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The solvability and the properties of solutions of nonhomogeneous and homogeneous vector
integral equation f(x) = g(x) +

∫∞
0 k(x − t)f(t)dt +

∫0
−∞ T(x − t)f(t)dt, where K, T are n × n

matrix valued functions, n ≥ 1, with nonnegative integrable elements, are considered in one
semiconservative (singular) case, where the matrix A =

∫∞
−∞K(x)dx is stochastic one and

the matrix B =
∫∞
−∞ T(x)dx is substochastic one. It is shown that in certain conditions the

nonhomogeneous equation simultaneously with the corresponding homogeneous one possesses
positive solutions.

1. Introduction: Problem Statement

Consider the scalar or vector integral equations on the whole line with two kernels (see [1–
4]):

f(x) = g(x) +
∫∞

0
K(x − t)f(t)dt +

∫0

−∞
T(x − t)f(t)dt , −∞ < x <∞ , (1.1)

where the kernel-functions K(x), T(x) are matrix-valued functions with nonnegative ele-
ments; g and f are the given and sought-for column vectors (vectorfunctions); respectively.
Assume that

K, T ∈ Ln×n, g ∈ Ln, K, T, g ≥ O. (1.2)

Here Ln×n is the space of n × n- (n ≥ 1) order matrix-valued functions, and Ln is the space
of column vectors, with components in Lebesgue space L ≡ L1(−∞,∞). The zero vector or



2 International Journal of Mathematics and Mathematical Sciences

matrix is denoted by O. The inequalities between the matrices or vectors, the operation of
integration, and some other operations shall be treated componentwise.

Denote by ς the following n-dimensional row vector:

ς = (1, 1, . . . , 1). (1.3)

Let C ≥ O be an n × nmatrix. If

ςC = ς, (1.4)

then the matrix C is a stochastic one (accurate within transpose, see [5]). If

ςC ≤ ς, (1.5)

then the matrix C is substochastic to a wide extent. We shall call the matrix C really
substochastic, if ςC ≤ ς, ςC /= ς and uniform substochastic if there exist μ ∈ [0, 1) such that

ςC ≤ μς, 0 ≤ μ < 1. (1.6)

Let us introduce the following n × nmatrices A,B ≥ O, related with the equation (1.1):

A =
∫∞

−∞
K(x)dx, B =

∫∞

−∞
T(x)dx. (1.7)

We shall call the kernelK conservative, dissipative, or uniform dissipative if thematrix
A is stochastic, really substochastic, or uniform substochastic, respectively. We shall use
analogous names to the kernel T .

We shall call (1.1) semiconservative, if one of the kernels K,T is conservative and the
other is dissipative. Without the loss of generality, one can assume that

ςA = ς, ςB ≤ ς, ςB /= ς. (1.8)

In the uniform semiconservative case of (1.1) we have

ςA = ς, ςB ≤ μς, 0 ≤ μ < 1, (1.9)

whereas in the conservative case, both of the kernels K, T are assumed to be conservative.
If T = O, then (1.1) is reduced to the well-known Wiener-Hopf integral equation:

ϕ(x) = h(x) +
∫∞

0
K(x − t)ϕ(t)dt, x > 0, (1.10)

Here ϕ = f |[0,∞) and h = g|[0,∞) are restrictions on [0,∞) of f and g, respectively.
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The theory of the scalar and vector conservative Wiener-Hopf equation (1.10) (where
K is the conservative one) passed a long way of development. Many (conservative) physical
processes in homogeneous half-space are described by such equations. They are of essential
interest in the radiative transfer (RT), kinetic theory of Gases (see [6, 7]), in the mathematical
theory of stochastic processes, and so forth.

In the RT, the conservative equation (1.10) corresponds to the absence of losses of the
radiation inside media (case of pure scattering). However, such losses occur as a result of an
exit of radiation from media. In case of the dissipative one, there are losses inside media as
well.

Equation (1.1) with two kernels arises in some more general (and more complicated)
problems, where the physical processes occur in the infinite media, consisting of two adjacent
homogeneous half-spaces (see [7]). In each of these half-spaces, the processes may be
dissipative or conservative. Another area of applications is connected with the RT in the
atmosphere-ocean system.

In the theory of RT, the free term g in (1.1) plays the role of initial sources of radiation.
The conservative and semiconservative cases belong to the singular cases of (1.1). In these
cases, the unique solvability of (1.1) in the “standard” functional spaces Lnp (1 ≤ p ≤ ∞) is
violated.

A number of results concerning to the scalar conservative equation (1.1) have been
obtained by Arabadzhyan [3]. The systems of conservative or semiconservative equations
with two kernels have not ever been treated.

The present paper is devoted to the solvability and the properties of the solutions of the
nonhomogeneous and homogeneous vector equation (1.1). The main attention will be paid
to the uniform semiconservative case (1.9). It will be shown that in certain conditions both
the nonhomogeneous equation (1.1) and the corresponding homogeneous equation possess
positive locally integrable solutions.

2. Auxiliary Propositions

2.1. Integral Operators

Let (a, b) ⊂ (−∞,∞). Consider Banach space (B-space) L(a, b) ≡ L1(a, b) and the
corresponding B-space Ln(a, b) of vector-valued functions (vector columns) f = (f1, . . . , fn)

T .
Here T is a sign of the transpose. The norm in Ln(a, b) is defined by

∥∥f
∥∥ =

n∑

k=1

∥∥fk
∥∥
L(a,b) = ς

∫b

a

∣∣f(x)
∣∣dx. (2.1)

Consider the linear topological space LLoc[0,∞) of the functions, which are integrable
on each finite interval (0, r), r < ∞.The space LnLoc[0,∞) possesses the topology of the
componentwise convergence.

The unit operator in each of spaces introduced above is denoted by I. Let Ωn be the
following class of matrix convolution operators on the whole line: if Û ∈ Ωn, then

ϕ(x) = Ûf(x) =
∫∞

−∞
U(x − t)f(t)dt, U ∈ Ln×n. (2.2)

The operator Û ∈ Ωn acts in the spaces Ln, Lnp (1 ≤ p ≤ ∞), and in some other spaces of
vector-valued functions.
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The class Ωn is an algebra where the kernel function of the operator product is the
convolution of the kernel functions of the factors.

Let us estimate the norm of operator Û ∈ Ωn in the B-space Ln. Let C ≥ O be the
following n × n matrix: C = (ckm) =

∫∞
−∞ |U(x)|dx. Taking the (componentwise) modulus in

(2.2) and integrating on (−∞,∞), we come to the following inequality:

∫∞

−∞

∣
∣ϕ(x)

∣
∣dx ≤ C

∫∞

−∞

∣
∣f(t)

∣
∣dt. (2.3)

Multiplying this inequality on the left by the vector ς, we come to the following
inequality:

∥
∥
∥Ûf

∥
∥
∥ ≤ γ∥∥f∥∥, where γ = max

k

n∑

m=1

ckm. (2.4)

From here the estimate follows:

∥∥∥Û
∥∥∥ ≤ γ. (2.5)

Let us introduce the projectors (projection operators) P±, acting in the spaces of
summable or locally summable functions on (−∞,∞) by the equalities:

P+f(x) = f(x)ϑ(x), P−f(x) = f(x)ϑ(−x). (2.6)

Here ϑ is the Heaviside function of the unit jump. In each of the spaces Lp (1 ≤ p ≤ ∞),
we have

‖P±‖ = 1. (2.7)

Denote by K̂, T̂ ∈ Ωn the following operators, whose kernel functions K, T participate
in (1.1):

K̂f(x) =
∫∞

−∞
K(x − t)f(t)dt, T̂f(x) =

∫∞

−∞
T(x − t)f(t)dt. (2.8)

Equation (1.1) admits the following operator entry

f = g + Ŵf, (2.9)

where Ŵ = K̂P̂+ + T̂ P̂−.
The projectors P̂± are the diagonal matrices of the operators with the diagonal

elements P±.
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The operator Ŵ is an Integral operator:

Ŵf(x) =
∫∞

−∞
W(x, t)f(t)dt, where W(x, t) = K(x − t)ϑ̃(t) + T(x − t)ϑ̃(−t). (2.10)

Here ϑ̃(x) is the diagonal matrix with the diagonal elements ϑ(x).

2.2. On the Invertibility of the Operator I − Ŵ in Ln

Let us estimate the norm of Ŵ in Ln. Assume at first that the kernel functions K, T are
arbitrary elements of Ln×n. Let ϕ = Ŵf , f ∈ Ln. One can obtain the following inequality
(similar to (2.3)):

∫∞

−∞

∣∣ϕ(x)
∣∣dx ≤ A

∫∞

0

∣∣f(t)
∣∣dt + B

∫0

−∞

∣∣f(t)
∣∣dt. (2.11)

Here A = (akm) =
∫∞
−∞ |K(x)|dx, B = (bkm) =

∫∞
−∞ |T(x)|dx.

We have ςA ≤ λς, ςB ≤ μς, where

λ = max
m

n∑

k=1

akm, μ = max
m

n∑

k=1

bkm. (2.12)

Multiplying (2.11) on the left by the vector ς, we get

∥∥ϕ
∥∥ ≤ λς

∫∞

0

∣∣f(t)
∣∣dt + μς

∫0

−∞

∣∣f(t)
∣∣dt ≤ max

(
λ, μ

)∥∥f
∥∥. (2.13)

Thus, we proved the following.

Lemma 2.1. The following estimate for the norm of the operator Ŵ in Ln is valid:

∥∥∥Ŵ
∥∥∥ ≤ q = max

(
λ, μ

)
. (2.14)

If q < 1, then the operator Ŵ is contracting in Ln, hence the operator I−Ŵ is invertible,
and (1.1) with g ∈ Ln has a unique solution f ∈ Ln. If therewith K, T, g ≥ O, then f ≥ O.

In accordance with the general theory of the integral equations with two kernels (see
[1, 2]), for the invertibility of the operator I − Ŵ in Ln, it is necessary the fulfilment of the
following conditions of nondegeneration:

det
[
J −K(s)

]
/= 0, det

[
J − T(s)

]
/= 0, −∞ < s < +∞. (2.15)

Here J is the unit n × n matrix; the matrices K(s) and T(s) are the (elementwise) Fourier
transforms of K and T , respectively. For example, K(s) =

∫∞
−∞K(x)eisxdx, −∞ < s < +∞.
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In the semiconservative case (1.9), we have: ς[J −K(0)] = ς[J −A] = O. Hence det(J −
A) = 0, that is, the symbol J −K(s), is degenerated in the point s = 0. In the conservative case
(where A and B are stochastic matrices), both of the conditions (2.15) are violated. Thus, the
operator I − Ŵ is noninvertible in Ln in the semiconservative and conservative cases.

3. Semiconservative Nonhomogeneous Equation

In this section, we shall consider the question of the solvability of the uniform semiconserva-
tive nonhomogeneous equation (1.1), (1.9) under the following additional assumption: there
exists a strong positive vector-column η such thatAη = η, η > O. In accordance with Perron-
Frobenius theorem (see [8]), the existence of such vector η is secured if the stochastic matrix
A is an irreducible one.

3.1. One Auxiliary Equation

At the outset, consider the auxiliary conservative Wiener-Hopf equation (1.10), where

O ≤ h ∈ Ln(0,∞), x > 0, ςA = ς, Aη = η (3.1)

with the conservative kernel K participating in (1.1).
The following lemma follows from the results [9]:

Lemma A. Equation (1.10), (3.1) possesses the minimal solution ϕ ≥ O which is locally integrable
on [0,∞) (see [9]). The following asymptotics holds

∫x

0
ϕ(t)dt = o

(
x2
)
, x −→ ∞. (3.2)

This asymptotics admits an adjustment subject to additional assumptions on kernelK and free term h
(see [9]).

Denote by ν the following matrix the first moments of matrix-function K:

ν =
∫∞

−∞
xK(x)dx, (3.3)

with the assumption of componentwise absolute convergence of this integral. Let

σ = ςνη, −∞ < σ < +∞. (3.4)

The number σ plays a principal role in the classification of the conservative equation (1.10)
(see [9]). If σ < 0, then

∫x

0
ϕ(t)dt = o(x), x −→ ∞. (3.5)
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If therewith the free term h has a finite first moment:
∫∞
0 th(t)dt <∞, then ϕ ∈ Ln(0,∞).

Consider the simple iterations for (1.10):

ϕ(m+1)(x) = h(x) +
∫∞

0
K(x − t)ϕ(m)(t)dt, ϕ(0) = O, m = 0, 1, 2, . . . . (3.6)

The sequence ϕ(m) possesses the following properties: O ≤ ϕ(m) ∈ Ln(0,∞). It is easy
to show that the sequence ϕ(m) is monotonic. Indeed we have

ϕ(m+1)(x) − ϕ(m)(x) =
∫∞

0
K(x − t)

(
ϕ(m)(t) − ϕ(m−1)(t)

)
dt, ϕ(0) = O, m = 0, 1, 2, . . . . (3.7)

Using the induction by m, we obtain that ϕ(m+1)(x) − ϕ(m)(x) ≥ O, which implies the
monotonicity of the sequence ϕ(m). The sequence ϕ(m) converges monotonically by the
topology of LnLoc[0,∞) to the minimal solution ϕ of (1.10):

ϕ(m) ↑ ϕ in LnLoc[0,∞). (3.8)

3.2. One Existence Theorem for (1.1)

Consider now (1.1) under conditions

ςA = ς, Aη = η, ςB ≤ μς, 0 ≤ μ < 1. (3.9)

Let us consider the following iterations for (1.1):

f (m+1)(x) = g(x) +
∫∞

0
K(x − t)f (m)(t)dt +

∫0

−∞
T(x − t)f (m)(t)dt, (3.10)

f (0) = O, m = 0, 1, 2, . . . . (3.11)

We have

f (m) ∈ Ln, m = 0, 1, . . . , O ≤ f (m)(x) ↑ by m. (3.12)

Let f̃ ≥ O be any positive solution of (1.1), (3.9):

f̃(x) = g(x) +
∫∞

0
K(x − t)f̃(t)dt +

∫0

−∞
T(x − t)f̃(t)dt. (3.13)

It is easy to verify by induction that f (m) ≤ f̃ , for eachm ≥ 0. Hence, if the sequence f (m) → f

converges by the topology of LnLoc(−∞,∞), then f ≤ f̃ .
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Remark 3.1. If the sequence f (m) → f converges by the topology of LnLoc(−∞,∞), then one
can take the limit in (3.10), and f ≥ O will be the minimal positive solution of (1.1).

This fact is proved using the monotonicity of f (m) and the two-sided inequalities (see
[10] Item 2).

Let us introduce the restrictions of the functions f (m) on (0,∞) and (−∞, 0):

ω(m) = f (m)∣∣[0,∞) , ψ(m) = f (m)∣∣(−∞,0) ∈ Ln(−∞, 0). (3.14)

Theorem 3.2. Let the conditions (3.9) hold. Then (1.1) has the minimal positive solution f ∈
LnLoc(−∞,∞) with f |(−∞,0) ∈ Ln(−∞, 0) and

∫x

0
f(t)dt = o

(
x2
)
, x −→ +∞. (3.15)

If ∃ σ < 0, then
∫x
0 f(t)dt = o(x), x → ∞.

Proof. After the integration of (3.10) over x on (−∞,∞), we shall have

a(m+1) + b(m+1) = γ +Aa(m) + Bb(m), (3.16)

where a(m) =
∫∞
0 ω(m)(x)dx, b(m) =

∫0
−∞ ψ(m)(x)dx, γ =

∫∞
−∞ g(x)dx.

Multiplying (3.16) on the left by the vector ς and taking into account (3.9), we obtain
the inequality

ςa(m+1) + ςb(m+1) ≤ ςγ + ςa(m) + μςb(m), (3.17)

whence it follows, with due regard for the monotony of sequences a(m), b(m), that (1 −
μ) ςb(m) ≤ ςγ . We arrive at the following estimate:

ςb(m) =
∥∥∥ψ(m)

∥∥∥ ≤ (
1 − μ)−1ςγ. (3.18)

It follows from B. Levy well-known theorem that the monotonous and bounded by norm
sequence ψ(m) converges in Ln(−∞, 0):

O ≤ ψ(m) ↑ ψ ∈ Ln(−∞, 0). (3.19)

Now compare relations (3.10) for x > 0 with iterations (3.6), in which h(x) = g(x) +
∫0
−∞ T(x−

t)ψ(t)dt, x > 0 (ψ is determined according to (3.19)). In virtue of ψ(m) ≤ ψ, we have the
inequality ω(m)(x) ≤ ϕ(m)(x), x > 0, m = 0, 1, . . .. Hence ω(m)(x) ≤ ϕ(x), x > 0, m = 0, 1, . . ..
According to the Lebesgue theorem, the monotonic sequenceω(m) converges by the topology
LnLoc[0,∞):

O ≤ ω(m) ↑ ω ∈ LnLoc[0,∞). (3.20)
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We have obtained that the narrowing of the monotonic iteration sequence f (m) to the negative
semiaxis is convergent in Ln(−∞, 0), and the narrowing of f (m) to the positive semiaxis is
convergent in LnLoc[0,∞). If we denote f(x) =

{
ω(x), x>0
ψ(x), x<0 , then f

(m) → f in LnLoc[−∞,∞) (i.e.,
in Ln(−∞, r), for all r < +∞). Taking limit in (3.10) (see Remark 3.1), we obtain that the
vector function f satisfies (1.1),(3.9), and thereby, it is its minimal solution. The Theorem is
proved.

Observe that, under the assumptions of Theorem 3.2, the existence of the locally
integrable solution of (1.1) could be proved using the fixed point principle of the paper [10].
Anyway, with this method, one cannot obtain the properties f |(−∞,0) ∈ Ln(−∞, 0) and (3.15).

4. The Homogeneous Semiconservative Equation

The homogeneous system (1.1) under the conditions (3.9) will be considered in the present
section:

G(x) =
∫∞

0
K(x − t)G(t)dt +

∫0

−∞
T(x − t)G(t)dt. (4.1)

Consider at first the corresponding conservative homogeneous system of Wiener-Hopf
equations:

S(x) =
∫∞

0
K(x − t)S(t)dt. (4.2)

Let us formulate some results on the existence of positive solutions of the system (4.1) (see
[9]).

Theorem A. Let K satisfy the conditions ς A = ς, Aη = η (see (3.9)), and one of the following
conditions (a) or (b):

(a) the property of symmetry (here T is the sign of transpose):

K(−x) = KT (x), (4.3)

(b) the kernel K has a finite first moment ν (see (3.3)) and that

σ ≤ 0, (4.4)

where σ is determined by (3.4).

Then the equation (4.2) has a positive solution S(x) > O. The vector function S is absolutely
continuous and monotone increasing. The following asymptotics holds

S(x) = O(x), x −→ ∞. (4.5)
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Let us (in conditions of the Theorem A) continue the vector function S to all the real
axis in accordance with the equality (4.2). Then the equality (4.2) takes place on the whole
real axis.

The convergence of the following integral is necessary and sufficient in order that S
has a integrable extension on the negative semiaxis

∫∞

0
S(t)dt

∫−t

−∞
K(x)dx < +∞. (4.6)

If (4.6) holds, then we will have S ∈ LnLoc[−∞,∞), S(x) > O.
It follows from the asymptotics (4.5) that for the fulfilment of the requirement (4.6), it

is sufficient that the kernel functionK has the (componentwise) finite second moment on the
negative semiaxis, that is,

∫∞

0
K(−x)x2dx < +∞. (4.7)

Now consider, uniform semiconservative (4.1).

Theorem 4.1. Let the homogeneous equation (4.2) satisfy the conditions (3.9), (4.7) and either of the
conditions (4.3) or (4.4). Then there exists a solution G > O, G ∈ LnLoc[−∞,∞) of this equation. The
following asymptotics hold:

∫x

−∞
G(t)dt = O

(
x2
)
, x −→ ∞. (4.8)

Proof. In accordance with Theorem A, there exists a solution S > O of (4.1). The inequality
(4.6) follows from the condition (4.7) and from the asymptotics (4.5); hence, S ∈ Ln(−∞, 0).

Let us introduce a new sought-for vector function f ≥ O in (4.1) by means of the
relation:

G(x) = f(x) + S(x), −∞ < x < +∞. (4.9)

Substituting (4.9) into (4.1)with due regard for (4.2), we obtain an inhomogeneous equation
of the type (1.1)with respect to f , in which

g(x) =
∫0

−∞
T(x − t)S(t)dt, x ∈ R. (4.10)

Because of S ∈ Ln(−∞, 0), we have g ∈ Ln. In accordance with Theorem 3.2, there exists a
(minimal) solution of (1.1) with a free term (4.10) that implies the existence of the strong
positive solution of the form (4.9) of the homogeneous equation (4.1).

The asymptotics (4.8) follow immediately from the properties of f and S, included in
Theorem 3.2 and Theorem A. The Theorem is proved.
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It is remarkable that under the conditions of Theorem 4.1, both the nonhomogeneous
equation (1.1) (with g ∈ Ln) and the homogeneous equation (4.1) simultaneously have
positive solutions.
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