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Attribute data from high-quality processes can be monitored effectively by deciding on whether
or not to stop at each time where r ≥ 1 failures have occurred. The smaller the degree of change
in failure rate during out of control one wants to be optimally protected against, the larger the
r should be. Under homogeneity, the distribution involved is negative binomial. However, in
health care monitoring, (groups of) patients will often belong to different risk categories. In
the present paper, we will show how information about category membership can be used to
adjust the basic negative binomial charts to the actual risk incurred. Attention is also devoted to
comparing such conditional charts to their unconditional counterparts. The latter do take possible
heterogeneity into account but refrain from risk-adjustment. Note that in the risk adjusted case
several parameters are involved, which will all be typically unknown. Hence, the potentially
considerable estimation effects of the new charts will be investigated as well.

1. Introduction

We are interested in processes which exhibit only a (very) small proportion of defectives.
Due to ever increasing efforts and standards, such high-quality processes become more
and more common in industrial setups. Moreover, for the quite different field of health
care monitoring, they are in fact the rule: errors, such as malfunctioning equipment, fatally
delayed help, or surgical failures, should occur only (very) rarely. Now review papers on
health care monitoring (see, e.g., [1–3] and Sonesson and Bock [4]) strongly suggest to apply
SPC methods, in particular control charts, and we shall follow that line here.

The common starting point for monitoring such attribute data is to watch the number
of failures in a series of given sampling intervals. However, for high-quality processes, this p-
chart may not be the best choice. A first improvement is to switch to a “time-between-events”
or “geometric” chart, which uses the number of successes between failures to judge whether
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the process has remained in control (IC). See, for example, Liu et al. [5], Yang et al. [6], Xie
et al. [7], Ohta et al. [8] and Wu et al. [9], for details. When the process goes out of control
(OoC), such geometric charts quickly react to substantial increases of the failure rate p from
IC but are admittedly rather slow in detecting moderate changes. Especially in health care
applications, this is undesirable, and several of the authors mentioned above have suggested
a second improvement step.

Here a decision whether or not to stop is no longer made after each failure but instead
only after r > 1 failures have occurred. Typically, the smaller the increase of failure rate during
OoC one wants to have optimal detection power against, the larger the r should be. This
negative binomial chart is analyzed in some detail in Albers [10]. In particular, a simple rule
of thumb is presented for selecting r, and the resulting chart is both easy to understand and to
apply. However, as subsequently pointed out in Albers [11], a serious complication arises if
the underlying homogeneity assumption is not warranted. In industrial applications, it may
often—but by nomeans always—be reasonable to indeed assume one and the same IC failure
probability p for each item inspected. But, in medical settings, patients tend to exhibit quite a
bit of heterogeneity, and we will regularly have to take such variation between subjects into
account.

In Albers [11] the basic situation is considered where in fact all we know is that such
heterogeneity does occur. It can, for example, stem from the occurrence of different groups,
each with its own IC probability of failure, but we lack further information. The only way, in
which it becomes visible, is through an increase of variance, as compared to the homogeneous
case. For a discussion of this overdispersion phenomenon, see, for example, Poortema [12] for
a general review and Christensen et al. [13] and Fang [14] for earlier applications concerning
attribute control charts. In Albers [11] it is demonstrated how the negative binomial charts
can be generalized to cover the present overdispersion situation. Essentially the ill-fitting
single parameter homogeneous model is widened there into a two-parameter model. In
addition to the failure rate p, a second parameter is added, in order to capture the degree of
overdispersion. In view of the lack of knowledge about the precise underlying mechanism of
the process, this wider family still remains an approximation of reality. But, as demonstrated
in Albers [11], the results under overdispersion are far better than those provided by the
homogeneous approach.

As was already pointed out in Albers [11], quite a different situation occurs when
we do have information about the underlying structure. For example, suppose a number of
risk categories can be distinguished, each with its own pj during IC, and for each incoming
patient we register to which class he/she belongs. First of all, such detailed knowledge about
the process in principle allows a more accurate analysis. But probably even more important
is the fact that it opens the way to applying so-called risk adjustment methods (see, e.g.,
[15, 16] for an overview, and [17] for a risk-adjusted version of the sets method introduced
by Chen [18]). Here the baseline risk of each patient is taken into account in deciding whether
the process is still IC. If, for example, a surgeon’s performance decreases over time, an OoC
signal may nevertheless not be justified if we observe that meanwhile his/her patients are
gradually shifting to higher risk categories.

Clearly this is an interesting area, giving rise to quite a few questions, both from a
practical and a technical point of view. For example, in practice, one can wonder under what
circumstances one should adjust the risk and when one should ignore this possibility and
stick to a rigid overall chart. A more technical issue is the following. In risk adjustment
several parameters are involved (cf. the pj above), which typically are unknown and need
to be estimated. Now estimation effects for control charts tend to be conveniently ignored in
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practice. But if these are studied, they typically turn out to be substantial; for example, Chen
et al. [19], mention a 30–90% increase in false alarm rate for a 10% bias in the estimator for p.
This estimation topic was studied more systematically in Albers and Kallenberg [20, 21].
There it has been amply demonstrated that the small probabilities involved, such as p,
invariably produce large relative errors, and; thus, corrections are called for. In the present
situation, we have not one, but several parameters, and hence the effect is likely to be even
more serious. But, as Woodall [1] remarks, little work has been done on the effect of the
estimation error on the performance of risk-adjusted charts. Consequently, the purpose of the
present paper is to remedy this by studying how the negative binomial charts from the simple
homogeneous case can be adapted to the situation where risk adjustment is desirable.

As concerns the relation of the methodology proposed here to the existing methods as
described in, for example, Steiner et al. [15] and Grigg and Farewell [16, 17], the following
remarks are in order. The latter category are of CUSUM-type and as suchmay be slightlymore
efficient. In passing note that this actually is a rather subtle matter, as it also seems to depend
on the type of performance criterion used (e.g., steady state or not). Nevertheless, using the
negative binomial type of approach implies some aggregation of the data over time, which
could indeed mean some loss of information compared to the stepwise CUSUM approach.
However, precisely this aggregation effect makes the resulting structure less complicated,
thus, allowing a detailed analysis of estimation effects, as well as corrections of these. For the
CUSUM case (so far), this seems intractable. Hence, the issue in comparing the two types
of approach actually is robustness. On the one hand, we have procedures which (maybe)
are superior if optimal conditions hold. In the present case that means known parameters,
which is almost never realistic. In addition, the impact of just plugging in estimates for
these parameters is known to be huge (e.g., causing an average run length during IC which
is systematically substantially lower than prescribed). Under such circumstances, it seems
an attractive alternative to pay a small insurance premium (in the form of a small loss in
detection power) in order to obtain robust procedures which allow control of the validity
through adequate corrections for the charts. Incidentally, note that this robustness issue is by
no means typical for the application at hand, but is of a rather general nature.

The paper is organized as follows. As far as possible, the technicalities involved
are relegated to the appendix section, while the body of the paper provides the main
ideas. Section 2 is devoted to introducing briefly the negative binomial chart from Albers
[10], which forms our starting point. In Section 3 these charts are subsequently adapted to
situations where risk adjustment is called for. The estimation aspect will be the subject of
Section 4. For illustrative purposes, throughout the paper examples are presented. Moreover,
at the end of the paper, we summarize the application of the proposed chart in a simple set
of steps.

2. The Homogeneous Case

Here we briefly introduce the homogeneous case (see [10] for a detailed description). The
process being monitored can be characterized through a sequence of independent identically
distributed (i.i.d.) random variables (r.v.’s) D1, D2, . . ., with P(D1 = 1) = 1 − P(D1 = 0) = p

in the IC stage. During OoC, p becomes θp for some θ > 1, and we should stop as quickly
as possible. As discussed in the Section 1, the option to stop arises each time r failures have
been assembled, for some r ≥ 1. LetXi, i = 1, 2, . . ., be the successive numbers ofDs involved,
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then these Xi are i.i.d. as well, and moreover, distributed as a negative binomial r.v. Xr,p = X
(indices will be suppressed unless confusion might arise); that is, for k = r, r + 1, . . ., we have

P
(
Xr,p = k

)
=

(
k − 1

r − 1

)

pr
(
1 − p

)k−r
. (2.1)

A stopping signal should occur the first time an Xi ≤ n, with the lower limit n = nr,p selected
such that the false alarm rate (FAR) Fr,p(n) = P(Xr,p ≤ n) equals rα, for some small α > 0.
Then the average run length (ARL) in terms of number of failures during IC equals r/(rα) =
1/α for all r, thus aligning the various negative binomial charts for r ≥ 1 in a proper way.
Consequently, n = F−1

r,p(rα), the rαth quantile of Fr,p, which can be obtained numerically.
For the purpose of analyzing the behavior of the lower limit n, a simple and

transparent approximation is most useful. This can in its turn also be used for finding an
approximation for the ARL during OoC; that is, when p has turned into θp. As this ARL is
a function of α, θ, and r, it is in particular interesting to figure out which choice of r is the
best for given α and θ. This task has been carried out in Albers [10], to which we refer for a
complete description. However, to facilitate independent reading, we do present some of the
details in the Appendix section. At this point we just mention that n ≈ λ/p, where λ solves
P(Zλ ≥ r) = rα, in which the r.v. Zλ is Poisson’s with parameter λ. Moreover, by considering
a table of numerically obtained optimal values of r (i.e., resulting in the lowest ARL) for the
various α and θ of interest and fitting to these r ′s a simple approximation in terms of α, θ,
and αθ, the following easy rule of thumb has been obtained:

r̃opt =
1

α(2.6θ + 2) + 0.01(4θ − 3)
. (2.2)

As can be seen from Table 3 in Albers [10], this simple rule works remarkably well. Quite
often the solution from (2.2) is truncated at 5: most of the improvement over the geometric
chart (where r = 1) has already been achieved at r = 5. Moreover, using really large values of
r may be considered undesirable in practice anyhow.

As already observed in the Section 1, the underlying parameters typically need to be
estimated in practice. In the simple homogeneous case, we merely have to worry about the
IC failure rate p. To this end, a Phase I is added, during which the process is observed until
m failures have occurred, leading to m geometric X1,p’s (cf. (2.1)) and, thus, to the obvious
estimator p̂ = 1/X, where X = m−1Σm

i=1Xi. Then we simply replace p by p̂ in n (or ñ), after
which the actual monitoring can start using the new n̂ (or ̂̃n). Consequently, application of
the chart is almost as easy as that in the known parameter case. However, it does remain
to investigate, and possibly to correct, the resulting estimation effects. What happens is that
performance characteristics such as FAR (or ARL) are no longer fixed at rα (or 1/α) but
instead will be random in X. Noting that U = pX − 1 satisfies EU = 0 and EU2 = (1 −
p)/m ≈ 1/m, it follows that the Taylor expansion in terms of U allows adequate appraisal
of errors such as ̂FAR − FAR. This can be done in terms of bias by taking expectations or in
terms of exceedance probabilities by, for example, looking at P(F̂AR > FAR(1 + ε)). Next, if
desired, suitable corrections can be derived. Then slightly lower limits n̂c = n̂(1 − c) are used
in which the small positive c is selected such that either the bias is removed or the exceedance
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probability will stay below a suitably small upper bound. To illustrate the simple application
of the homogeneous chart, we conclude the present section with an explicit example.

Example. Suppose we are monitoring some large population w.r.t. some unpleasant type of
event (“a failure”). As long as matters are IC, its incidence rate is p = 0.001. Stopping during
IC should be rare, so we decide that on average a false alarm once every 200 failures is
acceptable, implying that the IC-ARL = 200 and α = 0.005. Deciding about stopping or
continuing at each failure (the geometric chart, with r = 1) is known to be not very efficient,
so we increase r somewhat, and, for example, take r = 3. (Background: the rule of thumb
(2.2) tells us that this is optimal at the given α for θ = 6, that is, for an increase during OoC
to p = 0.006; someone interested in optimality for lower θ should take an even somewhat
larger r; for example, r = 5 is the best for θ = 4). During IC, each third failure will on
average arrive after 3000 observations, and, hence, the chart should signal if this arrival
happens much sooner. What “much sooner” should mean under the given conditions has
been derived above: the exact lower bound here equals n = F−1

3,0.001(0.015) = 509. Using λ

which solves P(Zλ ≥ 3) = 0.015 produces λ = 0.509, and hence n = λ/p = 509 as well, while
the further approximation through (A.2) gives the quite close value 506. Monitoring is now
completely straightforward: watch the sequence of realized “third-failure-times” and stop as
soon as a number at or below 509 (or 506) is observed. If the IC value of p is in fact unknown,
monitoring is preceded by a Phase I sample. First wait till, for example,m = 100 failures have
been obtained and replace p by the outcome p̂ = 100/Σ100

i=1Xi. If p̂ happens to equal 0.001, the
above remains as it was; for any other value, the computation is adapted in a straightforward
way.

3. The Heterogeneous Case

Our starting point is the homogeneous case described in Section 2: an underlying sequence
of i.i.d. Bernoulli r.v.’s Di, giving rise to negative binomial r.v.’s for controlling the process.
To this situation we now add heterogeneity, and subsequently we investigate how to
accommodate this complication, both in the unconditional case, where the underlying
information is ignored, and the conditional case, where it is used. Of course, the emphasis
will be on the latter situation, where risk adjustment is applied. In fact, the unconditional
case has already been dealt with in Albers [11]; we only review it here to provide the proper
perspective.

In line with the common notation for bivariate situations, we will use Y ’s for the main
r.v.’s, on which the control decisions are based and X’s for the r.v.’s supplying additional
information. To be more precise, we will use X as a risk category indicator: P(X = j) = πj ,
j = 1, . . . , k, for some k ≥ 2. If this is done individually, that is, for each Di separately, the
unconditional situation remains simple. In fact, ignoring or not having the information from
the X’s means that effectively we still are in the homogeneous case. Each incoming patient
simply has the overall failure probability p = Σπjpj , with pj = P(D = 1 | X = j) during IC,
and thus the negative binomial charts from Section 2 are still appropriate.

However, matters change if patients arrive in groups, and heterogeneity does lead to
nonnegligible overdispersion. In the Appendix section, this is demonstrated in some detail
for the relatively simple setting of a fixed number of groups, each of fixed size, to which
routinely a standard p-chart would be applied. Moreover, in this context, the difference
in behavior between unconditional and conditional charts is analyzed. An excursion to
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the situation of continuous rather than attribute data provides additional clarity, as matters
for the normal case are somewhat more transparent. The conclusion is that, whenever Y

goes OoC, two situations should be distinguished. In the first, the p.d.f. of X (and, thus,
the πj) remains unchanged. Then the two charts react essentially in the same way, with the
conditional chart being somewhat more efficient, as it takes the additional information into
account. However, once the p.d.f. of X also changes during OoC, the behavior of the charts
will diverge. Which of the two provides the right answer depends on whether these changes
in X should be ignored or taken into account. (cf. the surgeon from Section 1 who is faced
with increasingly more risky patients).

Our present setup is of course even more complicated: group sizes will typically
neither be fixed nor equal. As a consequence, the p.d.f. of the waiting times till the rth failure
is not only no longer negative binomial but in fact rather intractable in general. For this reason
Albers [11] proposes by way of approximation a parametric model containing an additional
parameter to cover the overdispersion aspect (c.f. the references mentioned in the Appendix
section for accommodating tail length in case of the normal mixture model). In this way an
adequate analysis of the unconditional chart indeed becomes possible; see Albers [11] for
details.

Having set the background and explained the interpretation, we can now fill in the
details for the risk-adjusted chart in a straightforward way. Just as in the homogeneous case,
define a new sequence Y1, Y2, . . . on the basis of theDi’s. Here the Yi are i.i.d. copies of Y = Yr,p,
the number of Di to be observed until the rth failure arrives. We decide to stop as soon as
a Yi ≤ n, for some suitable lower limit n = nr,p. In line with Section 2, “suitable” will be
interpreted to mean that P(Yr,p ≤ n) = rα for some small, given α. To obtain n in the present
case, note that while we are waiting for the realization of an Yi, at each time t, we now have
at our disposal the information that t = Σgj , where gj = gj,t is the number of patients from
category j, j = 1, . . . , k. Arguing along the same lines as in Section 2, we obtain (once more
see the Appendix section for some of the details) that the simple approximation from the
homogeneous case n = λ/p, with λ solving P(Zλ ≥ r) = rα, is updated into (cf. (C.2)):

n = Σk
j=1gj , with the gj = gj,n such that λ = Σk

j=1gjpj . (3.1)

Note that n from (3.1) can obviously bewritten as n = λ/(Σωjpj), withweightsωj = gj/(Σgj).
Hence, if we are in the homogeneous case after all; that is, pj ≡ p, we get back n = λ/p exactly.
Moreover, during IC, the ωj will tend to be close to the underlying probabilities πj , and
n = λ/p will hold approximately for arbitrary pj as well.

Nevertheless, we should observe that, unlike in the homogeneous case, we no longer
have a single fixed n. Each of the realizations Yi from the above-mentioned sequence Y1, Y2, . . .

has its own ni (and; thus, writing n = nr,p,i would be appropriate now). In fact, we do not even
need to obtain all of these ni explicitly. For example, in those cases where a signal occurs, we
have Yi ≤ ni, which means that in this situation at time t = Yi we still have Σgj,tpj ≤ λ.
Evaluating the actual ni would imply continuing with the D’s corresponding to Yi+1. That
would not be the right thing to do; fortunately, it is also superfluous, as the information
suffices that the event {Yi ≤ ni} has occurred.

Example (continued). Suppose that for the situation considered in Section 2 additional
information, and hence the possibility for risk adjustment, has become available. To keep
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matters again as simple as possible, we distinguish just two risk categories: “mild” and
“severe.” Suppose 10% of the population is severe and their risk is 11 times as high as that
of the mild cases. Hence, k = 2, π2 = 0.1, p2 = 11p1, and thus Σπjpj = 2p1 = p, resulting
in p1 = 0.0005 and p2 = 0.0055. After (3.1) it was observed that the risk-adjusted chart
replaces the homogeneous choice n = λ/p by n = λ/(Σωjpj), in this way, taking the actually
observed weights into account. Here this means using n = (λ/p){2/(1 + 10ω2)}, which boils
down to 509{2/(1 + 10ω2)}. During IC, ω2 will be close to π2 = 0.1, and hence n will be
close to 509, as in the homogeneous case. Nevertheless, monitoring becomes slightly less
trivial than before: now not only the sequence of realized third failure times but also the
corresponding fractions of severe cases ω2 need to be recorded. For each data pair (Yi, ω2i),
it is checked whether Yi ≤ 509{2/(1 + 10ω2i)}. For example, an outcome (498, 0.15) produces
a signal in the homogeneous case, (“498 ≤ 509”), but not in the risk-adjusted situation
(“498 ≥ 472 = 509/{2/(1 + 1.5)}”). In the latter case the occurrence of the third failure at
a very early moment is deemed acceptable after all in view of the somewhat larger than
expected presence of severe cases.

The step in (3.1) is essentially all that is needed to deal with the risk adjusted version
of the chart. In the Appendix section, it is demonstrated how the approximation steps for,
for example, λ and the ARL carry over. Of course, if the process goes uniformly OoC, in the
sense that all pj are replaced by θpj , matters are most straightforward. But even if each pj
has its own θj , it remains easy to adapt the previously obtained expressions (cf. (C.3)). It
is also explicitly demonstrated how the above-mentioned weights ωj = gj/(Σgj) influence
matters. If these remain close to the πj , the risk-adjusted chart behaves in the same manner as
its unconditional counterpart. It only is slightly more efficient. However, if the ωj ’s are quite
different, the behaviour will diverge. To illustrate this, just as in the normal example from
the fixed case, an explicit example is given in the Appendix section of an OoC situation for Y
which is completely due to the change in X. The risk-adjusted chart then indeed continues to
consider the process as being IC. To illustrate matters, we conclude the present section with
α numerical example.

Example (continued). In the setup considered before, let us next consider the OoC situation.
First let θ = 2 uniformly; that is, the mild category gets θp1 = 0.001 and the severe one
θp2 = 0.011. From, for example, Albers [11], we obtain that the homogeneous chart has an
ARL of 36 for this case, and, according to the above, this will continue to hold here as well.
Next consider a nonuniform example: let θ1 = 7/9, and let θ2 = 3, then Σπjθjpj = 2p, and;
hence, oncemore θ = 2. If during OoC the p.d.f. ofX remains the same, theπi’s do not change,
and ω2 will still be close to π2 = 0.1. Then the risk-adjusted chart will continue to behave like
the homogeneous one, that is, with an ARL of about 36 at this θ = 2. However, if instead the
pj ’s remain the same and the θj ’s are used to transform (π1, π2) = (0.9, 0.1) into (θ1π1, θ2π2) =
(0.7, 0.3), the chart will shift towards using a lower limit n close to λ/(2p) = 509/2. Moreover,
as θ∗ = 1 in (C.3) for this particular choice, its ARL will remain at about the IC value 200.
Clearly, from a risk adjustment perspective, this is precisely what should happen. The mild
patients still have p1 = 0.0005, and the severe ones still have p2 = 0.0055. What has changed
is that the latter category has shifted from 10% to 30% of the total. Hence, not the quality of
the performance has deteriorated, but rather that of the incoming patients (cf. the surgeon
example in Section 1).
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4. Estimation Effects

Typically the underlying parameters of control charts are not known in practice. Here this
means that we will have to estimate not just the overall p = Σπjpj , but the individual pj as
well. As concerns p, in Albers [10] a Phase I sample of “size” m was used for this purpose,
meaning that we observeD1, D2, . . . untilm failures have arrived. Note thatm, and hence the
length Ym,p of this sample as well, is independent of r, implying that the comparison between
charts for different r remains fair also w.r.t. estimation. Next, p was simply estimated by
p̂ = m/Ym,p. In the present context we can use this same sample, but in amore detailedway, as
follows. LetHj be its number of patients from category j (i.e., Σk

j=1Hj = Ym,p), and in addition
letDji, i = 1, . . . ,Hj denote the correspondingD’s. Then we have as a straightforward choice
for estimating the pj :

p̂j =
ΣHj

i=1Dji

Hj
, j = 1, . . . , k. (4.1)

Of course, formally there is a problem in (4.1), as each Hj can be 0 with positive
probability. Using a slightly modified definition could remedy this. However, we shall not
bother to do so, as the probabilities involved are exponentially small. Moreover, if too small
hj ’s are observed, this anyhow indicates that the design may not be right, and additional
effort is required before monitoring can begin. Given Hj = hj , we have Ep̂j = pj and
var(p̂j) = pj(1 − pj)/hj . As EHj = πjEYm,p = mπj/p, it follows that, ignoring terms involving
p2j ,

p̂j

pj
− 1 ≈ AN

(

0,
p

mπjpj

)

, (4.2)

with “AN” denoting asymptotic normality. Hence, if the Phase I sample is chosen in this way,
the estimators p̂j are indeed well behaved, in the usual sense of having a relative error which
is OP (m−1/2). Only if the contribution πjpj of a certain category j is really small compared to
p = Σπipi, the coefficient involved will be large.

In fact, the above is all that is needed to transform the chart into its estimated version:
just replace in (3.1) the pj by their estimated counterparts p̂j from (4.1). To be precise, we use
a lower limit n̂ defined by

n̂ = Σk
j=1ĝj , with the ĝj = ĝj,n such that λ = Σk

j=1ĝj p̂j , (4.3)

where once again λ is such that P(Zλ ≥ r) = rα. The alternative notation then becomes
n̂ = λ/(Σω̂j p̂j), with weights ω̂j = ĝj/(Σĝj). Once this lower limit n̂ has been obtained, the
actual monitoring can start: each time wait till the rth failure, and if this occurs at or before n̂,
a signal results. Hence, straightforward application of the estimated chart remains easy.

To investigate the effects of the estimation step, we proceed as follows. As remarked
in Section 2, FAR will no longer be fixed at some given value rα nor will ARL be precisely
equal 1/α. These performance characteristics have now become the random variables F̂AR
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and ̂ARL, respectively. They depend on the estimators p̂j and consequently fluctuate around
the intended values. A rather detailed analysis of the consequences for the homogeneous case
can be found in Albers [10]. To avoid repetition, we shall be muchmore brief here andmainly
focus on the additional complication caused by the fact that the estimation step is now split
into k categories. See once more the Appendix section for the details. It is evaluated how large
the sizem of the Phase I sample should be in order to ensure that the exceedance probabilities
discussed at the end of Section 2 will fall below a prescribed small quantity δ. If the resulting
m is too large for use in practice, a small correction c is calculated, such that for a givenm the
desired δ can be met after all by using the slightly more strict n̂c = n̂(1−c) rather than n̂ itself.
A complication here in comparison to the homogeneous case is the presence of an additional
quantity τ ≥ 1 (see (D.5)), which represents the unbalance caused by (possible) differences
between the ideal πj and the actually occurring ωj .

To illustrate matters we again present an explicit example.

Example (continued). Once again, we add a complication to our ongoing example: now the
values of p1 and p2 are no longer known. Suppose, therefore, that we first wait till m = 100
failures have occurred and then use the resulting Phase I sample to estimate these pj (see
(4.1)). Just as in the example of Section 2, the application of the chart remains straightforward:
simply plug in the p̂j to replace the unknown pj . However, if we also want to study the
impact of the estimation step, and possibly correct for it, a bit more effort is needed (we shall
refer to the Appendix section for the required formulae). The point is that, in the subsequent
monitoring phase, we may still aim at an ARL of 200, but we have to accept that the actual
̂ARL may differ. In particular, this can substantially be smaller than 200, leading to a lot more
frequent false alarms than anticipated. To monitor not only the process but this effect as well,
we can, for example, look at the probability of a deviation of more than 20%, that is, of the
̂ARL falling below 160. In terms of (D.4), this is precisely PExc with 1/(1 + ε) = 0.8, and;
thus, ε = 0.25. As moreover r = 3, it then follows from (D.6) that PExc ≈ 1 − Φ(2.5/(3γτ)).
Since γ is close to, but smaller than, 1, a close upper bound for PExc is 1 − Φ(2.5/(3τ)). As
long as X is IC (regardless of whether the same holds for Y or not), τ will be close to 1 as
well, in which case this upper bound approximately boils down to 1 − Φ(2.5/3) = 0.20. If
such a 20% probability for a more than 20% too low ARL is acceptable, we can continue to
the monitoring phase. Otherwise m should be larger than 100; to be precise, m ≥ (12uδ)

2 is
needed to get PExc ≤ δ. Or, alternatively, for m fixed at 100, this can be achieved by using n̂c

with c = (100)1/2uδ − 0.25/3 (cf. (D.7)). For, for example, δ = 0.10, we have uδ = 1.28 and
m ≥ 236 and c = 0.045 result. If in factX is OoC, τ will be larger than 1, andwe need to usem ≥
(12τuδ)

2 instead. For example, consider once more the situation from the previous example,
where π1 = 0.9, p1 = p/2, π2 = 0.1, p2 = 11p/2, and subsequently ω1 = 0.7, ω2 = 0.3. Then
in addition to Σπjpj = p, Σωjpj = 2p, we obtain Σ[ω2

j /πj]pj = 5.22p, which leads through

(D.5) to τ2 = 1.31. Hence, to still get δ = 0.20, m should now be 131, rather than just 100. This
increase is still rather mild, but it is easy to see that higher increases ofm can be necessary. For
example, slightly generalize our example into π1 = 1 − q, π2 = q for some small q > 0, while
otherwise keeping p2/p1 = 11 and (ω1, ω2) = (0.7, 0.3). In that case p1 = p/(1+10q), producing
Σπjpj = p,Σωjpj = 4p/(1 + 10q) and Σ[ω2

j /πj]pj = {0.49/(1 − q) + 0.99/q}p/(1 + 10q). This
leads to τ2 ≈ (1 + 10.5q)/(16q), which, for example, for q = 0.05 equals 1.9 and for q = 0.02
already 3.8. Of course, the latter case is rather extreme, as the frequency of severe cases has
increased by a factor 15.
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(1) Before the monitoring phase starts, take the following preliminary steps:
(a) Select a desired ARL = 1/α and a degree of change θ during OoC that
should be optimally protected against.
(b) Apply rule of thumb (2.2) to obtain r (typically truncate at 5 in practice).
(c) Find λ such that P(Zλ ≥ r) = rα, where Zλ is Poission, or simply use its
approximation λ̃ from (A.2).
(d)Wait tillm failures have occurred. Take for example, m = 100 (or use Section 4
(e.g., see (D.6)) to make a more elaborate choice).
(e) From this Phase I sample, evaluate the fraction of failures p̂j for each of the
categories j = 1, . . . , k.

(2) Now wait till Y1, the moment at which the rth failure occurs.
(3) Obtain the corresponding numbers gj from category j (i.e., Σk

j=1gj = Y1).
(4) Give a signal if Σk

j=1gj p̂j ≤ λ; otherwise go back to Step 2, leading to Y2, Y3, . . ..

Algorithm 1

To conclude this section, for convenience, we briefly summarize the steps involved in
applying the new chart (see Algorithm 1).

Appendices

A. Approximations for the Negative Binomial Chart

In addition to a numerical solution for n, it is desirable to derive a simple approximation as
well, for example, to make transparent how the function nr,p,α behaves. Now

Fr,p(n) = P
(
Xr,p ≤ n

)
= P

(
Yn,p ≥ r

) ≈ P
(
Znp ≥ r

)
, (A.1)

with here Yn,p binomial with parameters n and p and Znp Poisson with parameter λ = np.
Hence, n ≈ λ/p, with λ solving P(Zλ ≥ r) = rα. For p ≤ 0.01, r ≤ 5, and α ≤ 0.01 (which
region amply suffices for our purposes), it is demonstrated in Albers [10] that this λ can be
approximated by

λ̃ = αr(1 + ζr), with ζr =
αr

r + 1
+
1
2
α2
r

3r + 5

(r + 1)2(r + 2)
, (A.2)

in which αr = (r!rα)1/r . The resulting approximation ñ = λ̃/p turns out to work well over the
region considered.

During OoC we have ARL = ARLr,θ = r/Fr,θp(nr,p) ≈ r/P(Zθλ ≥ r), with still λ such
that P(Zλ ≥ r) = rα. Again an approximation is feasible:

AR̃L =
r

1 − exp(−θαr)
(
1 + θαr + · · · +

(
(θαr)

r−2/(r − 2)!
)
+ (θαr)

r−1((1 − θαrζr)/(r − 1)!)
) ,

(A.3)
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with αr and ζr as in (A.2). It is adequate for the (p, r, α)-region above and 3/2 ≤ θ ≤ 4. The
improvement achieved by increasing r beyond 1 can be nicely judged by looking at hr =
hr,θ = ARL1,θ/ARLr,θ. Due to the alignment during IC, these functions all start with value 1
at θ = 1, after which they increase considerably. Only for really large θ, the decrease to the
limiting value 1/r sets in.

B. Illustration for a Fixed Number of Groups of Fixed Size

Let us assume in this subsection that the patients from a given risk category arrive in groups
of fixed size t, for some t ≥ 1. (Hence, t = 1 stands for the special case of individual arrivals).
With the risk category indicator X satisfying P(X = j) = πj, j = 1, . . . , k, the number of
defectives Y in such a group hence satisfies Y | X = j bin(t, pj). Suppose we wait till h such
groups have arrived, and thus n = ht patients have been seen. Since E(Y | X) = tpX and
var(Y | X) = tpX(1 − pX), it immediately follows that EY = tp = tΣπjpj and σ2

Y = t(p −
Ep2X) + t2var(pX) = tp(1 − p) + t(t − 1)var(pX). For controlling the process in this simple
setup, we might want to apply the standard p-chart, based on S = Σn

i=1Yi. But, since σ2
S =

hσ2
Y = n{p(1 − p) + (t − 1)var(pX)}, it is immediate that an overdispersion effect becomes

apparent as soon as t > 1, that is, in the case of “real” groups. Now, var(pX) = Σπj(pj − p)2

and we are focusing on high-quality processes, meaning that p and the pj are (very) small.
Consequently, the term var(pX), being of order p2, might still seem negligible. However, if
t is of order comparable to n, as will often be the case, the first term in σ2

S behaves as np

and the overdispersion correction as (np)2. Typically, such terms will be of the same order of
magnitude, and heterogeneity does have an impact.

Hence, even in the unconditional case (where the underlying information is
unavailable or simply ignored), a suitable modification should be applied to the standard
p-chart. To be more precise, the usual upper limit it uses is np + uα{np(1 − p)}1/2, where
uα = Φ−1(1 − α), with Φ denoting the standard normal p.d.f. Clearly, this should now be
replaced by np + uα{n[p(1 − p) + (t − 1)var(pX)]}1/2. Next, to make the step towards the
conditional case (i.e., the risk adjusted counterpart), note that we can also write

S = Σk
j=1Σ

Gj

i=1Yji, (B.1)

with (G1, . . . , Gk)multinomial (h, π1, . . . , πk) and Yji bin(t, pj). Performing control conditional
on the observed xi implies that in the risk-adjusted case S is compared to the upper
limit tΣgjpj + uα{tΣgjpj(1 − pj)}1/2. To appreciate the difference in behavior between the
unconditional and the conditional version of the chart, just drop the conditioning on the Gj

and use that EGj = hπj,var(Gj) = hπj(1 − πj) and cov(Gi,Gj) = −hπiπj . It then readily
follows that the expectation nΣπjpj(1 − pj) of the conditional variance is, thus, increased by
the nonnegligible amount Σ(tpj)

2hπj(1 − πj) − ΣΣi /= j t
2pipjhπiπj = ntvarpX . This result (as it

obviously should) agrees with the form of σ2
S derived above for the unconditional case.

Consequently, the picture is as follows: as long as the πj ’s remain unchanged once Y
goes OoC, both charts react similarly, with the risk-adjusted version being the more precise
one (as it has a smaller variance). However, if going OoC affects not only Y but also X (and,
thus, the πj), the behavior will diverge, and the choice will become dependent on the aim one
has in mind.
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To illustrate this conclusion more clearly, we conclude this subsection by making a
two-step excursion to the corresponding normal case of monitoring the mean of a continuous
process variable by means of a Shewhart chart. Hence, Y now is N(μ, σ2), that is, has p.d.f.
Φ((x − μ)/σ), and an upper limit μ + uασ is used in the homogeneous case. In the presence
of the group indicator X, this setup transforms into Y | X = j being N(μj, σ

2
j ). For the

unconditional case we then readily obtain that μ = Σπjμj and σ2 = Σπj{σ2
j + (μj − μ)2},

but we do note that Y now has a mixture distribution and, hence, is no longer normal. Such
violations of the normality assumption in fact occur quite often in practice, and Albers et al.
[22, 23] demonstrated how using an additional parameter concerning the tail length of the
actual distribution can adequately remedy the ensuing model error. On the other hand, for
the conditional case matters remain pretty trivial, just use μj + uασj for the appropriate j as
upper limit. Comparison of the two versions runs completely parallel to that for the attribute
data above.

To obtain the intended additional clarity, a second step is needed: instead of using
a category indicator, now let X be normal as well. Hence, we have pairs (Y,X) which are
bivariate normalN(μY , μX, σ

2
Y , σ

2
X, ρ). Unconditional monitoring then means using the upper

limit μY + uασY , while working given the observed outcomes x means applying μY + ρσY (x −
μX)/σX+uα(1−ρ2)1/2σY , in view of the fact that Y | X = x isN(μY+ρσY (x−μX)/σX, (1−ρ2)σ2

Y ).
Such a method of using auxiliary information has recently been discussed by Riaz [24]. The
advantage of this bivariate case is that it allows a very simple comparison between the two
approaches. For let OoC now imply that the (Yi, Xi)will beN(μY +dYσY , μX+dXσX, σ

2
Y , σ

2
X, ρ),

then the conditional approach has an ARL = 1/{1 −Φ(uα − d̃Y )}, where

d̃Y =
(
1 − ρ2

)−1/2(
dY − ρdX

)
. (B.2)

Indeed, if dX = 0 that is, the Xi’s remain unchanged whenever the Yi’s go OoC,
then clearly d̃Y > dY , unless ρ = 0. Hence, in this situation, inspection using the auxiliary
information from the Xi leads to lower ARL and, thus, to better performance, as argued in
Riaz [24]. However, if dX is positive as well, d̃Y can be smaller than dY and even 0 (just let
dX = dY/ρ), meaning that no OoC situation is perceived. Whether this is right or wrong just
depends on the perspective used. If dY = ρdX , the behavior of Y is shifted “only” because
of the shift in the underlying X. In that sense “nothing” has happened, and not reacting
may well be the appropriate response. However, if the behavior of Y should be judged
against a fixed standard, irrespective of possible shifts in X, one should clearly stick to the
unconditional version by using μY + uασY .

C. Approximations for the Heterogeneous Case

If we denote a binomial r.v. with parameters s and q by Ỹs,q, then, in analogy to (A.1), we
have, with gj = gj,n,

P
(
Yr,p ≤ n

)
= P

(
Σk
j=1Ỹgj ,pj ≥ r

)
= rα. (C.1)

For r > 1, typically n will be large, and, if k is (relatively) small, the gj will be large as
well. Hence, the Poisson approximation step from (A.1) can be used here again. In fact, quite
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conveniently it remains possible to keep using λ such that P(Zλ ≥ r) = rα; only the relation
between the lower limit n and this λ becomes slightly more intricate than in the homogeneous
case:

n = Σk
j=1gj , with the gj = gj,n such that λ = Σk

j=1gjpj . (C.2)

(More formally: look for the largest value of n such that the corresponding gj = gj,n satisfies
Σk
j=1gjpj ≤ λ. However, as the pj ’s are small, this distinction is rather futile.)

Till now we excluded the case r = 1, as n is not necessarily large there and the Poisson
step might not be warranted. Just as in the homogeneous situation, this boundary case can
be simply solved exactly. In fact, P(Y1,p ≤ n) = P(Σk

j=1Ỹgj ,pj ≥ 1) = 1 − P(Ỹgj ,pj = 0 ∀ j) =
1 − Π(1 − pj)

gj = α. This leads to Σgj log(1 − pj) = log(1 − α) and, thus, to, for example,
Σgjpj ≈ − log(1 − α), which is in line with the result from (C.2) (see [10] for details).

Hence, unlike in the unconditional case, where the Poisson approximation has to be
replaced by a negative binomial one, most of the results during IC from the homogeneous
case carry over to the risk-adjusted version and the modification needed is actually already
covered by (C.2). For example, all results from Albers [10] about approximating λ (cf. (A.2))
can be used directly. Once the process goes OoC, in principle this carrying over continues,
certainly if we translate the step from p to θp in a uniform way into replacing each pj by
θpj . Then ARL = ARLr,θ = r/P(Yr,θp ≤ nr,p), in which P(Yr,θp ≤ nr,p) = P(Σk

j=1Ỹgj ,θpj ≥ r) ≈
P(Zθλ ≥ r), with still λ such that P(Zλ ≥ r) = rα. Hence, an approximation like ARL̃ from
(A.3) continues to hold as well.

More generally, going OoC will mean that pj becomes θjpj , with the θj such that still
θ = Σπjθjpj/Σπjpj > 1. Using (C.1) again, we obtain that ARL ≈ r/P(Zθ∗λ ≥ r), with once
more λ such that P(Zλ ≥ r) = rα, but now

θ∗ =
Σk
j=1ωjθjpj

Σk
j=1ωjpj

. (C.3)

Note that if the p.d.f. of theXi remains unchanged when theDi’s go OoC, the weightsωj will
remain close to the πj , and; thus, θ∗ from (C.3) will in fact be close to θ. Hence, results from
the homogeneous case (such as (A.3)) continue to hold approximately. In other words, the
risk-adjusted chart indeed shows behavior quite similar to that of the unconditional chart for
the individual case. Moreover, it is somewhat more precise than the unconditional chart from
the group arrival case, the difference being that the latter is based on a negative binomial
rather than a Poisson p.d.f.

To demonstrate that matters can become quite different when the p.d.f. ofX is affected
as well during OoC, we argue as follows. First of all, note that there is no need that θj > 1 for
all j. To see this, without loss of generality, suppose that the pj ’s are ordered into increasing
order ofmagnitude. Now assume that we have an increasing sequence of θj such that not only
the πj but also the πjθj are in fact probabilities. For such θj indeed θ = Σπjθjpj/Σπjpj > 1 will
hold, as follows, for example, by noting that monotone likelihood ratio implies increasing
expectation [25, page 74]). Hence, this choice can serve as yet another example of the case
discussed in the previous paragraph: the Xi’s remain unchanged, the pj ’s turn into θjpj ,
leading to an overall OoC factor θ.
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However, we can also choose to associate the θj in πjθjpj with πj rather than with pj .
In other words, the weights ωj are shifted from πj to πjθj , whereas the pj remain as they are.
Consequently, the conditional chart uses ωj = πjθj and θjpj = pj in (4.3) and, thus, arrives
at θ∗ = 1. Hence, after risk-adjustment, everything is still perfectly IC, and the chart sees
no reason for action at all. On the other hand, the unconditional charts keeps observing that
θ = Σπjθjpj/Σπjpj > 1 and will tend to react. As argued before, both answers are right; only
the underlying questions differ.

D. Effects of and Corrections for the Estimation Step

In analogy to (C.2), we obtain for the present situation that

F̂AR = P
(
Yr,p ≤ n̂

)
= P

(
Σk
j=1Ỹĝj ,pj ≥ r

)
≈ P

(
Zλ̂ ≥ r

)
, (D.1)

with λ̂ = Σĝjpj . From (4.3) it follows that λ̂ = λ + Σĝj(pj − p̂j) and, thus, that λ̂ = λ(1 + U),
where

U = Σk
j=1

ĝj p̂j

Σk
j=1ĝj p̂j

(
pj

p̂j
− 1

)

. (D.2)

This is precisely the same structure as we already had in (4.4) from Albers [10], the only
difference being that there U simply equals p/p̂ − 1. Hence, the subsequent steps are quite
parallel, and we shall not go into much detail. The idea again is to expand F̂AR − FAR ≈
P(Zλ̂ ≥ r)−P(Zλ ≥ r)w.r.t.U. Since dP(Zλ ≥ r)/dλ = P(Zλ = r − 1) = r(Zλ = r)/λ, we arrive
at

F̂AR − FAR ≈ rUP(Zλ = r) =
(
γrU

)
FAR, (D.3)

where γ = P(Zλ = r)/P(Zλ ≥ r). According to Lemma 4.1 from Albers [10], this γ satisfies
1 − λ/(r + 1) < γ < 1, implying that it will typically be close to 1.

From (D.3)we can readily evaluate desired quantities of interest for judging the impact
of the estimation step, such as the exceedance probability:

PExc = P

(
F̂AR
FAR

− 1 > ε

)

= P
(
F̂AR > rα(1 + ε)

)
, (D.4)

in which ε is some small positive constant, like 0.25. Note that, since ̂ARL = r/F̂AR, we
can also write PExc = P(̂ARL < (1/α)/(1 + ε)), so both types of performance characteristics
are dealt with simultaneously through (D.4). Indeed, from (D.3), it immediately follows that
PExc ≈ P(U > εα/P(Zλ = r)) = P(U > ε/(γr)). In the homogeneous case, we simply have
that U = p/p̂ − 1 is AN(0, m−1), and thus the corresponding PExc = 1 − Φ(m1/2 ε/(γr)) (see
(4.10) in Lemma 4.3 of [10]). For the present case, we combine (4.2) and (D.2). First note that
U = Σk

j=1ω̂j p̂j(pj/p̂j − 1)/Σk
j=1ω̂j p̂j ≈ Σk

j=1ωjpj(pj/p̂j − 1)/Σk
j=1ωjpj and also that (4.2) holds
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not only for p̂j/pj −1 but also for pj/p̂j −1. Consequently, once more ignoring quadratic terms
in the pj , we obtain that the present U is AN(0, m−1τ2), where

τ2 =

(

Σk
j=1

ω2
j

πj
pj

)
Σk
j=1πjpj

(
Σk
j=1ωjpj

)2
. (D.5)

Hence, it follows that

PExc ≈ P

(
U >

ε

γr

)
≈ 1 −Φ

(
m1/2ε

γrτ

)

, (D.6)

with τ as in (D.5).
It is immediate from (D.6) that ensuring PExc ≤ δ for a certain small δ, like 0.10 or

0.20, requires m ≥ (γrτuδ)
2/ε2. Moreover, by for example applying Cauchy-Schwarz to the

r.v.’s V1 = ωXP
1/2
X /πX and V2 = p1/2X , it is clear that τ ≥ 1, and; thus, PExc ≥ PExc,Hom, with

equality occurring only if ωj = πj . As we observed in Section 3, the latter situation will be
approximately true during IC and, moreover, during OoC, when only Y is affected and X is
not. However, as soon as the behaviors of the risk-adjusted and the unconditional charts start
to differ, this will mean that the ωj ’s are no longer close to the πj , and then the exceedance
probability will start to be larger than its homogeneous counterpart. The verbal explanation
is quite straightforward: as remarked after (4.2), the relative precision of the p̂j increases in
πjpj . As long as the gj ’s are such that the weights ωj ’s are close to the supposed πj , this effect
is adequately balanced in (D.2). However, once rare categories become more prominent, this
balance is disturbed.

Through (D.6) we can check the behavior of the estimated chart and prescribe the
minimalm to ensure a desired bound δ on PExc. However, if thism cannot be realized and we
are stuck with some given lower value, this bound can also be achieved by using a somewhat
more strict lower limit n̂c = n̂(1−c), with n̂ as in (4.3) and c > 0 small. Then λ̂ = λ(1+U) from
(D.1) becomes λ̂c = λ(1+U)(1− c), and; thus,U is replaced byU − c in what follows, leading
through (D.6) to

PExc ≈ P

(
U > c +

ε

γr

)
≈ 1 −Φ

(
m1/2

(
c +

ε

γrτ

))
. (D.7)

A requirement like PExc = δ can now be enforced by choosing c = m−1/2uδ−ε/(γrτ) (cf. (4.11)
from Albers [10]). Indeed, the term of order m−1/2 shows that c is small, and the correction
becomes superfluous (i.e., c = 0) as soon asm reaches the aforementioned value (γrτuδ)

2/ε2.
Incidentally, note that, unlike the other quantities involved, τ is not yet known during Phase
I. Hence, the bound on PExc is valid as long as the actually observed values of τ after Phase I
are at most as large as the one used beforehand in obtaining m and c.
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