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We deal with the transmembrane sodium diffusion in a nerve. We study amathematical model of a
nerve fibre in response to an imposed extracellular stimulus. The presentedmodel is constituted by
a diffusion-drift vectorial equation in a bidomain, that is, two parabolic equations defined in each
of the intra- and extra-regions. This system of partial differential equations can be understood
as a reduced three-dimensional Poisson-Nernst-Planck model of the sodium concentration. The
representation of the membrane includes a jump boundary condition describing the mechanisms
involved in the excitation-contraction couple. Our first novelty comes from this general dynamical
boundary condition. The second one is the three-dimensional behaviour of the extracellular
stimulus. An analytical solution to the mathematical model is proposed depending on the
morphology of the excitation.

1. Introduction

In the nervous system, there exists a cell transmembrane voltage due to the several types of
ions on the opposite sites of the membrane [1, 2]. The ionic transmembrane flow is obtained
by means of a given (mechanical, chemical, or electrical) signal. The action potential is
generated on the membrane of the excitable cells. At the depolarisation stage, the inward
sodium current appears if the voltage increases past a critical threshold, typically 15mV
higher than the resting value [3]. This runaway condition, whereby the positive feedback
from the sodium current activates even more sodium channels, reveals the importance of
the sodium ions among all ions presented in the axoplasm (the electrolytic fluid in the
interior of the axon). Here, we deal with the ionic flow for the Na+ ions described by
the ionic concentration (molm−3). In order to understand the action potential and to offer
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predictions, the well-known Hodgkin-Huxley (HH for short) model plays an essential role
for the quantitative understanding of the biological phenomena [4]. This work proposed
that the action of potential in axon membranes can be analysed using cable theory. The
authors proposed a system of four ordinary differential equations (ODEs) describing the
current clamped experiments. Indeed, the previously unobserved dynamics in the HHmodel
has a chaotic behaviour [5]. The field of computational neurophysiology has a long history
containing extensive studies about the excitation of neural elements [6, 7]. A constructive
discussion on the appropriate modelling of neural structures and their stimulation and
blocking activities, by electrodes relatively remote from the target nerve cell, is provided
in [6]. Rattay’s book [7] illustrates whether the classical results for propagating action
potentials, say the HHmodel for nonmyelinated fibres and the Frankenhauser-Huxley model
for myelinated fibres, and subsequent analytical and numerical models may embody the
phenomena and fit the electrophysical experiments. (The nerve cell or neuron is constituted
by the soma (the cellular body), the dendrite, and one axon that connects the previous
two. Some neurons have axons with an insulating layer, discontinuous, the so-called myelin
sheath. These are the myelinated fibres. Neurons with naked axons, that is axons without
myelin covering, are the so-called unmyelinated fibres [8].) Modified ODE systems [9–
14] have extended the standard HH model and have been analysed through phase space
methods (where equations are not explicitly solved). The control theory of the nonlinear
systems exhibits chaotic behaviour of the version also known as the Fitzhugh-Nagumo (FN)
model that consists of a second-order ODE dealing with the variation in time of the gating
quantities and reinterprets the model developed by Hodgkin-Huxley [9]. Fitzhugh in [10]
deals with a stable state and threshold phenomena as well as stable oscillations described
by two variables of state, representing excitability and refractoriness, which are solutions of
the so-called Bonhoeffer-van der Pol model. An extended FN system of ODE is numerically
integrated in two different one-dimensional situations: free fibre and an externally stimulated
clamped one [11]. A second-order differential equation of generalised FN type is solved by
the least squares method, having as a solution the given single component (action potential)
of the numerical solution [12]. Other variants of the HHmodel can be found in [13], based on
geometric singular perturbation theory. Dynamics of spike initiation in other simplifications
of the HH model, namely, the Morris-Lecar model, is exploited with phase plane and
bifurcation analysis [14].

Recently, using the Green function’s method, analytic solutions for the cable equation
response to the extracellular stimulus current have been found [15]. This alternative
interpretation of the situation is the first step to understand the behaviour of the potential
solution.

Our concern is to understand the dynamics on the electrodiffusion of charged
molecules (in particular, Na+ ions). We refer to [16, 17] for the 3D Poisson-Nernst-
Planck (PNP) model analysed by finite element methods. Using a dynamic lattice Monte
Carlo model [18], a description of the electrochemical processes is provided for the
ion transport. After the reduction of the PNP model to a system of first-order ODE,
in [19] the construction of singular orbits and the application of geometric singular
perturbation theory provide information over permanently charged ions flow through an ion
channel.

Different mathematical models also study electrodiffusion. In [20], the authors look
at a governing equation from the Maxwell equation in the quasistationary approximation
when the electric potential jumps across the interface, and these jumps satisfy a dynamical
condition (roughly speaking, in the form of a hyperbolic differential equation on the
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interface itself). In [21], the convergence of an electrochemical model is shown for
a mixture of charged particles in a solution subject to prescribed electric potentials
at two electrodes into a unique steady-state boundary value problem. An alternative
approach, modelling the transmembrane potential in electrocardiology [22], considers
a bidomain with a dynamic boundary jump condition, which is closely related to
ours.

The membrane dynamics used in this paper is based on the mathematical model
started in the work [23]. Our model is derived from the Maxwell equations with current
density defined by the Fick-Ohm law. Then, a drift term is included by the electrical
contribution, which does not happen in the diffusion formulations obtained by mass and
momentum conservation laws.

Experimentally, an action potential is often generated by a rapid injection of current at
a fixed point in the resting axon, which then spreads from the point of stimulation. However,
the nerve cell is a three-dimensional structure. Even if a stimulus current pulse is arranged by
the insertion of an electrode, a local current is developed. The membrane potential of the cell
is not uniform at all points. The depolarisation spreading passively from an excited region
of the membrane (near the insertion region of the electrode) to a neighbouring unexcited
region occurs in three dimensions until uniformity is reached. This means that there is an
interval of time where the flow has an angular dependence. The discrepancy between theory
and experiments depends on the configuration of the experimental apparatus fromwhich the
propagated action potential was initiated and the strength of the current used to generate it
[24]. Indeed, the discrepancy between the theoretical predicted and reported speeds of the
propagated action potential is a consequence of neglecting the radial variation that occurs
over small distances by comparison with axonal length. In [24], Fourier spectral methods
are used to construct periodic solutions of the intracellular and extracellular potential for the
Laplace equation.

The goal of the present study is to determine how the profile of the activation affects
the time parameter and the 3D domain of action potential initiating and, consequently, the
propagation. This nonlinear model highlights the fact that an action potential is not generated
instantaneously when the membrane potential crosses some preordained threshold [25]. We
refer to [26] where the excitation response of an idealised infinite fibre is evaluated from
the applied field of a unique point source electrode. Our main new contribution relies on
the angular dependence of the concentration, since the stimulation can reliably propagate
in a 3D form [25]. The description of the physiological phenomenon will be more realistic
with 3D models. Moreover, we assume no azimuthal symmetry because it reflects the
physical character of the biological phenomenon. In sum, we believe that these features can
contribute to remove the actual discrepancy between the predicted and observed speed of
the propagated action potential.

Several biological constants are used throughout the paper. We keep them abstract so
that the presented solution can be applied on different biological contexts. We illustrate their
values with some examples (squid, cat, etc.).

The paper is organised as follows. Section 2 is devoted to state an initial and boundary
value problem for the phenomenon under study. In Section 3 an analytical solution is
obtained. Section 4 is a combination of results and some discussions about the presented
model. In particular, a link to the now classical work of Hodgkin and Huxley (which can
be applied to similar models) and how the executed technique can be useful to a particular
example are discussed. Section 5 contains the conclusions. In the appendix, we briefly recall
the theory for the confluent hypergeometric equation.
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2. Statement of the Problem

The axon is a thin cellular extension, that may be short or long, responsible for transporting
the information (electrical impulses) from the soma to the dendrite [1]. The axon can be
described as a cylinder of length � and radius h, surrounded by a membrane Γm of negligible
thickness (the cylinder surface) and immersed in an extracellular medium

Ωe: =
{(
x, y, z

) ∈ R
3: 0 < x < �, h2 < y2 + z2 < r2

}
, (2.1)

for some 0 < h < r (see Figure 1). Let Ω ⊂ R
3 be a neighbourhood of the membrane Γm

defined as

Ω: =
{(
x, y, z

) ∈ R
3: 0 < x < �, (h − ε)2 < y2 + z2 < r2

}
, (2.2)

for some 0 < ε < h. Thus Ωi: = Ω \Ωe and Γm: = Ω \ (Ωi ∪Ωe) denote the intracellular space
and the membrane surface, respectively. Define the external boundary

Γ: = ]0; �[ ×
{(
y, z

) ∈ R
2: y2 + z2 = r2

}
. (2.3)

Let T > 0. The problem under study is defined by the system of parabolic equations (for
details see [23])

∂ci
∂t

−D∇2ci +
σi
ε
ci = 0 in Ωi × ]0, T[,

∂ce
∂t

−D∇2ce +
σe
ε
ce = 0 in Ωe × ]0, T[,

(2.4)

where D is the sodium diffusion coefficient (D = 0.267 × 10−9 m2 s−1), [27]) and ε is the
sodium permittivity (ε = 6.4 × 10−10 Fm−1). The instant of time t is measured in seconds,
∂/∂t denotes the time derivative, and ∇2 represents the Laplacian. Here, ce and ci denote
the sodium concentration, respectively, in Ωe and in Ωi, measured in molm−3. The electrical
conductivity σs, with s ∈ {i, e}, is considered homogeneous and constant at each subdomain
(extra- and intracellular domains), measured in Sm−1 [28]:

σe =
1
3

in Ωe, σi =
5
3

in Ωi. (2.5)

Other values for the diffusion coefficient and the electrical conductivity can be found in [29].
We assume the following boundary conditions:

∇ce · nΓ = 0 on Γ × ]0, T[, (2.6)

α
∂

∂t
[c] + β[c] = D∇ce · n on Γm × ]0, T[, (2.7)
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Figure 1: Schematic representations of the axon and its extracellular medium (not in scale) in the x-axis
direction from the input (x = 0) to the output (x = �) sites (this figure was produced by the function
ParametricPlot3D of the software Mathematica 5.2 developed by Wolfram Research, and Microsoft Office
Power Point).

where nΓ and n denote the outward normal to Γ and Γm, respectively. The insulating
boundary condition in (2.6) represents the zero outflow. The interface condition in (2.7)
governs the evolution of the discontinuity of the concentration, taking into account that the
concentration jumps [c]: = ce − ci across the membrane satisfy a dynamical condition [20].
Due to many conducting channels the lipid axonmembrane exhibits a capacitive/conducting
behaviour. It separates internal and external conducting solutions. Such a gap between two
conductors forms a significant electrical capacitor. In living cells, the ions lost via ionic
channels by diffusion are returned by ionic pumps in order to overcome the electrochemical
gradient [27]. We can distinguish three main states of the channel: open, closed, and inactive.
The opening of those channels requires several gating events. As in [20, 23], the gating
functions are assumed positive real constants.

At the instant t = 0, an external stimulus Φ, which can be electrical, mechanical, or
chemical, is applied to depolarise the resting membrane. On the external region in the two-
dimensional boundary {x = 0} the following condition holds:

∇ce · n
(
0, y, z, 0

)
= Φ

(
y, z

)
, (2.8)

where n = (1, 0, 0). The 1D propagation behaviour of an external stimulus has a peak in the
axon initial segment induced by the real (or simulated) synaptic inputs [30, 31]. Our firing
pattern plotted in Figure 2 corresponds to the 3D description. In the sequel, the 3D domain
is considered defined in cylindrical coordinates, that is, the x-axis indicates the longitudinal
distance along the length of the axon, ρ-axis the radial distance measured from the centre,
and θ-axis the angular measure that performs the real three-dimensional feature of the axon
behaviour. Then, the function Φ can be given by

Φ
(
ρ, θ

)
=
(
κ1ρ

−1/2 exp
(
τρ

)
+ κ2ρ1/2

)
cos

(
θ

2

)
, (2.9)



6 International Journal of Mathematics and Mathematical Sciences

−2
0

2θ

0

25

50

75

100

Φ
(ρ

,θ
)

ρ

2
4

6
8

10
×10−6

Figure 2: Adimensional plot of the mapping Φ considered in (2.9), for (ρ, θ) ∈ [h; r[×[−π ;π[. The plotted
surface illustrates the qualitative behaviour as function of the radius ρ and the angle θ, at the input site
(x = 0) and the initial instant of time (t = 0) (this figure was produced by Mathematica 5.2, developed by
Wolfram Research).

with κ1, κ2, τ ∈ R, for every (ρ, θ) ∈ [h; r[×[−π ;π[ (see Figure 2). The angular position θ =
0 corresponds to the closeness to the external source for the interval of time that current
redistribution is not concluded (see [7, page 154], e.g., for the monopolar electrode).

The initial condition is assumed constituted by an averaged condition:

∫

Ωi

ci(·, 0) = Ci,

∫

Ωe

ce(·, 0) = Ce, (2.10)

with the values of Ci and Ce depending on the physiological data (e.g., in a cat motoneuron
Ci = 15molm−3 and Ce = 150molm−3 (cf. [3]), and for values at the various axons we refer
to [32, 33] and references therein).

Finally, in order for the model to be accurate the Boltzmann principle must be satisfied.
For this purpose, it will be sufficient for the validation of the effect of the concentration ratio
through the membrane to be commensurable with the corresponding Nernst potential N in
the resting state, that is, at instance t = 0 and on Γm

(
ce
ci

)

ρ=h,t=0
= N: = exp

[
FzNa+Vd
RTr

]
, (2.11)

where Vd represents the depolarisation voltage, F is the Faraday constant (F = 9.649 ×
104 Cmol−1, [3]), R denotes the universal gas constant (R = 8.314 J (mol·K)−1), and Tr denotes
the reference absolute temperature, in Kelvin.

3. Analytical Solution

In this section we present an analytical solution for (2.4), for s = i, e. For the sake of simplicity
in notations, we will omit the index s when we look only at the generic equation. When we
also take into account the boundary and the initial conditions, we will denote with an index
s the solution and all the constants involved, for s = i, e.
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In cylindrical coordinates, both equations in (2.4) read as follows:

∂c

∂t
−D

(
∂2c

∂x2
+
∂2c

∂ρ2
+
1
ρ

∂c

∂ρ
+

1
ρ2
∂2c

∂θ2

)
+
σ

ε
c = 0, (3.1)

with (x, ρ, θ, t) ∈]0, �[×]h − ε, r[×] − π,π[×]0, T[. Indeed, the above system of parabolic
equations is considered together with the set of additional restraints (2.6)–(2.11). The
validation of the initial and the boundary conditions specifies the choice of the several
constants involved in the characterisation of the solutions, namely, ξ, δ0,i, δ1,i, δ2,i, ι, and η
(see Section 4). Thus, we get a solution (see Section 3.1, for details):

ce
(
x, ρ, θ, t

)
=

1
ξ

(
κ1ρ

−1/2 exp
[
τρ

]
+ κ2ρ1/2

)
exp

[
ξx +

(
ξ2D − σe

ε

)
t

]
cos

(
θ

2

)
, (3.2)

with ξ given by (3.25), and

ci
(
x, ρ, θ, t

)
: =

(
δ1,iρ

−1/2 exp
[
ξx + (ξ + ι)ρ +

(
ξ2D − σe

ε

)
t

]

+
(
δ2,iρ

−1/2 exp
[(
η + ι

)
ρ
]
+ δ0,iρ1/2

)
exp

[
ηx +

(
η2D − σi

ε

)
t

])
cos

(
θ

2

)
,

(3.3)

where δ0,i, δ1,i, δ2,i, ι, and η are correlated such that (3.31)–(3.38) hold.

3.1. A Formal Derivation

Here we show an analytical solution for (2.4). First we study the differential equation (3.1);
then we find an explicit solution for both the extra- and intracellular concentrations. Inspired
by the Fourier method of separation of variables, a useful method for finding a solution of a
partial differential equation with several variables, we look for a solution of the form

c
(
x, ρ, θ, t

)
= Y

(
x, ρ, t

)
Z(θ). (3.4)

Consequently, from substituting this in (3.1) we obtain

− 1
D

∂tY

Y
+
∂xxY

Y
+
∂ρρY

Y
+
1
ρ

∂ρY

Y
+

1
ρ2
Z′′

Z
− σ

Dε
= 0, (3.5)

where ∂κY : = ∂Y/∂κ and ∂κκ = ∂2Y/∂κ
2, for κ ∈ {t, x, ρ}. Then there exists λ ∈ R such that

Z′′(θ) = λZ(θ),

λ =

[
1
D

(
∂tY

Y

(
x, ρ, t

)
+
σ

ε

)
− ∂xxY

Y

(
x, ρ, t

) − ∂ρρY

Y

(
x, ρ, t

) − 1
ρ

∂ρY

Y

(
x, ρ, t

)]
ρ2.

(3.6)
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Remark 3.1. The second-order ordinary differential equation for Z has the following solutions.
If λ < 0, then there exist real constants d1, d2 such that

Z(θ) = d1 cos
(√

|λ|θ
)
+ d2 sin

(√
|λ|θ

)
; (3.7)

if λ = 0, then there exist real constants d1, d2 such that Z(θ) = d1θ + d2;
if λ > 0, then there exist real constants d1, d2 such that

Z(θ) = d1 exp
(√

λθ
)
+ d2 exp

(
−
√
λθ

)
. (3.8)

We observe that the validation of the phenomenal data yields the choice of λ < 0 and
bounded.

By Remark 3.1, λ is negative. Thus, the second-order ordinary differential equation for
Z has the solution given by (3.7), where d1, d2 are real constants. Since we are interested
in a nonnegative valued solution for (2.4), we assume that Y and Z are both nonnegative
functions. Then, from (3.7)we get

Z(θ) = d cos
(√

|λ|θ
)
, (3.9)

with d nonnegative real constant. We will now analyse the second equation from (3.6), that
is,

ρ2
[
∂xxY + ∂ρρY − 1

D
∂tY − σ

Dε
Y

]
+ ρ∂ρY + λY = 0. (3.10)

Inspired by the theory for the confluent hypergeometric equations (see the appendix), we
look for a function of the form

Y
(
x, ρ, t

)
= ρ−

√
|λ|u

(
x, ρ, t

)
+ ρ

√
|λ|v(x, t) (3.11)

that satisfies (3.10), where

u
(
x, ρ, t

)
=

∞∑
j=0

fj
(
x + ρ + pDt

)j exp[ax + bρ + qDt
]
, (3.12)

and a, b, p, and q are real constants to be chosen later. Solving (3.10) for ρ
√

|λ|v, we get

∂xxv − 1
D
∂tv − σ

Dε
v = 0. (3.13)
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Thus, we choose (see [34])

v(x, t) = v0 exp
[
ξx +

(
ξ2D − σ

ε

)
t

]
, (3.14)

with ξ ∈ R, and v0 > 0 in order to get positive solutions. Solving (3.10) for ρ−
√

|λ|u, we obtain

+∞∑
j=0

[
2
(
j + 1

)(
j + 2

)
fj+2 +

(
2(a + b) − p)(j + 1

)
fj+1

+
(
a2 + b2 − q − σ

εD

)
fj

]
· (x + ρ + pDt

)j = 0.

(3.15)

3.1.1. Exterior Case

For simplicity, we will keep the unknown constants λ, d, fj , p, a, b, q, v0, and ξ without
the extracellular subscripts. In order to find the extracellular concentration ce, we use the
Neumann boundary condition (2.6) in cylindrical coordinates. Thus, from (3.11)–(3.14) we
get

∞∑
j=0

[(
j + 1

)
fj+1 +

(
b −

√
|λ|
r

)
fj

](
x + r + pDt

)j

= −
√
|λ|r2

√
|λ|−1v0 exp

[
(ξ − a)x − br +

(
ξ2 − q − σe

εD

)
Dt

]
.

(3.16)

Applying the Taylor formula in (x − x0), with x0 = −(r + pDt), and denoting Uj = j!fj , we
have

Uj+1 +

(
b −

√
|λ|
r

)
Uj = −

√
|λ|r2

√
|λ|−1v0(ξ − a)j

× exp
[
(a − ξ − b)r +

(
(a − ξ)p + ξ2 − q − σe

εD

)
Dt

]
.

(3.17)

Since there is no dependence in time, we get

(ξ − a)p + q = ξ2 − σe
εD

. (3.18)

DenotingM: = b −
√
|λ|/r andN: = −

√
|λ|r2

√
|λ|−1v0 exp[(a − ξ − b)r], it follows that

Uj+1 = −MUj +N(ξ − a)j ,

Uj+2 =M2Uj +N(−M + ξ − a)(ξ − a)j .
(3.19)
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From (3.15) it follows that

2Uj+2 +
(
2(a + b) − p)Uj+1 +

(
a2 + b2 − q − σe

εD

)
Uj = 0. (3.20)

Thus, introducing (3.19) into (3.20) and using (3.18), after some calculations we obtain Uj =
(ξ − a)jf0, with

f0 =

√
|λ|r2

√
|λ|−2v0 exp[(a − ξ − b)r]

(
2ξr + 2

√
|λ| − pr

)

(a − b)2 + 2(a − b)
√
|λ|/r + 2|λ|/r2 + p

(
b + ξ − a −√

|λ|/r
)
− ξ2

. (3.21)

Thus,

ue
(
x, ρ, t

)
= f0 exp

[
ξx + (ξ − a + b)ρ +

(
ξ2 − σe

εD

)
Dt

]
, (3.22)

and consequently

Ye
(
x, ρ, t

)
=
(
f0ρ

−
√

|λ| exp
[
(ξ − a + b)ρ

]
+ v0ρ

√
|λ|
)
· exp

[
ξx +

(
ξ2D − σe

ε

)
t

]
. (3.23)

Notice that it still remains to find λ, d, a, b, v0, and ξ. Using (2.8), (3.9), and (3.23), we
obtain

√
|λ| = 1/2 (hence, λ = −1/4), d = κ1/(f0ξ), b−a = τ − ξ, and v0 = f0κ2/κ1, concluding

that

ce
(
x, ρ, θ, t

)
=

1
ξ

(
κ1ρ

−1/2 exp
[
τρ

]
+ κ2ρ1/2

)
exp

[
ξx +

(
ξ2D − σe

ε

)
t

]
cos

θ

2
. (3.24)

Finally, the initial condition (2.10) yields

exp[ξ�] − 1
ξ

(
κ1

∫ r

h

ρ1/2 exp
[
τρ

]
dρ +

2
5
κ2
(
r5/2 − h5/2

))
=
Ce

4
. (3.25)

This means that ξ is well defined.

3.1.2. Interior Case

We are interested in finding the intracellular concentration ci using the forms (3.12) and
(3.14):

ci
(
x, ρ, θ, t

)
=
(
dρ−1/2u

(
x, ρ, t

)
+ δ0,iρ1/2 exp

[
ηx +

(
η2D − σi

ε

)
t

])
cos

θ

2
, (3.26)

with δ0,i = dv0 = κ2/ξ and λ = −1/4. Here, we consider new unknown constants d, fj , p, a, b,
q, δ0,i, and η (some of them relabelled to avoid the use of the intracellular subscripts).
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First, notice that (3.15) is verified under these new unknown constants, and again
(3.15) implies (3.20)with σe replaced by σi, that is,

2Uj+2 +
(
2(a + b) − p)Uj+1 +

(
a2 + b2 − q − σi

εD

)
Uj = 0. (3.27)

Next, we verify (2.7). Introducing (3.24) and (3.26) in (2.7), we obtain

∞∑
j=0

d
(
αpDfj+1

(
j + 1

)
+
(
αqD + β

)
fj
)(
x + h + pDt

)j

= −δ0,ih exp
[
−bh +

(
η − a)x +

(
η2D − σi

ε
− qD

)
t

](
α

(
η2D − σi

ε

)
+ β

)

+
exp

[−bh + (ξ − a)x +
(
ξ2D − σe/ε − qD

)
t
]

ξ

×
(
κ1

(
α

(
ξ2D − σe

ε

)
+ β +D

(
1
2
− hτ

))
exp(τh)

+κ2h
(
α

(
ξ2D − σe

ε

)
+ β − D

2

))
.

(3.28)

Arguing as in the exterior case (see Section 3.1.1), we can apply the Taylor formula in (x−x0)
with x0 = −(h + pDt) resulting in for each time level,

Uj+1 = −MUj +N(ξ − a)j + P(η − a)j ,

Uj+2 =M2Uj +N(−M + ξ − a)(ξ − a)j + P(−M + η − a)(η − a)j ,
(3.29)

whereM := q/p + β/(αpD) and

P(t): = − δ0,ih

dαpD
exp

[(
a − η − b)h +

((
a − η)p + η2 − σi

εD
− q

)
Dt

]

×
(
α

(
η2D − σi

ε

)
+ β

)
,

N(t): =
1

dαpDξ
exp

[
(a − ξ − b)h +

(
(a − ξ)p + ξ2 − σe

εD
− q

)
Dt

]

×
(
κ1

(
α

(
ξ2D − σe

ε

)
+ β +D

(
1
2
− hτ

))
exp(τh)

+κ2h
(
α

(
ξ2D − σe

ε

)
+ β − D

2

))
.

(3.30)
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Introducing (3.29) into (3.27), we conclude that dUj = j!dfj = (ξ − a)jδ1,i + (η − a)jδ2,i,
where

δ1,i
d

= 2N
M − ξ − b + p/2

2M2 −M(
2(a + b) − p) + a2 + b2 − q − σi/(εD)

, (3.31)

δ2,i
d

= 2P
M − η − b + p/2

2M2 −M(
2(a + b) − p) + a2 + b2 − q − σi/(εD)

. (3.32)

This implies the existence of the solution (3.3) if there is time independence in (3.31) and
(3.32). This time independence can be given into (3.30) implying

(
η − a)p + q = η2 − σi

εD
, (3.33)

(ξ − a)p + q = ξ2 − σe
εD

. (3.34)

These mean that the constants p and q are well defined, and P(t) ≡ P andN(t) ≡N for all t.
Notice that the constants δ1,i, and δ2,i are well defined observing that the constants a,

b, δ0,i and η will be known. For the sake of simplicity, if we take ι = b − a, then (3.26) leads us
to (3.3). Thus, condition (2.10) reads

Ci

4
=

exp[ξ�] − 1
ξ

δ1,i

∫h

h−ε
ρ1/2 exp

[
(ξ + ι)ρ

]
dρ +

exp
[
η�

] − 1
η

×
(
δ2,i

∫h

h−ε
ρ1/2 exp

[(
η + ι

)
ρ
]
dρ +

2δ0,i
5

(
h5/2 − (h − ε)5/2

))
.

(3.35)

This yields the choice for η. Finally, from (2.11) it follows that

1
ξ

(
k1√
h
exp[τh] + k2

√
h

)
exp[ξx]

= N
(
δ1,i√
h
exp[ξx + (ξ + ι)h] +

δ2,i√
h
exp

[
ηx +

(
η + ι

)
h
]
+ δ0,i

√
h exp

[
ηx

])
,

(3.36)

for all x ∈]0, �[. Hence, the algebraic system for ι and δ0,i is

1
ξ

(
k1√
h
exp[τh] + k2

√
h

)
= Nδ1,i√

h
exp[(ξ + ι)h], (3.37)

δ0,i = −δ2,i
h

exp
[(
η + ι

)
h
]
, (3.38)

concluding their existence.
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4. Results and Discussion

Our continuum model (2.4)–(2.11) is developed to identify and analyse the diffusion
phenomena, focusing on the average density distribution of species of charged particles and
their description through unified partial differential equations (PDEs). We showed that these
PDEs admit the existence of explicit solutions (3.2) and (3.3) for the intra- and extracellular
sodium concentrations with well-determined constants, namely,

(i) κ1, κ2, and τ come from the profile of the extracellular stimulation (2.9),

(ii) ξ is given by (3.25), which is calculated from the initial condition (2.10) for the
intracellular sodium concentration,

(iii) η is given by (3.35), which is calculated from the initial condition (2.10) for the
extracellular sodium concentration,

(iv) ι and δ0,i are determined in (3.37) and (3.38), which come from the Boltzmann
principle (2.11),

(v) δ1,i and δ2,i are determined in (3.31) and (3.32), which come from the jump
condition (2.7).

This result relates to the underlying mechanisms of electrodiffusion in sodium ions.
However, we emphasise that it can be applied to any charged particles.

The axon membrane acts as an interface between the intra- and extracellular
concentrations of the Na+ ions where a dynamical jump condition is taken into account
(see (2.7)). This avoids studying the ionic diffusion across the membrane. Indeed, the
membrane is regarded such that the sodium concentration defined in the whole domain
may suffer a finite jump when the membrane surface is crossed. The limit values of the
sodium concentration may not, therefore, be the same when the membrane is approached
from either the exterior or the interior. The concentration difference between the outside and
inside of the membrane in (2.7) transports ions against their concentration gradients (from
regions of high concentration to regions of low concentration). Therefore, this jump interface
condition includes the continuous process of autotransformation of the membrane due to the
movement of the proteins that transport ions. The first time derivative produces irreversible
motion due to the exponential time-dependent factor. In order to determine the validity of
the presence of α and β in (2.7), we pay attention to the HH model, as most of the models in
electrophysiology are either its variants or its simplifications. The sodium conductance GNa,
measured in Sm−2, is regulated by voltage-dependent activation and inactivation variables
usually called gating variables. The sodium conductance of the squid axon membrane is a
product of three terms: a scale factor term gNa, a turning-on process m3, and an inactivating
process h, where m and h denote the activation and the inactivation of the sodium current,
respectively [3, 4, 7]:

GNa = gNam
3h = 120m3h. (4.1)
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Their dynamics are described by the ODE system:

dm

dt
=

0.1(25 − V )
exp[(25 − V )/10] − 1

(1 −m) − 4
exp[V/18]

m,

dh

dt
=

0.07
exp[V/20]

(1 − h) − 1
exp[(30 − V )/10] + 1

h,

(4.2)

where V = Vm − VNa, with Vm and VNa representing the membrane potential and sodium
equilibrium potential, in mV. This formulation expresses that the sodium conductance
activation and inactivation are decoupled variables. A revised version of the HHmodel based
on the molecular reaction sequence to account for both sodium and potassium conductance
transients (Goldman-Hodgkin-Katz equation) was introduced by Clay [35]. Other kinetic
cycles were proposed in [36] and references therein. Clearly, all these coincide with the HH
model when one species is taken into account. Therefore, if the thickness of themembrane has
a positive Lebesgue measure, the sodium conductance system can be modelled by expressing
the kinetic model output as

I = Cm
∂V

∂t
+ (Vm − VNa)GNa, (4.3)

with Cm denoting the membrane capacitance (Fm−2). Since (4.2) has usually been solved
under steady-state gating functions, which means that V ≡ V (x), then, passing to the limit as
the thickness tends to zero, the steady-state conduction gives the characterisation

β ∼ σm
(
membrane conductivity

)
, (4.4)

considering the Poisson equation to compute the electric field from the charge present into
the system

−∇ · (ε∇V ) = Fzc. (4.5)

Using a time-dependent argument, α is correlated with the membrane permittivity. We refer
to [37], a study of the electrical properties of the cell surface, known as the membrane.

Also, ourmodel fits the PNPmodel. Considering only one species, this electrodiffusion
model is constituted by the Nernst-Planck equation to compute the ionic flux in an
electrochemical gradient, in our notations,

∂c

∂t
+∇ ·D

(
∇c + Fz

kBT
c∇V

)
= 0, (4.6)

and the adjoined Poisson equation (4.5), with kB representing the Boltzmann constant.
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Finally, we discuss how powerful is the technique executed here for the finding of
explicit solutions to similar models. For instance, if we take the model from [38], with ci and
ce given by (3.26) and (3.24), respectively,

∂ci
∂t

= αce − βci, (4.7)

then equality (3.28) reads

∞∑
j=0

d
(
pDfj+1

(
j + 1

)
+
(
qD + β(t)

)
fj
)(
x + h + pDt

)j

= −α(t)δ0,ih exp
[
−bh +

(
η − a)x +

(
η2D − σi

ε
− qD

)
t

]

+
exp

[−bh + (ξ − a)x +
(
ξ2D − σe/ε − qD

)
t
]

ξ

×
(
κ1

(
α(t) +D

(
1
2
− hτ

))
exp(τh) + κ2h

(
α(t) − D

2

))
,

(4.8)

observing that α ≡ α(t) and β ≡ β(t). Therefore, it follows thatM(t): = q/p + β(t)/(pD),

P(t): = −α(t)δ0,ih
dpD

exp
[(
a − η − b)h +

((
a − η)p + η2 − σi

εD
− q

)
Dt

]
,

N(t): =
1

dpDξ
exp

[
(a − ξ − b)h +

(
(a − ξ)p + ξ2 − σe

εD
− q

)
Dt

]

×
(
κ1

(
α(t) +D

(
1
2
− hτ

))
exp(τh) + κ2h

(
α(t) − D

2

))
.

(4.9)

As in Section 3.1, expressions (3.31) and (3.32), with these new expressions, imply the
existence of the solution (3.3) if there is independence in time. Thus, new relations can be
obtained between the unknown constants of the executed technique and the physiological
data, observing that the gating functions have exponential forms. Notice that the extracellular
concentration keeps its definition, and this new jump condition (4.7) infers new constants into
the definition for the intracellular concentration.

The mobility of sodium channels, the mechanisms by which they are distributed over
neurons, and the maintenance of this distribution are important issues for the physiology
of excitable cells. Recent progress in determining 3D structures of biomolecules such as
ion channels greatly facilitates the diffusion continuum description; see, for instance, [39].
The theory behind electrodynamics turns into the electrobiology by studying the diffusing
channels which are simply reflected by the boundary.

5. Conclusions

The present work addresses the 3D effects of an initial stimulus applied on a section of the
axon instead of over a point source. The obtained analytical solution demonstrates that the
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angularly distributed nature plays a crucial role in determining the action potential initiation.
The sinusoidal shape over the angular structure is not documented in the literature since
the experimental studies are devoted to the radial and longitudinal behaviours [40]. In [28],
a 3D model predicts changes in the effects of the activation and inactivation gates of the
sodium channel and consequently in the response on the action potential from the applied
point source (in particular, the electrode position) relative to the geometry of the neuron.

Here, the electrical conduction on the initial segment has the same pattern whether
or not the axon is ensheathed in myelin [41]. Since the myelin sheath can be considered as
a perfect insulator due to the core-conductor theory, the ionic flux only crosses the fibre at
the nodes of Ranvier situated at the membrane of a myelinated axon. Therefore, our model
can consider either unmyelinated or myelinated fibres taking the subunit Ω at each node
compartment with � representing the nodal gap width, that is, (2.7) describes the membrane
dynamics in discrete space intervals. Even when an unmyelinated fibre is partly covered by
Schwann cells, the axon membrane is separated from these cells by a space that is connected
with the extracellular space [7, page 34].

Our main result is the existence of explicit solutions for the intra- and extracellular
sodium concentrations. From Section 4, we can conclude that although the gating parameters
were assumed constants our technique is sufficiently powerful to be applied to time-
dependent parameters. Consequently, our model allows more complex solutions in
accordance with the same physiological data.

The existence of an analytical solution to our model constitutes the basis of ongoing
numerical analysis, in order to understand the accurate evaluation during diffusion and to
confirm the theoretical findings.

Appendix

Following [42], we briefly present the main ideas of the theory for second-order linear
differential equation with a regular singularity.

Consider the second-order linear differential equation

y′′ + p(z)y′ + q(z)y = 0. (A.1)

We say that z = 0 is a regular singular point for (A.1) if there exist F and G analytical functions
at z = 0 such that

p(z) =
F(z)
z

, q(z) =
G(z)
z2

. (A.2)

We recall that u is an analytic function at z = 0 if u is the sum of its Taylor series at z = 0, in
some neighbourhood of that point, that is

u(z) =
∞∑
n=0

u(n)(0)
n!

zn. (A.3)
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We nowproceedwith the following particular case (the Schrödinger equation for one particle,
in spherical coordinates):

d2ψ

dz2
+
1 − λ − λ′

z

dψ

dz
+
(
−k2 +

(
2α
z

)
+
(
λλ′

z2

))
ψ = 0, (A.4)

where λ, λ′, α, and k are constants. Here,

F(z) = 1 − λ − λ′, G(z) = −k2z2 + 2αz + λλ′. (A.5)

For this equation z = 0 is a regular singular point. Since λ and λ′ are the solutions of the
so-called indicial equation associated to (A.4), precisely

r2 + (F(0) − 1)r +G(0) = 0, (A.6)

then

ψ1 = zλu1(z), ψ2 = zλ
′
u2(z) (A.7)

are solutions for (A.4), where u1 and u2 are analytic functions at z = 0. Setting ψ = zλf(z),
with f(z) = u1(z) + zλ

′−λu2(z), then f satisfies

f ′′ +
(
1 + λ − λ′

z

)
f ′ +

(
2α
z

− k2
)
f = 0. (A.8)

Now setting f(z) = e−kzF(z), we obtain the following equation for F:

F ′′ +
(
1 + λ − λ′ − 2k

z

)
F ′ −

(
k(1 + λ − λ′) − 2α

z

)
F = 0, (A.9)

which admits one analytical solution at z = 0 (since its indicial equation is r(r − λ′ − λ) = 0).
Consequently, we get the solution ψ = zλe−kzF(z) for (A.4). We obtain the explicit formula for
the solution substituting the general series form F =

∑∞
n=0 Fnz

n into (A.9). Setting w = z/2k,
c = 1 + λ − λ′, and a = (1/2)(1 + λ − λ′) − α/k, we can rewrite (A.9) into the following form:

w
d2F

dw2
+ (c −w)

dF

dw
− aF = 0, (A.10)

which is the so-called confluent hypergeometric equation.
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