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Let X be a Banach space and let G be a closed bounded subset of X. For (x1, x2, . . . , xm) ∈ Xm, we
set ρ(x1, x2, . . . , xm,G) = sup{max1≤i≤m‖xi−y‖ : y ∈ G}. The setG is called simultaneously remotal
if, for any (x1, x2, . . . , xm) ∈ Xm, there exists g ∈ G such that ρ(x1, x2, . . . , xm,G) = max1≤i≤m‖xi−g‖.
In this paper, we show that if G is separable simultaneously remotal in X, then the set of ∞-
Bochner integrable functions, L∞(I, G), is simultaneously remotal in L∞(I, X). Some other results
are presented.

1. Introduction

Let X be a Banach space and G a bounded subset of X. For x ∈ X, set ρ(x,G) = sup{‖x −
y‖ : y ∈ G}. A point g0 ∈ G is called a farthest point of G if there exists x ∈ X such that
‖x − g0‖ = ρ(x,G). For x ∈ X, the farthest point map FG(x) = {g ∈ G : ‖x − g‖ = ρ(x,G)}, that
is, the set of points of G farthest from x. Note that this set may be empty. Let R(G,X) = {x ∈
X : FG(x)/=φ}. We call a closed bounded set G remotal if R(G,X) = X and densely remotal
if R(G,X) is a norm dense in X. The concept of remotal sets in Banach spaces goes back to
the sixties. However, almost all the results on remotal sets are concerned with the topological
properties of such sets, see [1–4]. Remotal sets in vector valued continuous functions was
considered in [5]. Related results on Bochner integrable function spaces, Lp(I, X), 1 ≤ p ≤ ∞,
are given in [6–8].

The problem of approximating a set of points x1, x2, . . . , xm simultaneously by a point
g (farthest point) in a subset G of X can be done in several ways, see [9]. Here, we will use
the following definition.



2 International Journal of Mathematics and Mathematical Sciences

Definition 1.1. Let G be a closed bounded subset of X. A point g ∈ G is called a simultaneous
farthest point of (x1, x2, . . . , xm) ∈ Xm if

ρ(x1, x2, . . . , xm,G) = sup
h∈G

max
1≤i≤m

(‖xi − h‖) = max
1≤i≤m

(∥∥xi − g
∥
∥). (1.1)

We call a closed bounded set G of a Banach space X simultaneously remotal if each m-tuple
(x1, x2, . . . , xm) ∈ Xm admits a farthest point in G and simultaneously densely remotal if the
set of points R(G,Xm) = {(x1, x2, . . . , xm) ∈ Xm : FG(x1, x2, . . . , xm)/=φ}, where

FG(x1, x2, . . . , xm) =
{
g ∈ G : ρ(x1, x2, . . . , xm,G) = max

1≤i≤m
(∥∥xi − g

∥
∥)

}
(1.2)

is norm dense in Xm.

Clearly, ifm = 1, then simultaneously remotal is precisely remotal.
In this paper we consider the problem of simultaneous farthest point for bounded sets

of the form L∞(I, G) in the Banach space L∞(I, X), where X is a Banach space.
Throughout this paper, X is a Banach space, G is a closed bounded subset of X and

L∞(I, X), the space of all X-valued essentially bounded functions on the unit interval I. For
f ∈ L∞(I, X), we set ‖f‖∞ = ess sup{‖f(s)‖ : s ∈ I}. For G ⊂ X, we set L∞(I, G) = {f ∈
L∞(I, X) : f(s) ∈ G, almost all s ∈ I}.

2. Distance Formula

The farthest distance formula is important in the study of farthest point. In this section, we
compute the∞-farthest distance from an element f ∈ L∞(I, X) to a bounded set L∞(I, G). We
begin with the following proposition.

Proposition 2.1. Let f1, f2, . . . , fm, thenmax1≤i≤m‖fi‖∞ = ess sup max1≤i≤m(‖fi(t)‖).

Proof. For 1 ≤ i ≤ m,

∥∥fi
∥∥
∞ = ess sup

∥∥fi(t)
∥∥ ≤ ess sup max

1≤i≤m
(∥∥fi(t)

∥∥) ≤ max
1≤i≤m

(∥∥fi
∥∥
∞
)
. (2.1)

Hence, max1≤i≤m‖fi‖∞ = ess supmax1≤i≤m(‖fi(t)‖)

Theorem 2.2. Let X be a Banach space and let G be a closed bounded subset of X. If a function
Φ : I → R defined by Φ(t) = ρ(f1(t), f2(t), . . . , fm(t), G), where f1, f2, . . . , fm ∈ L∞(I, X), then
Φ ∈ L∞(I) and

ρ
(
f1, f2, . . . , fm, L

∞(I, G)
)
= ‖Φ‖∞ = sup

g∈L∞(I,G)
max
1≤i≤m

(∥∥fi − g
∥∥
∞
)
. (2.2)

Proof. Let f1, f2, . . . , fm ∈ L∞(I, X). Being strongly measurable, there exist m sequences of
simple functions (fin), 1 ≤ i ≤ m such that ‖fin(t) − fi(t)‖ → 0 as n → ∞ for almost all
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t ∈ I. We may write fjn =
∑m(n)

i=1 χA(i,n)x
(j)
in . Since ρ(x1, x2, . . . , xm,G) is a continuous function

of (x1, x2, . . . , xm) ∈ Xm, the inequality

∣
∣ρ
(
f1n(t), f2n(t), . . . , fmn(t), G

) − ρ
(
f1(t), f2(t), . . . , fm(t), G

)∣∣ ≤ max
1≤i≤m

∥
∥fin(t) − fi(t)

∥
∥ −→ 0

(2.3)

implies that

∣
∣ρ
(
f1n(t), f2n(t), . . . , fmn(t), G

) − ρ
(
f1(t), f2(t), . . . , fm(t), G

)∣∣ −→ 0. (2.4)

Set Φn(t) = ρ(f1n(t), f2n(t), . . . , fmn(t), G). Then,

Φn(t) = sup
g∈G

max
1≤k≤m

(∥∥fkn(t) − g
∥
∥)

= sup
g∈G

max
1≤k≤m

∥∥∥∥∥

m(n)∑

i=1

χAin(t)
(
x
(k)
in − g

)
∥∥∥∥∥

=
m(n)∑

i=1

χAin(t) sup
g∈G

max
1≤k≤m

∥∥∥x(k)
in − g

∥∥∥.

(2.5)

SoΦn is a simple function for each n and Limn→∞‖Φn(t)−Φ(t)‖ = 0 for almost all t ∈ I. Hence
Φ is measurable. Furthermore, for each w ∈ L∞(I, G),

max
1≤i≤m

∥∥fi −w
∥∥
∞ = max

1≤i≤m
ess sup

(∥∥fi(t) −w(t)
∥∥)

= ess sup max
1≤i≤m

(∥∥fi(t) −w(t)
∥∥), Proposition 2.1

≤ ess sup sup
g∈G

max
1≤i≤m

(∥∥fi(t) − g
∥∥)

=
∥∥ρ

(
f1(t), f2(t), f3(t), . . . , fm(t), G

)∥∥
∞

= ‖Φ‖∞.

(2.6)

Thus,

‖Φ‖∞ ≥ ρ
(
f1, f2, . . . , fm, L

∞(I, G)
)
. (2.7)

To prove the reverse inequality. Let ε > 0 be given, since countably valued functions are
dense in L∞(I, X), there exist countably valued functions γ1, γ2, . . . , γm in L∞(I, X) such that
‖fi−γi‖ < ε, 1 ≤ i ≤ m. Wemaywrite γj =

∑∞
i=1 χAix

(j)
i , as in [10]. Wemay assume

∑∞
i=1 χAi = 1,

μ(Ai) > 0 for all i. For each i, Choose hi ∈ G such that

max
1≤k≤m

∥∥∥x(k)
i − hi

∥∥∥ > ρ
(
x
(1)
i , x

(2)
i , . . . , x

(m)
i , G

)
− ε. (2.8)
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Now, set g ∈ L∞(I, G) as g(s) =
∑∞

i=1 χAi(s)hi. The inequality

∥
∥γj − g

∥
∥
∞ ≤ ∥

∥γj − fj
∥
∥
∞ +

∥
∥fj − g

∥
∥
∞ (2.9)

implies

max
1≤j≤m

∥
∥γj − g

∥
∥
∞ ≤ ε + max

1≤i≤m

∥
∥fj − g

∥
∥
∞. (2.10)

Further,

max
1≤j≤m

∥
∥fj − g

∥
∥
∞ ≥ max

1≤j≤m

∥
∥γj − g

∥
∥
∞ − ε

= max
1≤j≤m

(
ess sup

(∥∥γj(t) − g(t)
∥
∥)) − ε

= ess sup max
1≤j≤m

∥∥∥∥∥

∞∑

i=1

χAi(t)
(
x
(j)
i − hi

)
∥∥∥∥∥
− ε, Proposition 2.1

= ess sup max
1≤j≤m

∞∑

i=1

χAi(t)
∥∥∥x

(j)
i − hi

∥∥∥ − ε

= ess sup
∞∑

i=1

χAi(t) max
1≤j≤m

∥∥∥x
(j)
i − hi

∥∥∥ − ε

≥ ess sup
∞∑

i=1

χAi(t) ρ
(
x
(1)
i , x

(2)
i , . . . , x

(m)
i , G

)
− 2ε

= ess sup ρ
(
γ1(t), γ2(t), . . . , γm(t), G

) − 2ε.

(2.11)

For 1 ≤ j ≤ m and a ∈ G, the inequality

∥∥fj(t) − a
∥∥ ≤ ∥∥fj(t) − γj(t)

∥∥ +
∥∥γj(t) − a

∥∥ (2.12)

implies

ρ
(
f1(t), f2(t), . . . , fm(t), G

) ≤ max
1≤j≤m

∥∥fj(t) − γj(t)
∥∥ + ρ

(
γ1(t), γ2(t), . . . , γm(t), G

)
. (2.13)

Therefore,

max
1≤j≤m

∥∥fj − g
∥∥
∞ ≥ ess sup

⎛

⎝
ρ
(
f1(t), f2(t), . . . , fm(t), G

)

−max
1≤j≤m

∥∥γj(t) − fj(t)
∥∥

⎞

⎠ − 2ε

≥ ‖Φ‖∞ − ess sup max
1≤j≤m

∥∥γj(t) − fj(t)
∥∥ − 2ε

≥ ‖Φ‖∞ − 3ε.

(2.14)
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Hence, ρ(f1, f2, . . . , fm, L∞(I, G)) + 3ε ≥ ‖Φ‖∞. Since ε was arbitrary, we have ‖Φ‖∞ =
ρ(f1, f2, . . . , fm, L∞(I, G)).

Corollary 2.3. Let g be a strongly measurable function from I to a closed bounded subset G of
a Banach space X, and f1, f2, . . . , fm ∈ L∞(I, X). If g(t) is a simultaneous farthest point of
f1(t), f2(t), . . . , fm(t) in G, then g is a simultaneous farthest point of f1, f2, . . . , fm in L∞(I, G).

Proof. By assumption, max1≤i≤m(‖fi(t) − g(t)‖) = ρ(f1(t), f2(t), . . . , fm(t), G) for almost t ∈ I.
Since G is bounded, it follows that g ∈ L∞(I, G) and

ess sup max
1≤i≤m

(∥∥fi(t) − g(t)
∥
∥) = ess sup ρ

(
f1(t), f2(t), . . . , fm(t), G

)
. (2.15)

Theorem 2.2 and Proposition 2.1 implies that

max
1≤i≤m

(∥∥fi − g
∥∥
∞
)
= ess sup max

1≤i≤m
(∥∥fi(t) − g(t)

∥∥) = ρ
(
f1, f2, . . . , fm, L

∞(I, G)
)

(2.16)

and g is a simultaneous farthest point of f1, f2, . . . , fm in L∞(I, G).

3. Remotal Sets in L∞(I, X)

In this section, we raise the question: if G is a simultaneously remotal set in X, is L∞(I, G)
simultaneously remotal in L∞(I, X)? We get a positive answer to this question in the case
that G is a separable simultaneously remotal subset of X or in the case that SpanG is finite
dimensional subspace of X. We begin with the following theorem.

Theorem 3.1. If G is simultaneously densely remotal in X, then L∞(I, G) is simultaneously densely
remotal in L∞(I, X).

Proof. Let f1, f2, . . . , fm ∈ L∞(I, X). Then, there exist γ1, γ2, . . . , γm simple functions such that
‖fi − γi‖∞ < ε/2, 1 ≤ i ≤ m. Now, we can write without lost of generality, γi =

∑n
k=1 χAkx

(i)
k
.

Since G is simultaneously densely remotal, then there exist an m-tuple (y(1)
k , y

(2)
k , . . . , y

(m)
k )

and gk ∈ G such that max1≤i≤m‖x(i)
k

− y
(i)
k
‖ < ε/2 and

max
1≤i≤m

∥∥∥y(i)
k − gk

∥∥∥ = ρ
(
y
(1)
k , y

(2)
k , . . . , y

(m)
k , G

)
= sup

g∈G
max
1≤i≤m

∥∥∥y(i)
k − g

∥∥∥. (3.1)

Set φ =
∑n

k=1 χAkgk and hi =
∑n

k=1 χAky
(i)
k
. Then,

max
1≤i≤m

∥∥hi − φ
∥∥
∞ = max

1≤i≤m
ess sup

∥∥hi(t) − φ(t)
∥∥

= ess sup max
1≤i≤m

∥∥∥∥∥

n∑

k=1

χAk(t)
(
y
(i)
k

− gk
)
∥∥∥∥∥
, Proposition 2.1
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= ess sup max
1≤i≤m

n∑

k=1

χAk(t)
∥
∥
∥y(i)

k
− gk

∥
∥
∥

≥ ess sup max
1≤i≤m

n∑

k=1

χAk(t)
∥
∥
∥y(i)

k
− g

∥
∥
∥

(3.2)

for every g ∈ G. In particular, for any w ∈ L∞(I, G), using Proposition 2.1,

max
1≤i≤m

∥
∥hi − φ

∥
∥
∞ ≥ ess sup max

1≤i≤m
‖hi(t) −w(t)‖

≥ max
1≤i≤m

ess sup‖hi(t) −w(t)‖ = max
1≤i≤m

‖hi −w‖∞,
(3.3)

Hence, φ is a farthest point from the m-tuple (h1, h2, . . . , hm). But

max
1≤i≤m

∥∥hi − γi
∥∥
∞ = max

1≤i≤m
ess sup

∥∥∥∥∥

n∑

k=1

χAk

(
y
(i)
k − x

(i)
k

)
∥∥∥∥∥

= max
1≤i≤m

ess sup
n∑

k=1

χAk

∥∥∥y(i)
k − x

(i)
k

∥∥∥

= ess sup max
1≤i≤m

n∑

k=1

χAk

∥∥∥y(i)
k − x

(i)
k

∥∥∥, Proposition 2.1

= ess sup
n∑

k=1

χAkmax
1≤i≤m

∥∥∥y(i)
k

− x
(i)
k

∥∥∥ ≤ ε

2
.

(3.4)

Hence,

max
1≤i≤m

∥∥fi − hi

∥∥
∞ ≤ max

1≤i≤m

∥∥fi − γi
∥∥ + max

1≤i≤m

∥∥γi − hi

∥∥ ≤ ε

2
+
ε

2
= ε. (3.5)

This complete the proof of the theorem.

For a remotal set G ⊆ X, the map T : Xm → 2G defined by

T(x1, x2, . . . , xm) = F(x1, x2, . . . , xm,G)

=
{
g ∈ G : ρ(x1, x2, . . . , xm,G) = max

1≤i≤m

∥∥xi − g
∥∥
} (3.6)

is a multivalued map in general. Hence for any f ∈ L∞(I, X), the map T ◦ f is a multivalued
map from I into G.

Before proceeding we remind the reader for some facts regarding mult-valued maps.
For a Banach space X and a measurable space I a function f : I → X is said to be strongly
measurable if it is the pointwise limit of a sequence of simple functions almost everywhere.
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On the other hand f is said to measurable in the classical sense if f−1(K) is measurable in I
for any closed set K in X, see [10]. A multivalued function T : I → X is said to measurable
in the classical sense if T−1(K) is measurable in I for any closed setK inX, here T−1(K) = {t ∈
I : T(t) ∩ K/=φ}. A measurable in the classical sense g may be extracted from a measurable
multivalued function T : I → X where X is a separable Banach space provided that T(t) is a
closed subset of X for each t ∈ I and such that g(t) ∈ T(t) for each t ∈ I, see [11, page 289].

Theorem 3.2. Let G be a closed bounded simultaneously remotal in X such that span(G) is finite
dimensional subspace of X, then L∞(I, G) is simultaneously remotal in L∞(I, X).

Proof. First, we will prove that T is a closed valued map. If T(x1, x2, . . . , xm) is finite set,
then it is closed. If T(x1, x2, . . . , xn) is not finite, let y ∈ T(x1, x2, . . . , xm), then there exists
yn ∈ T(x1, x2, . . . , xm) such that yn → y. This implies

max
1≤i≤m

∥
∥xi − g

∥
∥ ≤ max

1≤i≤m

∥
∥xi − yn

∥
∥, (3.7)

for every g ∈ G. Taking the limit as n → ∞, we get max ‖xi − g‖ ≤ max ‖xi − y‖ for every
g ∈ G, and this implies that y ∈ T(x1, x2, . . . , xm) and T is a closed multivalued map.

To prove that T is measurable in the classical sense let B be any closed subset of G.
If (x1, x2, . . . , xm) ∈ T−1(B), then there exists (x(n)

1 , x
(n)
2 , . . . , x

(n)
m ) ∈ T−1(B) that converges to

(x1, x2, . . . , xm). Since (x(n)
1 , x

(n)
2 , . . . , x

(n)
m ) ∈ T−1(B), then T(x(n)

1 , x
(n)
2 , . . . , x

(n)
m ) ∩ B /=φ. Choose

yn ∈ T(x(n)
1 , x

(n)
2 , . . . , x

(n)
m ) ∩ B. Then, yn has a convergent subsequence ynk → y being a

sequence in a bounded closed subset of a finite dimensional space. But

max
1≤i≤m

∥∥∥x(nk)
i − ynk

∥∥∥ ≥ max
1≤i≤m

∥∥∥x(nk)
i − g

∥∥∥ (3.8)

for every g ∈ G. Taking the limit as nk → ∞, we get

max
1≤i≤m

∥∥xi − y
∥∥ ≥ max

1≤i≤m

∥∥xi − g
∥∥ (3.9)

for every g ∈ G. Hence y ∈ T(x1, x2, . . . , xm) ∩ B /= ∅. Therefore (x1, x2, . . . , xm) ∈ T−1(B) and
T−1(B) is closed. Hence, T is measurable and if γ is the vector valued map γ : I → Xm,
γ(t) = (f1(t), f2(t), . . . , fm(t)), then T ◦γ is a measurable closed multivalued map. By Theorem
6.6.4 in [11, page 289], T ◦ γ has a measurable selection say g. Further,

max
1≤i≤m

∥∥fi(t) − g(t)
∥∥ ≥ max

1≤i≤m

∥∥fi(t) − h(t)
∥∥, (3.10)

for every h ∈ L∞(I, G) and so

ess sup max
1≤i≤m

∥∥fi(t) − g(t)
∥∥ = max

1≤i≤m
ess sup

∥∥fi(t) − g(t)
∥∥

≥ max
1≤i≤m

ess sup
∥∥fi(t) − h(t)

∥∥.
(3.11)



8 International Journal of Mathematics and Mathematical Sciences

Hence,

max
1≤i≤m

∥
∥fi − g

∥
∥
∞ ≥ max

1≤i≤m

∥
∥fi − h

∥
∥
∞, (3.12)

for every h ∈ L∞(I, G) and L∞(I, G) is remotal in L∞(I, X).

Finally, following the steps in the prove of Theorem 3.6 in [6], we proof the following
main result in the paper.

Theorem 3.3. Let G be a separable simultaneously remotal subset of X. Then L∞(I, G) is
simultaneously remotal in L∞(I, X).

Proof. Let (f1, f2, . . . , fm) ∈ (L∞(I, X))m. Using Corollary 2.3, it is sufficient to show that there
exists a measurable function g defined on I such that g(t) is a simultaneous farthest point of
(f1(t), f2(t), . . . , fm(t)) in G. Since f1, f2, . . . , fm are strongly measurable. We may assume that
f1(I), f2(I), . . . , fm(I) are separable sets in X. So there exist {Ini}∞n=1a countable partition of I
such that diam(fi(Ini)) < 1/2, for each i, 1 ≤ i ≤ m, for all n; where

diam(S) = sup
{∥∥x − y

∥∥ : x, y ∈ S
}
. (3.13)

Consider the partition Ik1k2···km =
⋂m

i=1 Iki , where (Ik1 , Ik2 , . . . , Ikm) ⊆ ∏m
i=1{Ini}, for 1 ≤ n < ∞.

Then diam(fi(Ik1k2···km)) < 1/2. For simplicity write Ik1k2···km as {In}∞n=1. For each t ∈ I, let g0(t)
be a simultaneous farthest point from (f1(t), f2(t), . . . , fm(t)) in G. Define the map g0 from I

into G by g0(t) is a simultaneous farthest point from (f1(t), f2(t), . . . , fm(t)). Apply Lemma
3.1 in [6] with ε = 1/2 and I = In = A, we get countable partitions in each In and therefore
countable partition in the whole of I in measurable sets {En}∞n=1 and a sequence of subsets
{An}∞n=1 such that

An ⊆ En, μ∗(An) = μ(En),

diam
(
g0(An)

)
<

1
2
and diam

(
fi(En)

)
<

1
2
, 1 ≤ i ≤ m.

(3.14)

Repeat the same argument in each En with ε = 1/22, I = En, and A = An. For each n, we get a
countable partition {E(n,k) : 1 ≤ k < ∞} of En in measurable sets and a sequence {A(n,k) : 1 ≤
k < ∞} of subsets of I such that

A(n,k) ⊆ E(n,k) ∩An, μ∗(A(n,k)
)
= μ

(
E(n,k)

)
,

diam
(
g0
(
A(n,k)

))
<

1
22

and diam
(
fi
(
E(n,k)

))
<

1
22

, i = 1, 2, . . . , m.
(3.15)

Now, we will use mathematical induction for each n; let Δn be the set of n-tuples of natural
numbers and Δ =

⋃{Δn : 1 ≤ n < ∞}. On this Δ consider the partial order defined by
(m1, m2, . . . , mi) < (n1, n2, . . . , nj) if and only if i ≤ j and mk = nk, k = 1, 2, . . . , i. Then by
induction for each n, we can find a countable partition {Eα : α ∈ Δn} of I of measurable sets
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and a collection {Aα : α ∈ Δn} of subsets of I such that:

(1) Aα ⊆ Eα and μ∗(Aα) = μ(Eα),

(2) Eβ ⊆ Eα and Aβ ⊆ Aα if α ≤ β,

(3) diam(fi(Eα)) < 1/2n for i = 1, 2, . . . , m and diam(g0(Aα)) < 1/2n for α ∈ Δn.

We may assume Aα /=φ, for all α. For each α ∈ Δ, let tα ∈ Aα and define gn from I into
G by gn(t) =

∑
α∈Δn

χEα(t)g0(tα). Then, for each t ∈ I and n ≤ m, we have

∥
∥gn(t) − gm(t)

∥
∥ =

∥
∥
∥
∥
∥
∥

∑

α∈Δn

χEα(t)g0(tα) −
∑

β∈Δm

χEβ(t)g0
(
tβ
)
∥
∥
∥
∥
∥
∥

≤
∥
∥∥∥∥∥

∑

β∈Δm

χEβ(t)
(
g0(tα) − g0

(
tβ
))
∥
∥∥∥∥∥

≤
∑

β∈Δm

∥∥(g0(tα) − g0
(
tβ
))∥∥χ Eβ

≤ 1
2n

.

(3.16)

Hence, (gn(t)) is a Cauchy sequence in G for all t ∈ I. Therefore (gn(t)) is a convergent
sequence. Let g : I → G be defined to be the pointwise limit of (gn). Since gn is strongly
measurable for each n, we have g is strongly measurable. Further for t ∈ I, 1 ≤ n < ∞, and
t ∈ Eα for some α ∈ Δn, we have

max
1≤i≤m

∥∥fi(t) − gn(t)
∥∥ = max

1≤i≤m

∥∥fi(t) − g0(tα)
∥∥

≥ max
1≤i≤m

∣∣∥∥fi(tα) − g0(tα)
∥∥ − ∥∥fi(t) − fi(tα)

∥∥∣∣

≥ max
1≤i≤m

∣∣∣∣
∥∥fi(tα) − g0(tα)

∥∥ − 1
2n

∣∣∣∣

≥ ρ
(
f1(tα), f2(tα), . . . , fm(tα), G

) − 1
2n

.

(3.17)

For 1 ≤ i ≤ m, the inequality

∥∥fi(t) − a
∥∥ ≤ ∥∥fi(t) − fi(tα)

∥∥ +
∥∥fi(tα) − a

∥∥ ≤ 1
2n

+
∥∥fi(tα) − a

∥∥ (3.18)

implies that

ρ
(
f1(t), f2(t), . . . , fm(t), G

) ≤ 1
2n

+ ρ
(
f1(tα), f2(tα), . . . , fm(tα), G

)
. (3.19)
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Therefore,

max
1≤i≤m

∥
∥fi(t) − gn(t)

∥
∥ ≥ ρ

(
f1(t), f2(t), . . . , fm(t), G

) − 1
2n−1

. (3.20)

Taking limit as n → ∞, we get

ρ
(
f1(t), f2(t), . . . , fm(t), G

)
= max

1≤i≤m

∥
∥fi(t) − g(t)

∥
∥. (3.21)

This completes the proof of the theorem.
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