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Diffusion models have been used extensively in many applications. These models, such as
those used in the financial engineering, usually contain unknown parameters which we wish to
determine. One way is to use the maximum likelihood method with discrete samplings to devise
statistics for unknown parameters. In general, the maximum likelihood functions for diffusion
models are not available, hence it is difficult to derive the exact maximum likelihood estimator
(MLE). There are many different approaches proposed by various authors over the past years, see,
for example, the excellent books and Kutoyants (2004), Liptser and Shiryayev (1977), Kushner and
Dupuis (2002), and Prakasa Rao (1999), and also the recent works by Aı̈t-Sahalia (1999), (2004),
(2002), and so forth. Shoji and Ozaki (1998; see also Shoji and Ozaki (1995) and Shoji and Ozaki
(1997)) proposed a simple local linear approximation. In this paper, among other things, we show
that Shoji’s local linear Gaussian approximation indeed yields a good MLE.

1. Introduction

Diffusion processes are used as theoretical models in analyzing random phenomena evolved
in continuous time. These models may be described in terms of Itô’s type stochastic dif-
ferential equations

dXt = A(Xt, θ)dt + σ(Xt, θ)dWt, (1.1)

where (Wt)t≥0 is a Brownian motion, with some unknown parameters θ to be determined in
rational ways.
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It is, however, difficulty to derive the maximum likelihood estimator for θ if the
diffusion coefficient (i.e., the volatility) σ is unknown. On the other hand, in practice, the
volatility is determined first by using the fact that

σ2T = lim
n∑

j=1

(
X(j−1)T/n −XjT/n

)2 in prob. (1.2)

when σ is a constant. Therefore we will limit ourselves on diffusion models with constant
volatility:

dXt = A(Xt, θ)dt + dWt. (1.3)

Since there is no much difference at technical level, we will consider one-dimensional models
only. That is, we will assume throughout the paper that W is a one-dimensional Brownian
motion, and X is real valued.

The distribution μX
T of (Xt)t≥0 over a finite time interval [0, T] has a density with respect

to theWienermeasure μW
T (the law of the BrownianmotionW), given by the Cameron-Martin

formula:

dμX
T

dμW
T

= exp

[∫T

0
A(Xt, θ)dXt − 1

2

∫T

0
A(Xt, θ)

2dt

]
, (1.4)

which is in turn the likelihood functionwith continuous observation. In practice, only discrete
values Xt0 , . . . , Xtn may be observed over the duration [0, T], where 0 = t0 < t1 < · · · < tn = T

and ti − ti−1 = δ. The corresponding likelihood function L̃(θ) is the conditional expectation
under Wiener measure:

E

{
L̃(θ) | Xt0 , . . . , Xtn

}
=

∏n
j=1pθ

(
δ,Xtj−1 , Xtj

)

∏n
j=1G
(
δ,Xtj−1 , Xtj

) , (1.5)

where pθ(t, x, y) is the conditional probability density function of Xt given X0 = x, and
G(t, x, y) is the Gaussian density 1/

√
2πt exp{−|x − y|2/2t} (see [1]). Since the denominator

of (1.5) does not depend on θ, we may simply consider the numerator

L(Xt0 , . . . , Xtn) ≡
n∏

j=1

pθ
(
δ,Xtj−1 , Xtj

)
, (1.6)

as a likelihood function. Therefore, the MLE for θ under a discrete observation may be found
by solving either explicitly if possible or numerically the likelihood equation

∇L(Xt0 , . . . , Xtn) = 0. (1.7)

The difficulty with this approach is that, unless for a very special drift vector fieldA, an
explicit formula for pθ(t, x, y) is not known. To overcome this difficulty, many approximation
methods have been proposed in the literature by various authors. The idea is to replace
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the diffusion model (1.3) by an approximation model for which an explicit formula for the
likelihood function is available. One possible candidate is of course the Euler-Maruyama
approximation

X̃tj − X̃tj−1 = A
(
X̃tj−1 , θ

)
δ + ξj

√
δ, (1.8)

where {ξj} is an i.i.d. sequence with standard normal distribution N(0, 1) and X̃0 = X0.
However, the likelihood function L1(X0, . . . , Xn) for this model is not, in general, close enough
to that of the diffusion model if measured in terms of the ratio of their corresponding
likelihood functions

L(Xt0 , . . . , Xtn)
L1(Xt0 , . . . , Xtn)

. (1.9)

The second approach is to discretize the likelihood function dμX
T /dμ

W
T for continuous

observations. In order to utilize this likelihood function, we need to handle the Itô integral∫T
0 A(Xt, θ)dXt which is defined only in probability sense. If A = ∇f (where f is a C1-
function) is a gradient field, then, according to Itô’s formula,

dμX
T

dμW
T

= exp

[
f(XT, θ) −

∫T

0

(
1
2
(
Δf
)
(XT, θ) +

1
2
|A(XT, θ)|2

)
dt

]
, (1.10)

here the right-hand side involves only the sample X. This idea to get rid of Itô’s integral and
replace it by an ordinary one has far-reaching consequences, see the interesting paper [2] for
some applications.

One can also use approximations to the probability density function pθ(t, x, y) and
construct functions which are close to the maximum likelihood function. There are a great
number of articles devoted to this approach, such as [3–5], for example. The difficulty,
however, is that even f(t, x, y) is a uniform approximation of pθ(t, x, y), there is no guarantee
that the approximate likelihood function

∏
j f(t, xj−1, xj) would tend to

∏
j pθ(t, xj−1, xj)

when n → ∞.
In this paper we consider the linear diffusion approximation proposed by Shoji and

Ozaki [6] to the diffusion model (1.3), which leads to the following approximation of the
likelihood function L(Xt0 , . . . , Xtn):

L2(Xt0 , . . . , Xtn) =
n∏

j=1

hj

(
δ,Xtj−1 , Xtj

)
, (1.11)

where tj = jT/n so that Xtj is a sample with fixed duration δ = tj − tj−1 over [0, T], and
hj(t, x, y) is the probability transition density of the following linear diffusion model

dX̂t =
(
A
(
Xtj−1 , θ

)
+A′
(
Xtj−1 , θ

)(
X̂t −Xtj−1

))
dt + dWt, (1.12)

when tj−1 ≤ t < tj and X̂tj−1 = Xtj−1 .
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The approximation (1.12) is called the local linearization of the diffusion model (1.3),
which has been studied in Shoji and Ozaki [6]. Shoji has showed numerically that the local
linearizations do yield better estimates. Shoji’s approximation was revisited in Prakasa Rao
[7], without a definite conclusion.

The main goal of the paper is to prove Theorem 3.1 which implies that the local linear
approximations (1.12) is efficient for the propose of deriving MLE with discrete samples.

The paper is organized as follows. In Section 2, we present the MLE for linear models
such as (1.12). In Section 3, we state our main result for Shoji’s local linear approximation,
and give some comments about the conditions on the sampling data. Our main theorem
provides a deterministic convergence rate for the likelihood functions. In Section 4, we prove
that the likelihood function for the local linear approximation converges to the Cameron-
Martin density but only in probability sense. Sections 5, 6, and 7 are devoted to the proof of
our main result. In Section 5, we state the main tool, a representation formula for diffusions,
established by Qian and Zheng [8]. In Section 6, we develop the main technical estimates
in order to prove Theorem 3.1, whose proof is completed in Section 7. Section 8 contains a
discussion about the Euler-Maruyama approximation which concludes the paper.

2. Linear Diffusions

Let us beginwith theMLE of parameters a, b, and σ > 0 for the linear diffusionmodel (Mishra
and Bishwal [9] discussed a similar model):

dXt = (b − aXt)dt + σdWt, (2.1)

whose finite-dimensional distributions are Gaussian, determined through the probability
transition function h(t, x, y). Fortunately we have an explicit formula for h. Indeed the linear
equation (2.1)may be solved explicitly and its solution is given by the formula

Xt = e−atX0 +
b

a

(
1 − e−at

)
+ σ

∫ t

0
e−a(t−s)dWs, (2.2)

(formula (6.8) of Karatzas and Shreve [10], page 354), and therefore

h
(
t, x, y

)
=

1√
πσ

√
a

1 − e−2at
exp

[
− a

1 − e−2at

∣∣y − e−atx − (b/a)
(
1 − e−at

)∣∣2

σ2

]
. (2.3)

Suppose we have a discrete sample observed over the equal time scale during the
period [0, T], XiT/n, i = 0, . . . , n. According to the Markov property, their joint distribution, or
the maximum likelihood function

L(a, b, σ;x0, . . . , xn) = μ(x0)
n∏

j=1

h
(
δ, xj−1, xj

)
, (2.4)
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where δ = T/n, and μ(x) is the probability density function of the initial distribution.
Therefore the logarithmic of the maximum likelihood function

l(a, b, σ; {xi}) = logμ(x0) +
n∑

j=1

logh
(
1
n
, xj−1, xj

)

= logμ(x0) − n

2
logπ − n logσ +

n

2
loga − n

2
log
(
1 − e−2aT/n

)

− na

1 − e−2aT/n
1

σ2T

n∑

j=1

(
xj − b

a
−
(
xj−1 − b

a

)
e−aT/n

)2

.

(2.5)

The maximum likelihood estimates for a, b, and σ are the stationary points of l, that is
solutions to the equation ∇l = 0. Set ρ = e−aT/n. Then a = −(n/T) log ρ and β = b/a.

Proposition 2.1. The maximum likelihood estimates for the linear diffusion model (2.1) with discrete
observations are given by

â =
n

T
log

∑n
j=1 x

2
j−1 − (1/n)

(∑n
j=1 xj−1

)2

∑n
j=1 xj−1xj − (1/n)

∑n
j=1 xj−1

∑n
j=1 xj

,

β̂ =
1
n

n∑

j=1

xj +
1
n

ρ̂

1 − ρ̂
(xn − x0),

σ̂2 =
1
T

2â
1 − ρ̂2

n∑

j=1

(
xj − ρ̂xj−1 −

(
1 − ρ̂

)
β̂
)2
.

(2.6)

As an interesting consequence we have the following.

Corollary 2.2. The maximum likelihood estimators (â, b̂, σ̂) to the linear diffusion model (2.1) are
not sufficient statistics while (â, b̂, σ̂, X0, Xn) are sufficient.

3. Diffusion Models

We consider the diffusion model (1.3). Our approach and our conclusions are applicable
to multidimensional cases as long as the diffusion coefficients are constant. For simplicity,
we only consider one-dimensional case. The question is to estimate θ under a discrete
observation {x0, . . . , xn} over the time scale δ in the time interval [0, T]. Then, up to a constant
factor, its maximum likelihood function

L(x0, . . . , xn) =
n∏

j=1

p
(
δ, xj−1, xj

)
, (3.1)
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where p(t, z, y) is the transition probability density of (Xt) (we have dropped the subscript
θ for simplicity). The approximation maximum likelihood function, proposed in [6], is given
by

L2(x0, . . . , xn) =
n∏

j=1

hj

(
δ, xj−1, xj

)
, (3.2)

where hj(t, x, y) is the transition density function to the linear diffusion model

dXt =
(
A
(
xj−1, θ

)
+A′(xj−1, θ

)(
Xt − xj−1

))
dt + dWt, (3.3)

which is the first-order approximation to (1.3).
In what follows we assume that A has bounded first and second derivatives and

∣∣A′(x, θ)
∣∣,

∣∣A′′(x, θ)
∣∣ ≤ 2C0, (3.4)

for some constant C0 > 0 independent of parameters θ.
The main result of the paper is follows.

Theorem 3.1. Assume that A′(·, θ) and A′′(·, θ) are bounded uniformly in θ. Let T > 0 be a fixed
time and C > 0 be a constant. Suppose {xn

j }j≤n (n = 1, 2, . . .) is a family of discrete samples such that

∣∣∣xn
j − xn

j−1
∣∣∣
2 ≤ Cδ(n),

∣∣∣xn
j

∣∣∣ ≤ C, (3.5)

for all pair (j, n) such that j ≤ n, n = 1, 2, . . ., where δ(n) = T/n. Then

lim
n→∞

L
(
xn
0 , . . . , x

n
n

)

L2
(
xn
0 , . . . , x

n
n

) = 1, (3.6)

where L and L2 are defined in (3.1) and (3.2) with δ = δ(n) = T/n.

The convergence in (3.6) happens in a deterministic sense, and therefore conditions
such as |xn

j −xn
j−1|2 ≤ Cδ(n) and |xn

j | ≤ C are reasonable. The first condition, that is |xn
j −xn

j−1|2 ≤
Cδ(n), just says the “variance” of the sample cannot be too big. Since

∑

j

∣∣XjT/n −X(j−1)T/n
∣∣2 −→ T in probability, (3.7)

so that on average we should have |xn
j − xn

j−1|2 ≤ Cδ(n). Since (Xt) has continuous sample
paths, so that {X(ω)t : t ∈ [0, T]} for a fixed sample pointω is bounded. Since xn

j are sampled
from the fixed duration [0, T], thus we can assume that {xn

j } is bounded, though here we
have a countable many samples. It is possible to relax this constraint, for example, we may
impose that |xn

j | ≤ Cnα with α < 1/2, but for simplicity we only consider the bounded case.
This condition is placed as a kind of “integrability” condition on the samples.
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From the asymptotic of the transition density function p(t, x, y), it is easy to see that

lim
δ→ 0

p
(
δ, xj−1, xj

)

hj

(
δ, xj−1, xj

) = 1, (3.8)

for each j, while, as our observation {x0, . . . , xn} happens over a fixed time interval [0, T],
the ratio (3.6) as n → ∞ is really an infinite product, its behavior thus depends on the
global behavior of p(t, x, y). Although there are many results about bounds of p(t, x, y) in
the literature (see [2, 11] e.g.), the best we could find are those which yield (3.8) uniformly
in xj , none of them yields the precise limit (3.6). In fact, the proof of (3.6) depends on careful
estimates on p(t, x, y) through a representation formula established in [8].

4. Linear Diffusion Approximations

Without losing generality, we may assume that T = 1. LetXj/n be a discrete observation of the
diffusion model (1.3) at tj = j/n (j = 0, . . . , n). For simplicity, write Xj/n as Xj if no confusion
may arise. Consider the family of linear diffusions

dXj
t =
(
A
(
Xj−1, θ

)
+A′(Xj−1, θ

)(
X

j
t −Xj−1

))
dt + dWt, (4.1)

with X
j

(j−1)/n = Xj−1. Let

bj = A
(
Xj−1, θ

) −A′(Xj−1, θ
)
Xj−1,

aj = A′(Xj−1, θ
)
.

(4.2)

Then

X
j
t = eaj (t−tj−1)Xj−1 +

eaj (t−tj−1) − 1
aj

bj +
∫ t

tj−1
eaj (t−s)dWs, (4.3)

so that

hj

(
δ,Xj−1, Xj

)
= P

(
X

j
tj
= Xj | Xj

tj−1 = Xj−1
)

=

√
2aj

e2ajδ − 1
1√
2π

e−(aj/(e
2aj δ−1))(Xj−Xj−1−((eaj δ−1)/aj )(bj+ajXj−1))

2

,

(4.4)

where δ = 1/n. The approximating likelihood function is

L2(δ) =
n∏

j=1

hj

(
δ,Xj−1, Xj

)
. (4.5)
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We need to compare this function to the likelihood function with continuous observation—
the Cameron-Martin density, which, however, should be discounted with respect to the
Wiener measure. Thus we have to renormalize L2(δ) against the discrete version of Brownian
motion, which is given by

L̂2(δ) =
n∏

j=1

hj

(
δ,Xj−1, Xj

)

G
(
δ,Xj−1, Xj

) , (4.6)

where

G
(
δ, x, y

)
=

1√
2πδ

exp

(
−
∣∣x − y

∣∣2

2δ

)
. (4.7)

Hence its logarithmic

l̂2(δ) =
1
2

∑

j

log
2δaj

e2ajδ − 1
+

1
2δ

∑

j

∣∣Xj −Xj−1
∣∣2

− 1
2

∑

j

2aj

e2ajδ − 1

(
Xj −Xj−1 − eajδ − 1

aj

(
bj + ajXj−1

)
)2

.

(4.8)

Proposition 4.1. One has

lim
δ↓0

l̂2(δ) = l (4.9)

uniformly in θ, in probability with respect to the Wiener measure, where l is the log of the Cameron-
Martin density (1.4).

Proof. Let Dj = Xj −Xj−1. Then

l̂2(δ) =
1
2

∑

j

log
2δaj

e2ajδ − 1
+

1
2δ

∑

j

(
1 − 2δaj

e2ajδ − 1

)
D2

j

−
∑

j

1
eajδ + 1

(
bj + ajXj−1

)2 eajδ − 1
aj

+ 2
∑

j

1
eajδ + 1

(
bj + ajXj−1

)
Dj.

(4.10)
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Since bj = A(Xj−1, θ) − ajXj−1 and aj = A′(Xj−1, θ), so that

l̂2(δ) =
1
2

∑

j

log
2δaj

e2ajδ − 1
+

1
2δ

∑

j

(
1 − 2δaj

e2ajδ − 1

)
D2

j

−
∑

j

1
eajδ + 1

A
(
Xj−1, θ

)2 eajδ − 1
aj

+ 2
∑

j

1
eajδ + 1

A
(
Xj−1, θ

)
Dj.

(4.11)

However,

lim
δ↓0

2
∑

j

1
eajδ + 1

A
(
Xj−1, θ

)
Dj =

∫1

0
A(Xt, θ)dXt,

lim
δ↓0

∑

j

1
eajδ + 1

A
(
Xj−1, θ

)2 eajδ − 1
aj

=
1
2

∫1

0
|A|2(Xt, θ)dt,

lim
δ↓0

1
2

∑

j

log
2δaj

e2ajδ − 1
= −1

2

∫1

0
A′(Xt, θ)dt,

lim
δ↓0

1
2δ

∑

j

(
1 − 2δaj

e2ajδ − 1

)
D2

j =
1
2

∫1

0
A′(Xt, θ)dt

(4.12)

in probability. The claim thus follows immediately.

5. A Representation Formula

From this section, we develop necessary estimates in order to prove Theorem 3.1. In this
section, we recall the main tool in our proof, a representation formula proved by Qian and
Zheng [8]. Based on this formula, we prove the main estimate (6.65), which has independent
interest, in the next section. We conclude the proof of Theorem 3.1 in Section 7.

Let x ∈ R. Consider the linear diffusion

dXt =
(
A(x, θ) +A′(x, θ)(Xt − x)

)
dt + dWt, (5.1)

whose probability transition function is also denoted by h(t, z, y). Recall that p(t, z, y) is the
probability transition function of the diffusion defined by (1.3). The strong solution of (5.1)
is given by

Xt = X0 + σ(a, t)2(aX0 + b) +
∫ t

0
ea(t−s)dWs, (5.2)
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so that

h
(
t, z, y

)
=

1√
2πσ(2a, t)

exp

{
− 1

2σ(2a, t)2
(
y − z − σ(a, t)2(b + az)

)2
}
, (5.3)

where b = A(x, θ) − xA′(x, θ), a = A′(x, θ) and σ(a, t) =
√
(eat − 1)/a.

Observe that for any a ∈ R, t → σ(a, t) is increasing, and

lim
t↓0

σ(a, t)√
t

= 1 for any a. (5.4)

We will also use the fact that

σ(2a, t) =

√
e2at − 1
2a

=

√
eat + 1

2
σ(a, t). (5.5)

Lemma 5.1. For x ∈ R, and C(z) = A(z, θ) −A(x, θ) −A′(x, θ)(z − x). Then

|C(z)| ≤ C0 min
{
2|z − x|, 1

2
|z − x|2

}
. (5.6)

Our main tool is a representation formula (5.7) discovered in [8]. Let (Xt,P
x) be the

solution to the linear stochastic differential equation (5.1).

Proposition 5.2. For x, y ∈ R and T > 0 one has

p
(
T, x, y

)

h
(
T, x, y

) = 1 +
∫T

0
P
x

{
UtC(Xt)

∇h
(
T − t, Xt, y

)

h
(
T, x, y

)
}
dt, (5.7)

where

Ut = exp

{∫ t

0
C(Xs)dWs − 1

2

∫ t

0
|C|2(Xs)ds

}
, (5.8)

which is a martingale under the probability P
x.

To prove (3.6), we need to estimate the double integral appearing on the right-hand
side of (5.7), which requires a precise estimate for

It = P
x

{
UtC(Xt)

∇h
(
T − t, Xt, y

)

h
(
T, x, y

)
}
, (5.9)

which can be achieved since we know the precise form h(T, x, y). Of course, if we knew the
joint distribution of (Ut,Xt), our task would be easy, but unfortunately it is rarely the case.
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Our arguments are based on the fact that (Ut) is a martingale under P
x, together with some

delicate estimates for the functional integral

P
x

{∣∣∣∣∣
∇h
(
T − t, Xt, y

)

h
(
T, x, y

)

∣∣∣∣∣

p}
, (5.10)

which will be done in the next section.

6. Main Estimates

We use the notations established in the previous section. Let T > 0, x, y ∈ R and d = y − x.
Then

∇zh
(
T − t, z, y

)

h
(
T − t, z, y

) =
2aea(T−t)

e2a(T−t) − 1

(
y − ea(T−t)z − σ(a, T − t)2b

)
, (6.1)

and therefore

∇zh
(
T − t, Xt, y

)

h
(
T, x, y

) =
2aea(T−t)

e2a(T−t) − 1

h
(
T − t, Xt, y

)

h
(
T, x, y

)

×
(
y − ea(T−t)Xt − σ(a, T − t)2b

)

=
σ(2a, T)ea(T−t)

σ(2a, T − t)3
e(1/2σ(2a,T)

2)S(T)2

×
(
y − ea(T−t)Xt − σ(a, T − t)2b

)

× e−(1/2σ(2a,T−t)
2)|y−ea(T−t)Xt−σ(a,T−t)2b|2,

(6.2)

where

S(T) =
∣∣∣y − x − σ(a, T)2(ax + b)

∣∣∣. (6.3)

For t ∈ (0, T) and p > 1 we set

βp(t) =
√

a

p
(
e2aT − 1

) − (p − 1
)(
e2a(T−t) − 1

)
∣∣∣σ(a, T)2(b + ax) − d

∣∣∣,

αp(t) =

√√√ e2a(T−t) − 1
p
(
e2aT − 1

) − (p − 1
)(
e2a(T−t) − 1

) ,

(6.4)

for simplicity.
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Lemma 6.1. For any p > 1 one has

√
1
p

∣∣∣σ(a, T)2(b + ax) − d
∣∣∣ ≤
√

e2aT − 1
a

βp(t) ≤
∣∣∣σ(a, T)2(b + ax) − d

∣∣∣,

√
1
p

√
e2a(T−t) − 1
e2aT − 1

≤ αp(t) ≤
√

e2a(T−t) − 1
e2aT − 1

,

(6.5)

for all t ∈ [0, T].

Proof. The two inequalities follow from the fact that

√
e2aT − 1

p
(
e2aT − 1

) − (p − 1
)(
e2a(T−t) − 1

) (6.6)

assumes its maximum 1 and minimum
√
1/p.

Since

βp(t)
αp(t)

=
√

a

e2a(T−t) − 1

∣∣∣σ(a, T)2(b + ax) − d
∣∣∣,

e2a(T−t) − 1
e2aT − 1

β2p(t)2

α2p(t)2
=

a

e2aT − 1

∣∣∣σ(a, T)2(b + ax) − d
∣∣∣
2
,

(6.7)

so that

∇zh
(
T − t, Xt, y

)

h
(
T, x, y

) =
σ(2a, T)

σ(2a, T − t)3
e((e

2a(T−t)−1)/(e2aT−1))(β2p(t)2/α2p(t)
2)+a(T−t)

×
(
y − ea(T−t)Xt − σ(a, T − t)2b

)

× e−(1/2σ(2a,T−t)
2)|y−ea(T−t)Xt−σ(a,T−t)2b|2 ,

(6.8)

which yield, together with (5.7), the following.

Lemma 6.2. One has

p
(
T, x, y

)

h
(
T, x, y

) = 1 +
∫T

0

2aea(T−t)

e2a(T−t) − 1

√
e2aT − 1

e2a(T−t) − 1
e((e

2a(T−t)−1)/(eaT−1))(β2p(t)2/α2p(t)
2)

× P
x{UtC(Xt)K(t)}dt,

(6.9)
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where

K(t) =

(
y − ea(T−t)Xt − ea(T−t) − 1

a
b

)

× e−(a/(e
2a(T−t)−1))|y−ea(T−t)Xt−((ea(T−t)−1)/a)b|2 .

(6.10)

Let

J
(
p
)
t =

p

√
Px
(|K(t)|p)

D
(
p
)
t =

2p

√
Px
(
e(2p/(2p−1))

∫ t
0 |C|2(Xs)ds|C(Xt)|2p

)
.

(6.11)

Lemma 6.3. Choose ζ > 0 such that

P exp

(
ζsup
[0,1]

|Wt|2
)

= c < +∞. (6.12)

Then for any T > 0 and λ > 0, such that

4λC0

eaT
e2aT − 1

a
≤ ζ, (6.13)

one has

P
x
(
eλ
∫ t
0 |C|2(Xs)ds

)
≤ c ∀t ≤ T. (6.14)

Proof. Let

Yt = Xt − x − σ(a, t)2(ax + b)

=
∫ t

0
ea(t−s)dWs.

(6.15)

Then

|C|2(Xs) ≤ 4C0|Xs − x|2

≤ 4C0

∣∣∣Ys + σ(a, s)2(ax + b)
∣∣∣
2

≤ 4C0σ(a, s)4|(ax + b)|2 + 4C0C2|Ys|2,

(6.16)

and therefore

P
x
(
eλ
∫ t
0 |C|2(Xs)ds

)
≤ e4λC0σ(a,t)

4|(ax+b)|2t
P
x
(
e4λC0

∫ t
0 |Ys|2ds

)
. (6.17)
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On the other hand

Ys = eas
∫s

0
e−ardWr, (6.18)

so that Ms ≡ e−asYs is a martingale with

〈M〉s =
∫ s

0
e−2ardr =

e2as − 1
2a

. (6.19)

Thus Ms is a time change of a standard Brownian motion, and

Ms = B(e2as−1/2a), (6.20)

for some standard Brownian motion (Bt)t≥0. Since

2λC0
1
eat

e2at − 1
2a

≤ ζ, (6.21)

so we have

P
x
{
e4λC0

∫ t
0 e

as|Ms|2ds
}
= P exp

(
4λC0

∫ t

0
eas
∣∣B(e2as−1)/2a

∣∣2ds
)

= P exp

(
4λC0

∫ (e2at−1)/2a

0

s√
2as + 1

|Bs|2ds
)

≤ P exp

⎛

⎝4λC0
1
eat

(
e2at − 1
2a

)2

sup
[0,((e2at−1)/2a)]

|Bs|2
⎞

⎠

= P exp

(
4λC0

1
eat

e2at − 1
2a

sup
[0,1]

|Bs|2
)

≤ c.

(6.22)

Corollary 6.4. For p > 1 and T > 0 to be such that

16pC0

2p − 1
1
eaT

e2aT − 1
2a

≤ ζ, (6.23)

one has

P
x
{
e(4p/(2p−1))

∫ t
0 |C|2(Xs)ds

}
≤ c ∀t ≤ T. (6.24)
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In what follows, we always assume that T > 0 is chosen such that the condition (6.23)
is satisfied. Next we estimate D(p)t, which is provided in the following.

Lemma 6.5. Let p > 1. Then

D
(
p
)
t ≤ C1

(
σ(2a, t)2 + σ(a, t)2(ax + b)2

)
, (6.25)

where the positive constant C1 depends only on p, ζ, and C0.

Proof. Let

F(t) = P
x
(
e(2p/(2p−1))

∫ t
0 |C|2(Xs)ds|C(Xt)|2p

)
. (6.26)

Then, by the Hölder inequality

F(t) =
√

Px
(
e(4p/(2p−1))

∫ t
0 |C|2(Xs)ds

)√
Px
(
|C(Xt)|4p

)

≤
√
C0

√
Px
(
|C(Xt)|4p

)
.

(6.27)

Next we estimate the expectation P
x|C(Xt)|4p. Since

|C(Xt)| ≤ C0

2
|Xt − x|2

≤ C0|Yt|2 + C0σ(a, T)2(ax + b)2,

(6.28)

so that

|C(Xt)|4p ≤ 24p−1C4p
0 |Yt|8p + 24p−1C4p

0 σ(a, T)8p(ax + b)8p. (6.29)

On the other hand

P
x|Yt|8p =

1√
2πσ(2a, t)

∫
|z|8p exp

(
− |z|2
σ(2a, t)2

)
dz

= σ(2a, t)8p,

(6.30)

so that

4p
√

Px|C(Xt)|4p ≤ 2(4p−1)/4pC0σ(2a, t)2 + 2(4p−1)/4pC0σ(a, t)2(ax + b)2. (6.31)
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Lemma 6.6. Let T > 0 satisfy condition (6.23), x, y ∈ R, and p > 1 and q > 1 such that (1/p) +
(1/q) = 1. Then

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 + exp

(
e2a(T−t) − 1
eaT − 1

β2p(t)2

α2p(t)2

)

×
∫T

0

2aea(T−t)

e2a(T−t) − 1

√
e2aT − 1

e2a(T−t) − 1
D
(
p
)
tJ
(
2p
)
tdt.

(6.32)

Proof. Since

(
Ute−((q−1)/2)

∫ t
0 |C|2(Xs)ds

)q
= exp

{∫ t

0
qC(Xs)dWs − 1

2
q2
∫ t

0
|C|2(Xs)ds

}
(6.33)

is a martingale under P
x, so that

P
x
(
Ute−((q−1)/2)

∫ t
0 |C|2(Xs)ds

)q
= 1. (6.34)

By the Hölder inequality we deduce that

|Px(UtC(Xt)K(t))| ≤ D
(
p
)
tJ
(
2p
)
t. (6.35)

Equation (6.32), follows from the representation (6.9).

Lemma 6.7. Let p > 1. Then

J
(
p
)
t ≤

p
√
2p−1αp(t)1+(1/p)e−β

2
p

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1

a
βp(t)

⎫
⎬

⎭.
(6.36)

Proof. We have

P
x{|K(t)|p}

≤ P
x

{∣∣∣∣∣y − ea(T−t)Xt − ea(T−t) − 1
a

b

∣∣∣∣∣

p

× e−(pa/(e
2a(T−t)−1))|y−ea(T−t)Xt−((ea(T−t)−1)/a)b|2

}
.

(6.37)
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Under the probability P
x,

Zt ≡ ea(T−t)
(
Xt − eatx − eat − 1

a
b

)

=
∫ t

0
ea(T−s)dWs

(6.38)

is a central normal distribution with variance

∫ t

0
e2a(T−s)ds =

e2aT − e2a(T−t)

2a
. (6.39)

In terms of Zt and d = y − x

P
x{|K(t)|p} ≤ P

x

{∣∣∣∣∣Zt +
eaT − 1

a
(b + ax) − d

∣∣∣∣∣

p

× e
−(pa/(e2a(T−t)−1))|Zt+((eaT−1)/a)(b+ax)−d|2

⎫
⎪⎬

⎪⎭
.

(6.40)

Making change of variable

N =

√
2a

e2aT − e2a(T−t)
Zt. (6.41)

Then, under P
x,N has the standard normal distribution N(0, 1), so that

P
x|K(t)|p ≤ P

⎧
⎨

⎩

∣∣∣∣∣∣

√
e2aT − e2a(T−t)

2a
N +

eaT − 1
a

(b + ax) − d

∣∣∣∣∣∣

p

×e−(pa/(e2a(T−t)−1))|
√

((e2aT−e2a(T−t))/2a)N+((eaT−1)/a)(b+ax)−d|2
⎫
⎬

⎭

=
1√
2π

∫

R

⎧
⎨

⎩

∣∣∣∣∣∣

√
e2aT − e2a(T−t)

2a
z +

eaT − 1
a

(b + ax) − d

∣∣∣∣∣∣

p

× e−(pa/(e
2a(T−t)−1))|

√
((e2aT−e2a(T−t))/2a)z+((eaT−1)/a)(b+ax)−d|2−(z2/2)

⎫
⎬

⎭dz.

(6.42)
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Let us simplify the last integral. Indeed, set

η =

√
pe2aT − (p − 1

)
e2a(T−t) − 1

e2a(T−t) − 1
z,

Et = 2p

√√√ e2aT − e2a(T−t)

2
(
e2a(T−t) − 1

)
(

eaT − 1
a

(b + ax) − d

)

×
√

a

pe2aT − (p − 1
)
e2a(T−t) − 1

.

(6.43)

Then we rewrite the term appearing in the exponential in the last line of (6.42)

− pa

e2a(T−t) − 1

∣∣∣∣∣∣

√
e2aT − e2a(T−t)

2a
z +

eaT − 1
a

(b + ax) − d

∣∣∣∣∣∣

2

= −1
2

(
η2 + 2Etη

)
− pa

e2a(T−t) − 1

(
eaT − 1

a
(b + ax) − d

)2

= −1
2
(
η + Et

)2 +
1
2
E2
t −

pa

e2a(T−t) − 1

(
eaT − 1

a
(b + ax) − d

)2

,

(6.44)

together with

1
2
E2
t −

pa

e2a(T−t) − 1

(
eaT − 1

a
(b + ax) − d

)2

= − pa

pe2aT − (p − 1
)
e2a(T−t) − 1

(
eaT − 1

a
(b + ax) − d

)2
(6.45)

the inequality (6.42)may be rewritten as follows:

P
x|K(t)|p ≤ 1√

2π
e−(pa/(pe

2aT−(p−1)e2a(T−t)−1))(((eaT−1)/a)(b+ax)−d)2

×
∫

R

∣∣∣∣∣∣

√
e2aT − e2a(T−t)

2a
z +

eaT − 1
a

(b + ax) − d

∣∣∣∣∣∣

p

× e−(1/2)(η+Et)
2
dz.

(6.46)
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Making change of variable in the last integral

v = η + Et =

√
pe2aT − (p − 1

)
e2a(T−t) − 1

e2a(T−t) − 1
z + Et, (6.47)

so that

dz =

√√√ e2a(T−t) − 1
pe2aT − (p − 1

)
e2a(T−t) − 1

dv,

√
e2aT − e2a(T−t)

2a
z +

eaT − 1
a

(b + ax) − d =

√√√√
(
e2a(T−t) − 1

)(
e2aT − e2a(T−t)

)

2a
(
pe2aT − (p − 1

)
e2a(T−t) − 1

)v

+
e2a(T−t) − 1

pe2aT − (p − 1
)
e2a(T−t) − 1

(
eaT − 1

a
(b + ax) − d

)
.

(6.48)

Thus (6.46) yields that

P
x|K(t)|p ≤

⎛

⎝

√
e2a(T−t) − 1

2a

⎞

⎠
p+1√

2a
pe2aT − (p − 1

)
e2a(T−t) − 1

× e−(pa/(pe
2aT−(p−1) e2a(T−t)−1))(((eaT−1)/a)(b+ax)−d)2Qt,

(6.49)

where

Qt =
∫

R

∣∣∣∣∣∣

√√√ e2aT − e2a(T−t)

pe2aT − (p − 1
)
e2a(T−t) − 1

z

+

√
2a
(
e2a(T−t) − 1

)(((
eaT − 1

)
/a
)
(b + ax) − d

)

pe2aT − (p − 1
)
e2a(T−t) − 1

∣∣∣∣∣∣∣

p

e−(1/2)z
2

√
2π

dz

≤ 2p−1εp

∣∣∣∣∣∣

√√√ e2aT − e2a(T−t)

pe2aT − (p − 1
)
e2a(T−t) − 1

∣∣∣∣∣∣

p

+ 2p−1

∣∣∣∣∣∣∣

√
2a
(
e2a(T−t) − 1

)(((
eaT − 1

)
/a
)
(b + ax) − d

)

pe2aT − (p − 1
)
e2a(T−t) − 1

∣∣∣∣∣∣∣

p

εp =
1√
2π

∫

R

|z|pe−(1/2)z2dz.

(6.50)
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Therefore

J
(
p
)
t ≤
⎛

⎝

√
e2a(T−t) − 1

2a

⎞

⎠
1+(1/p)(

2a
pe2aT − (p − 1

)
e2a(T−t) − 1

)1/(2p)

× e−(a/(pe
2aT−(p−1)e2a(T−t)−1))(((eaT−1)/a)(b+ax)−d)2

×
⎧
⎨

⎩
p

√
2p−1εp

∣∣∣∣∣∣

√√√ e2aT − e2a(T−t)

pe2aT − (p − 1
)
e2a(T−t) − 1

∣∣∣∣∣∣

+
p
√
2p−1

∣∣∣∣∣∣∣

√√√√ 2
(
e2a(T−t) − 1

)

pe2aT − (p − 1
)
e2a(T−t) − 1

∣∣∣∣∣∣∣

√√√√a
∣∣((eaT − 1

)
/a
)
(b + ax) − d

∣∣2

pe2aT − (p − 1
)
e2a(T−t) − 1

⎫
⎪⎬

⎪⎭
,

(6.51)

which is equivalent to the required inequality.

Lemma 6.8. Let

H
(
p
)
t ≡ exp

(
e2a(T−t) − 1
eaT − 1

β2p(t)2

α2p(t)2

)
J
(
2p
)
t. (6.52)

Then

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 +
∫T

0

2aea(T−t)

e2a(T−t) − 1

√
e2aT − 1

e2a(T−t) − 1
D
(
p
)
tH
(
p
)
tdt, (6.53)

H
(
p
)
t ≤

2p
√
22p−1α2p(t)1+(1/2p)e−(2p−1)((e

2aT−e2a(T−t))2/(e2a(T−t)−1)(e2aT−1))β2p(t)2

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1

a
β2p(t)

⎫
⎬

⎭.
(6.54)

Proof. Indeed, by Lemma 6.7 we have

H
(
p
)
t ≤

2p
√
22p−1α2p(t)1+(1/2p)e

−β22p+((e2a(T−t)−1)/(e2aT−1))(β2p(t)2/α2p(t)
2)

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1

a
βp(t)

⎫
⎬

⎭.
(6.55)

On the other hand

−β22p +
e2a(T−t) − 1
e2aT − 1

β2p(t)2

α2p(t)2
=
(
p − 1

)
β2p(t)2

e2αT − e2α(T−t)

e2aT − 1
, (6.56)
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thus

H
(
p
)
t ≤

2p
√
22p−1α2p(t)1+(1/2p)e(p−1)β2p(t)

2((e2αT−e2α(T−t))/(e2aT−1))

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1

a
β2p(t)

⎫
⎬

⎭.
(6.57)

Let

B
(
p
)
t ≡ e(p−1)β2p(t)

2((e2αT−e2α(T−t))/(e2aT−1))

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1

a
β2p(t)

⎫
⎬

⎭.
(6.58)

Then (6.53) and (6.54) imply that

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 +
2p
√
22p−1

(
e2aT − 1

)1/4p

∫T

0

2aea(T−t)
(
e2a(T−t) − 1

)1−(1/4p)D
(
p
)
tB
(
p
)
tdt. (6.59)

Lemma 6.9. One has

B
(
p
)
t ≤ e(p−1)β2p(t)

2((e2αT−e2α(T−t))/(e2aT−1))

×
⎧
⎨

⎩
p
√
εp

√
e2aT − e2a(T−t)

2a
+

√
e2a(T−t) − 1
e2aT − 1

S(T)

⎫
⎬

⎭.
(6.60)

In particular

B
(
p
)
t ≤ p
√
εp

√
e2aT − 1

2a
+ S(T),

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 +
2p
√
22p−1

(
e2aT − 1

)1/4p

⎧
⎨

⎩
p
√
εp

√
e2aT − 1

2a
+ S(T)

⎫
⎬

⎭

×
∫T

0

2aea(T−t)e(p−1)β2p(t)
2((e2αT−e2α(T−t))/(e2aT−1))

(
e2a(T−t) − 1

)1−(1/4p) D
(
p
)
tdt.

(6.61)

Proof. Let

G
(
p
)
t =

2aea(T−t)

e2a(T−t) − 1

√
e2aT − 1

e2a(T−t) − 1
2p
√
22p−1α2p(t)1+(1/2p). (6.62)
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Then

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 +
∫T

0
G
(
p
)
tD
(
p
)
tB
(
p
)
tdt. (6.63)

Since

G
(
p
)
t =

2aea(T−t)
(
e2a(T−t) − 1

)1−(1/4p)(
e2aT − 1

)1/4p
2p
√
22p−1

×
(√

e2aT − 1
2p
(
e2aT − 1

) − (2p − 1
)(
e2a(T−t) − 1

)
)1+(1/2p)

≤ 2aea(T−t) 2p
√
22p−1

(
e2a(T−t) − 1

)1−(1/4p)(
e2aT − 1

)1/4p ,

(6.64)

which implies the required estimate.

By collecting all estimates we have established, we may obtain the following.

Proposition 6.10. There is a constant C2 > 0 depending only on ζ and Cd such that

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 + C2e|a|T e(p−1)(a/(e
2aT−1))S(T)2

(
eaT + 1

2
+ (ax + b)2

)

× eaT − 1
a

⎛

⎝ p
√
εp

√
e2aT − 1

2a
+ S(T)

⎞

⎠,

(6.65)

where

S(T) =

∣∣∣∣∣
eaT − 1

a
(b + ax) − (y − x

)
∣∣∣∣∣. (6.66)

Proof. Indeed

p
(
T, x, y

)

h
(
T, x, y

) ≤ 1 + C1e(p−1)(a/(e
2aT−1))S(T)2

(
e2aT − 1

a

)−1/4p⎛

⎝ p
√
εp

√
e2aT − 1

2a
+ S(T)

⎞

⎠

×
∫T

0
ea(T−t)

(
e2a(T−t) − 1

a

)(1/4p)−1(
σ(2a, t)2 + σ(a, t)2(ax + b)2

)
dt
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≤ 1 + Ce(p−1)(a/(e
2aT−1))S(T)2

(
e2aT − 1

a

)−1/4p⎛

⎝ p
√
εp

√
e2aT − 1

2a
+ S(T)

⎞

⎠

×
(

eaT + 1
2

+ (ax + b)2
)

× eaT − 1
a

∫T

0
ea(T−t)

(
e2a(T−t) − 1

a

)(1/4p)−1
dt.

(6.67)

While,
∫T

0

ea(T−t)
((
e2a(T−t) − 1

)
/2a
)1−(1/4p)dt =

∫ (e2aT−1)/2a

0

1
s1−(1/4p)

1√
1 + 2as

ds

≤ 4pe|a|T
(

e2aT − 1
2a

)1/4p

,

(6.68)

and it thus yields our key estimate (6.65).

Similarly we have a lower bound

p
(
T, x, y

)

h
(
T, x, y

) ≥ 1 − C3e|a|Te(p−1)(a/(e
2aT−1))S(T)2

(
eaT + 1

2
+ (ax + b)2

)

× eaT − 1
a

⎛

⎝ p
√
εp

√
e2aT − 1

2a
+ S(T)

⎞

⎠,

(6.69)

where C3 depends only on ζ and C0.

7. Proof of Theorem 3.1

We are now in a position to prove Theorem 3.1. Wemay assume that T = 1, so that δ(n) = 1/n.
Let xn

j (j = 0, 1, . . . , n) be discrete samplings with time scale δ = δ(n) = 1/n on [0, 1]. By our
assumptions, |xn

j − xn
j−1|2 ≤ Cδ(n), and |xn

j | ≤ C for all pair (j, n) such that 0 ≤ j ≤ n and n ≥ 1.
For simplicity we write xj for xn

j if no confusion may arise.
In the proof below, we will use Ci to denote nonnegative constants which may depend

on C, T(= 1) and the bounds of A′ and A′′ appearing in our diffusion model (1.3), but
independent of n.

Recall that hj(t, x, y) is the probability transition density function of the diffusion (3.3),
that is,

dXt =
(
bj + ajXt

)
dt + dWt, (7.1)

where

bj = A
(
xj−1, θ

) − xj−1A′(xj−1, θ
)
, aj = A′(xj−1, θ

)
. (7.2)
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According to (6.65) we have

p
(
δ, xj−1, xj

)

hj

(
δ, xj−1, xj

) ≤ 1 + C8e|aj |δe
((p−1)aj/(e2aj δ−1)) S2

j

(
eajδ + 1

2
+
(
ajxj−1 + bj

)2
)

× eaj−1δ − 1
aj−1

⎛

⎝ p
√
εp

√
e2aj−1δ − 1
2aj−1

+ Sj

⎞

⎠,

(7.3)

where

Sj =

∣∣∣∣∣
eajδ − 1

aj

(
bj + ajxj−1

) − (xj − xj−1
)
∣∣∣∣∣. (7.4)

Since aj and xj are bounded,

∣∣ajxj−1 + bj
∣∣ =
∣∣A
(
xj−1, θ

)∣∣ ≤ C4
(
1 +
∣∣xj−1

∣∣)

≤ C9,
(7.5)

so that

Sj ≤ eajδ − 1
ajδ

C9δ + C
√
δ ≤ C10

√
δ. (7.6)

Thus

(
p − 1

)
aj

e2ajδ − 1
S2
j =

(
p − 1

)
ajδ

e2ajδ − 1

S2
j

δ
≤ C11,

eajδ + 1
2

+
(
ajxj−1 + bj

)2 ≤ C12.

(7.7)

Therefore

p
(
δ, xj−1, xj

)

hj

(
δ, xj−1, xj

) ≤ 1 + C13
eaj−1δ − 1
aj−1δ

⎛

⎝ p
√
εp

√
e2aj−1δ − 1
2aj−1δ

√
δ + Sj

⎞

⎠δ

≤ 1 + C14

√
δδ = 1 + C14

1
n3/2

,

(7.8)

where we have used (7.6). It follows that

lim
δ→ 0

n∏

j=1

p
(
δ, xj−1, xj

)

hj

(
δ, xj−1, xj

) ≤ lim
n→∞

(
1 + C14

1
n3/2

)n

= 1.

(7.9)
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Similarly we have

lim
n→∞

n∏

j=1

p
(
δ, xj−1, xj

)

hj

(
δ, xj−1, xj

) ≥ 1. (7.10)

Therefore

lim
n→∞

L
(
xn
0 , . . . , x

n
n

)

L2
(
xn
0 , . . . , x

n
n

) = 1, (7.11)

and the proof of Theorem 3.1 is complete.

8. The Euler-Maruyama Approximation

Recall that the Euler-Maruyama approximation to (1.3) is a Markov chain given by

Xj = Xj−1 +A
(
θ,Xj−1

)
δ + ξj

√
δ, (8.1)

where {ξj} is an i.i.d. random sequence, with standard normal N(0, 1). The conditional
distribution of Xj given Xj−1 = xj−1 is Gaussian with mean xj−1 + A(θ, xj−1)δ and variance
δ so that the likelihood function is given as

L1(x0, . . . , xn) =
1

(2πδ)n/2

n∏

j=1

exp

{
−
∣∣xj − xj−1 −A

(
θ, xj−1

)
δ
∣∣2

2πδ

}
. (8.2)

Applying the representation formula (5.7)we have the following.

Proposition 8.1. It holds that

L(x0, . . . , xn)
L1(x0, . . . , xn)

=
∏

j

(
1 −
√
δeα

2
j /2δ
∫δ

0
P

{
Uj(s)cj

(
X

j
s, θ
) Ws + αj

(δ − s)3/2
e−(Ws+αj )

2/2(δ−s)
}
ds

)
,

(8.3)

where (Wt)t≥0 is the standard Brownian motion, Xj
s = xj−1 + λj−1s +Ws,

Uj(t) = exp

[∫ t

0
cj
(
X

j
s, θ
)
dWs − 1

2

∫ t

0

∣∣cj
∣∣2
(
X

j
s, θ
)
ds

]
, (8.4)

λj = A(xj−1, θ), αj = λj−1δ − xj + xj−1, and

cj(z, θ) = A(z, θ) −A
(
xj−1, θ

)
. (8.5)

From which we may deduce the following estimate.



26 International Journal of Mathematics and Mathematical Sciences

Proposition 8.2. IfA(x, θ) is bounded and Lipschitz continuous, uniformly in θ, then the maximum
likelihood function with discrete sampling is stable, in the sense that

∏

j

(
1 − C01δe

α2
j /2δ
)
≤ L(x0, . . . , xn)

L1(x0, . . . , xn)
≤
∏

j

(
1 + C02δe

α2
j /2δ
)
, (8.6)

for some constant C01 and C02, where αj = A(xj−1, θ)δ − (xj − xj−1).

However, this estimate does not lead to the same result as for the local linear
approximation. It is not known (to our best knowledge) whether

lim
n→∞

L
(
xn
0 , . . . , x

n
n

)

L1
(
xn
0 , . . . , x

n
n

) = 1 (8.7)

holds or not under similar conditions in Theorem 3.1.
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