9);

=
∞∑

k=1

1
k2

∫

Δn(k)

etReλdv
(
en(k), g

∗, λ
)

for λ ∈ Δn(k), by (4.42) and (4.64), Re λ = Re λn(k) +
(
Re λ − Re λn(k)

)

≤ Re λn(k) +
∣
∣λ − λn(k)

∣
∣ ≤ −k + 1 ≤ 0;

≤
∞∑

k=1

1
k2v

(
en(k), g

∗,Δn(k)
)

by (2.8);

≤
∞∑

k=1

1
k2 4M

∥∥en(k)
∥∥∥∥g∗∥∥ = 4M

∥∥g∗∥∥
∞∑

k=1

1
k2 < ∞.

(4.66)

Analogously, for an arbitrary t ≥ 0,

sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)|etReλ>n}
etRe λdv

(
f, g∗, λ

)

≤ sup
{g∗∈X∗|‖g∗‖=1}

∞∑

k=1

1
k2

∫

Δn(k)∩{λ∈σ(A)|etReλ>n}
1dv

(
en(k), g

∗, λ
)

= sup
{g∗∈X∗|‖g∗‖=1}

∫

{λ∈σ(A)|etReλ>n}
1dv

(
f, g∗, λ

)
by (2.7);

≤ sup
{g∗∈X∗|‖g∗‖=1}

4M
∥∥∥EA

({
λ ∈ σ(A) | etReλ > n

})
f
∥∥∥
∥
∥g∗∥∥

= 4M
∥
∥∥EA

({
λ ∈ σ(A) | etReλ > n

})
f
∥
∥∥ by the strong continuity of the s.m.;

−→ 0 as n −→ ∞.

(4.67)

From (4.66) and (4.67), by [2], Proposition 3.1, we infer that f ∈ ⋂0≤t<∞D(etA).
Therefore (see Section 1), y(t) := etAf , 0 ≤ t < ∞, is a weak solution of (1.1) on [0,∞).
Let

h∗ :=
∞∑

k=1

1
k2

e∗n(k) ∈ X∗ (4.68)

(cf. (4.51)).
Taking into account (4.50) and (4.51), we have

〈
en(k), h

∗〉 ≥ ε

k2
, k = 1, 2, . . . . (4.69)
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For any λ ∈ Δn(k), k = 1, 2, . . ., by (4.47) and (4.64),

Re λ = Re λn(k) +
(
Re λ − Re λn(k)

)

≤ Re λn(k) +
∣
∣Re λ − Re λn(k)

∣
∣

≤ Re λn(k) + εn(k) ≤ Re λn(k) + 1 ≤ −k + 1 ≤ 0,

Re λ > min(0,−b− ln|Im λ|),

(4.70)

Hence, for λ ∈ Δn(k), k = 1, 2, . . .,

|λ| ≥ |Imλ| ≥ eb
−1
− [−Reλ]. (4.71)

Using these estimates, we have

∫

σ(A)
|λ|e(b−1− /2)Re λdv

(
f, h∗, λ

)
considering (4.49), by (2.9);

=
∞∑

k=1

1
k2

∫

Δn(k)

|λ|e(b−1− /2)Reλdv
(
en(k), h

∗, λ
)

≥
∞∑

k=1

1
k2

∫

Δn(k)

e(b
−1
− /2)[−Reλ]dv

(
en(k), h

∗, λ
) ≥

∞∑

k=1

e(b
−1
− /2)[k−1]

k2 v
(
en(k), h

∗,Δn(k)
)

≥ e−b
−1
− /2

∞∑

k=1

e(b
−1
− /2)k

k2

∣∣〈EA

(
Δn(k)

)
en(k), h

∗〉∣∣ by (4.49), (4.64), and (4.69);

≥ e−b
−1
− /2ε

∞∑

k=1

e(b
−1
− /2)k

k4
= ∞.

(4.72)

Whence, by the properties of the o.c. and [2], Proposition 3.1, y(b−/2) = e(b
−1
− /2)Af /∈ D(A).

Therefore, by Proposition 3.1, the weak solution y(t) = etAf , 0 ≤ t < ∞, of (1.1) on
[0,∞) is not once strongly differentiable on (0,∞).

With every possibility concerning {Reλn}∞n=1 considered, we infer that the opposite to
the assumption that there is a b+ > 0 such that, for any b− > 0, the set σ(A)\Lb− ,b+ is bounded,
allows to single out a weak solution of (1.1) on [0,∞) that is not once strongly differentiable
on (0,∞), much less strongly infinite differentiable on (0,∞).

Thus, the “only if” part has been proved by contrapositive.

Theorem 5.2 of [3] and Theorem 4.1 of [4] have been generalized.

5. Certain Effects of Smoothness Improvement

As we observed in the proofs of the “only if” parts of Theorems 4.1 and 4.2, the opposits to
the “if” parts’ premises imply that there is a weak solution of (1.1) on [0,∞), which is not
strongly differentiable at 0 or, respectively, once strongly differentiable on (0,∞).
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Therefore, the case of finite strong differentiability of the weak solutions is superfluous
and we obtain the following effects of smoothness improvement.

Proposition 5.1. If every weak solution of (1.1) on [0,∞) is strongly differentiable at 0, then all of
them are strongly infinite differentiable on [0,∞).

Proposition 5.2. If every weak solution of (1.1) on [0,∞) is once strongly differentiable on (0,∞),
then all of them are strongly infinite differentiable on (0,∞).

These statements generalize Propositions 6.1 and 6.2 of [3], respectively, the latter
agreeing with the case when A is a linear operator (not necessarily spectral of scalar type)
generating a C0-semigroup (cf. [1, 13]).

6. Final Remarks

Due to the scalar type spectrality of the operator A, all the above criteria are formulated exclu-
sively in terms of its spectrum, no restrictions on the operator’s resolvent behavior necessary,
which makes them inherently qualitative and more transparent than similar results for C0-
semigroups (cf. [14]).

If a scalar type spectral A generates a C0-semigroup (cf. [15]), we immediately obtain
the results of paper [4] regarding infinite differentiability.
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