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Let X be an arbitrary nonempty set and L a lattice of subsets of X such that ∅, X ∈ L. A(L) denotes
the algebra generated by L, andM(L) denotes those nonnegative, finite, finitely additive measures
on A(L). In addition, I(L) denotes the subset of M(L) which consists of the nontrivial zero-
one valued measures. The paper gives detailed analysis of products of lattices, their associated
Wallman spaces, and products of a variety of measures.

1. Introduction

It is well known that given two measurable spaces and measures on them, we can obtain the
product measurable space and the product measure on that space. The purpose of this paper
is to give detailed analysis of product lattices and their associated Wallman spaces and to
investigate how certain lattice properties carry over to the product lattices. In addition, we
proceed from a measure theoretic point of view. We note that some of the material presented
here has been developed from a filter approach by Kost, but the measure approach lends to a
generalization of measures and to an easier treatment of topological style lattice properties.

2. Background and Notations

In this section we introduce the notation and terminology that will be used throughout the
paper. All is fairly standard, and we include it for the reader’s convenience.

Let X be an arbitrary nonempty set and L a lattice of subsets of X such that ∅, X ∈ L. A
lattice L is a partially ordered set any two elements (x, y) of which have both sup(x, y) and
inf(x, y).

A(L) denotes the algebra generated by L; σ(L) is the σ algebra generated by L; δ(L)
is the lattice of all countable intersections of sets from L; τ(L) is the lattice of arbitrary
intersections of sets from L; ρ(L) is the smallest class closed under countable intersections
and unions which contains L.
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2.1. Lattice Terminology

The lattice L is called:

δ-lattice if L is closed under countable intersections; complement generated if L ∈ L
implies L = ∩L′

n, n = 1, . . . ,∞, Ln ∈ L (where prime denotes the complement);
disjunctive if for x ∈ X and L1 ∈ L such that x /∈ L1 there exists L2 ∈ L with x ∈ L2

and L1 ∩ L2 = ∅; separating (or T1) if x, y ∈ X and x /=y implies there exists L ∈ L
such that x ∈ L, y /∈ L; T2 if for x, y ∈ X and x /=y there exist L1, L2 ∈ L such that
x ∈ L′

1, y ∈ L′
2, and L′

1∩L′
2 = ∅; normal if for any L1, L2 ∈ Lwith L1∩L2 = ∅ there exist

L3, L4 ∈ Lwith L1 ⊂ L′
3, L2 ⊂ L′

4, and L′
3 ∩L′

4 = ∅; compact if for any collection {Lα} of
sets of L with ∩αLα = ∅, there exists a finite subcollection with empty intersection;
countably compact if for any countable collection {Lα} of sets of L with ∩αLα = ∅,
there exists a finite subcollection with empty intersection.

2.2. Measure Terminology

M(L) denotes those nonnegative, finite, finitely additive measures on A(L).
A measure μ ∈ M(L) is called:

σ-smooth on L if for all sequences {Ln} of sets of Lwith Ln ↓ ∅, μ(Ln) → 0;

σ-smooth on A(L) if for all sequences {An} of sets of A(L) with An ↓ ∅, μ(An) → 0,
that is, countably additive.

L-regular if for any A ∈ A(L),

μ(A) = sup
{
μ(L) | L ⊂ A,L ∈ L

}
. (2.1)

We denote byMR(L) the set of L-regular measures ofM(L);Mσ(L) the set of σ-smooth
measures on L, ofM(L);Mσ(L) the set of σ-smooth measures onA(L) ofM(L);Mσ

R(L) the set
of L-regular measures of Mσ(L).

In addition, I(L), IR(L), Iσ(L), Iσ(L), IσR(L) are the subsets of the corresponding M’s
which consist of the nontrivial zero-one valued measures.

Finally, let X,Y be abstract sets and L1 a lattice of subsets of X and L2 a lattice of subsets
of Y. Let μ1 ∈ M(L1) and μ2 ∈ M(L2).

The product measure μ1 × μ2 ∈ M(L1 × L2) is defined by

(
μ1 × μ2

)
(L1 × L2) = μ1(L1)μ2(L2) ∀L1 ∈ A(L1), L2 ∈ A(L2). (2.2)

2.3. Lattice-Measure Correspondence

The support of μ ∈ M(L) is S(μ) = ∩{L ∈ L/μ(L) = μ(X)}.
In case μ ∈ I(L) then the support is S(μ) = ∩{L ∈ L/μ(L) = 1}.
With this notation and in light of the above correspondences, we now note:

For any μ ∈ I(L), there exists ν ∈ IR(L) such that μ ≤ ν on L (i.e., μ(L) ≤ ν(L) for all
L ∈ L). For any μ ∈ I(L), there exists ν ∈ IR(L′) such that μ ≤ ν on L′.
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L is compact if and only if S(μ)/= ∅ for every μ ∈ IR(L). L is countably compact if and
only if IR(L) = IσR(L). L is normal if and only if for each μ ∈ I(L), there exists a unique
ν ∈ IR(L) such that μ ≤ ν on L. L is regular if and only if whenever μ1, μ2 ∈ I(L) and
μ1 ≤ μ2 on L, then S(μ1) = S(μ2). L is replete if and only if for any μ ∈ IσR(L), S(μ)/= ∅.
L is prime-complete if and only if for any μ ∈ Iσ(L), S(μ)/= ∅.
Finally, if μx is the measure concentrated at x ∈ X, then μx ∈ IR(L), for all x ∈ X if
and only if L is disjunctive.

For further results and related matters see [1–3].

2.4. The General Wallman Space and Wallman Topology

TheWallman topology in IσR(L) is obtained by taking all

Wσ(L) =
{
μ ∈ IσR(L)/μ(L) = 1

}
, L ∈ L (2.3)

as a base for the closed sets in IσR(L) and then IσR(L) is called the general Wallman space
associated with X and L. Assuming L is disjunctive, Wσ(L) = {Wσ(L)/L ∈ L} is a lattice
in IσR(L), isomorphic to L under the map L → Wσ(L), L ∈ L. Wσ(L) is replete and a base for
the closed sets tWσ(L), all arbitrary intersections of sets of Wσ(L).

If A ∈ A(L), then Wσ(A) = {μ ∈ IσR(L)/μ(A) = 1} and the following statements are
true:

Wσ(A ∪ B) = Wσ(A) ∪Wσ(B),

Wσ(A ∩ B) = Wσ(A) ∩Wσ(B),

Wσ

(
A′) = Wσ(A)′,

A ⊃ B iff Wσ(A) ⊃ Wσ(B),

A(Wσ(L)) = Wσ(A(L)).

(2.4)

The Induced Measure

Let μ ∈ IσR(L) and consider the induced measure μ ∈ IσR(Wσ(L)), defined by

μ(Wσ(A)) = μ(A), A ∈ A(L ). (2.5)

The map μ → μ is a bijection between IσR(L) and IσR(Wσ(L)).

3. The Case of Finite Product of Lattices
3.1. Notations

Let X, Y be abstract sets and L1 a lattice of subsets of X and L2 a lattice of subsets of Y. We
denote:

(1) L∗ = L1 × L2 = {L1 × L2/L1 ∈ L1, L2 ∈ L2},
(2) L = L(L∗), the lattice generated by L∗. ¡list-item¿¡label/¿

We have the following:

(3) A(L1) ×A(L2) = A(L1 × L2),
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(4) A(L∗) = A(L),

(5) SL(μ) = SL∗(μ),

(6) Iσ(L∗) = Iσ(L),

(7) IR(L∗) = IR(L).

3.2. Results

Theorem 3.1 (the finite product of lattices/regular measures). Let X, Y be abstract sets and let
L1, L2 be lattices of subsets of X and Y, respectively. Then IR(L1) × IR(L2) = IR(L).

Proof. For A ∈ A(L1) × A(L2) = A(L1 × L2), we have A =
⋃n

i=1 A
i
1 × Ai

2, disjoint union and
Ai

1 ∈ A(L1), Ai
2 ∈ A(L2).

Let μ ∈ IR(L1) and ν ∈ IR(L2) and consider μ × ν defined on A(L1) ×A(L2).
If μ × ν(A) = 1, then μ × ν(Ai

1 ×Ai
2) = 1 for some i.

Then μ (Ai
1)ν(A

i
2) = 1, and since μ and ν are zero-one valued measures, μ(Ai

1)= 1 and
ν(Ai

2) = 1. By the regularity of μ and ν there exist L1 ⊂ Ai
1, L1 ∈ L1 with μ(L1) = 1 and L2 ⊂ Ai

2,
L2 ∈ L2 with ν(L2) = 1.

Therefore μ × ν(L1 × L2) = μ(L1)ν(L2) = 1 and L1 × L2 ∈ L∗.
If we let M = L1 × L2 ⊂ Ai

1 ×Ai
2 ⊂ A, then

μ × ν(A) = sup
{
μ × ν(M)/M ⊂ A,M ∈ L∗} =⇒ μ × ν ∈ IR(L∗). (3.1)

Conversely, let μ ∈ IR(L∗) = IR(L) and define μ1 on A(L1) by μ1(A) = μ(A × Y),
A ∈ A(L1). Since μ is a zero-one measure on A(L1 × L2), it follows that μ1 is a zero-one
measure on A(L1), that is, μ1 ∈ IR(L1).

Suppose μ1(A) = μ(A×Y) = 1; there existsA×Y ⊃ L1 ×L2 ∈ L∗ such that μ(L1 ×Y) = 1
and μ(L1 × L2) = 1. Then μ1(L1) = μ(L1 × Y) = 1 and L1 ⊂ A which shows that μ1 ∈ IR(L1).
Similarly take μ2 on A(L2) defined by μ2(B) = μ(X × B), B ∈ A(L2).

Then, as before μ2 is regular on L2.
Finally for any A ∈ A(L1) and any B ∈ A(L2) we have μ1 × μ2(A × B) = μ1(A)μ2(B) =

μ(A × Y)μ(X × B) = μ[(A × Y) ∩ (X × B)] = μ[(A ∩ X) × (Y ∩ B)] = μ(A × B)which shows that
μ = μ1 × μ2, and therefore IR(L1) × IR(L2) = IR(L).

Theorem 3.2 (the product of lattices/σ-smooth regular measures). Let X, Y be abstract sets and
let L1, L2 be lattices of subsets of X and Y, respectively. Then IσR(L1) × IσR(L2) = IσR(L1 × L2).

Proof. Let μ ∈ IσR(L1) and ν ∈ IσR(L2). Hence forA1n ∈ A(L1)withA1n ↓ ∅we have μ(A1n) → 0
and for A2n ∈ A(L2) with A2n ↓ ∅ we have ν(A2n) → 0, n = 1, 2, . . ..

Consider the sequence {Bn} of sets from A(L1) × A(L2). As in Theorem 3.1 Bn =⋃k
i=1 A

i
1n ×Ai

2n, disjoint union and Ai
1n ∈ A(L1), Ai

2n ∈ A(L2).
Suppose that Bn ↓ ∅, that is,Ai

1n ×Ai
2n ↓ ∅ for all i. ThereforeA1n ↓ ∅ orA2n ↓ ∅ or both:

μ × ν(Bn) = μ × ν

[
k⋃

i=1

(
Ai

1n ×Ai
2n

)]

=
k∑

i=1

μ × ν
(
Ai

1n ×Ai
2n

)

=
k∑

i=1

μ
(
Ai

1n

)
ν
(
Ai

2n

)
−→ 0, therefore μ × ν ∈ IσR(L1 × L2).

(3.2)
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Conversely, let μ ∈ IσR(L1 × L2) and define μ1 on A(L1) by

μ1(A) = μ(A × Y), A ∈ A(L1). (3.3)

If {An} is a sequence of sets with An ∈ A(L1) and An ↓ ∅, then An × Y ↓ ∅, and since
μ ∈ Iσ(L1 × L2) it follows that μ(An × Y) → 0.

Therefore μ1 ∈ Iσ(L1).
Similarly, defining μ2 on A(L2) by μ2(B) = μ(X × B), B ∈ A(L2) we get μ2 ∈ Iσ(L2).
Hence μ = μ1 × μ2 ∈ Iσ(L1) × Iσ(L2) = Iσ(L1 × L2).

Theorem 3.3 (product of supports of measures). Let X, Y be abstract sets and let L1, L2 be lattices
of subsets of X and Y, respectively. The following statements are true:

(a) if μ = μ1 × μ2 ∈ I(L1) × I(L2) = I(L1 × L2) then S(μ) = S(μ1) × S(μ2);

(b) if L1 and L2 are compact lattices then L is compact.

Proof. We have

(a) S(μ) = S(μ1 × μ2) = ∩{L1 × L2 ∈ L1 × L2/μ(L1 × L2) = μ(X × Y)},

S
(
μ1
) × S

(
μ2
)
= ∩{L1 × L2/L1 ∈ L1, L2 ∈ L2, μ1(L1) = μ1(X), μ2(L2) = μ2(Y)

}
, (3.4)

But μ(L1 × L2) = μ1 × μ2(L1 × L2) = μ1(L1)μ2(L2) and μ(X × Y) = μ1 × μ2(X × Y) =
μ1(X)μ2(Y),

(b) S(μ) = S(μ1) × S(μ2)/= ∅, since S(μi)/= ∅, Li being compact.

Theorem 3.4 (product of Wallman spaces/Wallman topologies). Consider the spaces IR(Li)
with theWallman topologies tWi(Li), i = 1, 2.

It is known that the topological spaces (IR(Li), tWi(Li)) are compact and T1. Then the
topological space (IR(L1) × IR(L2), tW1(L1) × tW2(L2)) is also compact and T1.

Proof. Since IR(Li) are compact topological spaces,

SL1

(
μ
)
= ∩
{
W1(L1) ∈ W1(L1)/μ(W1(L1)) = 1

}
/= ∅,

SL2

(
ν
)
= ∩{W2(L2) ∈ W2(L2)/ν(W2(L2)) = 1

}
/= ∅.

(3.5)

We have

μ(W1(A)) = μ(A), μ ∈ IR(L1), A ∈ A(L1), μ ∈ IR(W1(L1)),

ν(W2(B)) = ν(B), ν ∈ IR(L2), B ∈ A(L2), ν ∈ IR(W2(L2)).
(3.6)

Therefore

μ × ν(W1(A) ×W2(B)) = μ × ν(A × B) = μ(A)ν(B),

μ × ν(W1(A) ×W2(B)) = μ(W1(A)) ν(W2(B)) = μ(A)ν(B),
(3.7)
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so that μ × ν = μ × ν ∈ IR(W1(L1)) × IR(W2(L2)), and then SL1×L2(μ × ν) = SL1×L2(μ × ν) =
SL1(μ) × SL2(ν)/= ∅ ⇒ IR(L1) × IR(L2) is compact.

To show that IR(L1) × IR(L2) is a T1-space, let μ, ν ∈ IR(L) and suppose μ/= ν. Since
μ = μ1 × μ2 with μ1, μ2 ∈ IR(L1) and ν = ν1 × ν2 with ν1, ν2 ∈ IR(L2) we get μ1 /= ν1 and μ2 /= ν2.
There exist L1, L̃1 ∈ L1 and L2, L̃2 ∈ L2 with

μ1 ∈ W1(L1), ν1 ∈ W1(L1)′; ν1 ∈ W1

(
L̃1

)
, μ1 ∈ W1

(
L̃1

)′
,

μ2 ∈ W2(L2), ν2 ∈ W2(L2)′; ν2 ∈ W2

(
L̃2

)
, μ2 ∈ W2

(
L̃2

)′
.

(3.8)

Therefore μ1(L1) = μ2(L2) = 1, ν1(L1) = ν2(L2) = 0, μ1(L̃1) = μ2(L̃2) = 0, ν1(L̃1) = ν2(L̃2) = 1
which implies μ ∈ W(L1 × L2), ν ∈ W(L1 × L2)

′; ν ∈ W(L̃1 × L̃2), μ ∈ W(L̃1 × L̃2)
′
.

Theorem 3.5 (product of normal lattices). Let X, Y be abstract sets and let L1, L2 be normal
lattices of subsets of X and Y, respectively. Then L is a normal lattice of subsets of X × Y.

Proof. Let μ ∈ I(L) and ν, ρ ∈ IR(L) such that μ ≤ ν, ρ on L.
Then, since μ = μ1 × μ2 ∈ I(L1) × I(L2), ν = ν1 × ν2 ∈ IR(L1) × IR(L2) and ρ = ρ1 × ρ2 ∈

IR(L1) × IR(L2), we obtain μi ≤ νi, ρi on Li, i = 1, 2.
Li normal lattices ⇒ νi = ρi; therefore ν1 × ν2 = ρ1 × ρ2, that is, ν = ρ.

3.3. Examples

(1) Let X, Y be topological spaces and let O1, O2 be the lattices of open sets of X and Y,
respectively. Consider the product space X × Ywith a base of open sets given by

{O1 ×O2/O1 ∈ O1, O2 ∈ O2}. (3.9)

We have

(O1 ×O2)′ =
{(

x, y
) ∈ X × Y/

(
x, y
)
/∈ (O1 ×O2)

}

=
{(

x, y
)
/
(
x, y
) ∈ (X ×O′

2
)
or
(
x, y
) ∈ (O′

1 × Y
)}

=
(
X ×O′

2
) ∪ (O′

1 × Y
)
= (X × F2) ∪ (F1 × Y).

(3.10)

Hence F = t(L(F1 × F2)) where F1, F2 are the lattices of closed sets of X and Y,
respectively.

(2) Let X, Y be topological T3.5-spaces and let Z1, Z2 be the lattices of zero sets of
continuous functions of X and Y, respectively. Then for the product space X × Y
we consider a base of open sets given by

{
Z′

1 × Z′
2/Z1 ∈ Z1, Z2 ∈ Z2

}
(3.11)

such that any open set from X × Y is of the form O =
⋃

α Z
′
1α × Z′

2α and any closed
set is

F = O′ =
⋂

α

(Z1ε × Y ) ∪ (X × Z2α) ∈ t(L(Z1 × Z2)) (3.12)

and then F = t(L(Z1 × Z2)).
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4. The General Case of Product of Lattices

Let {Xα}α∈Λ be a collection of abstract sets (Λ an arbitrary index set) and let Lα be the lattice
of subsets of Xα for all α.

We denote

L∗ =
∏

α∈Λ
Lα =

{
∏

α∈Λ
Lα/Lα ∈ Lα, Lα = Xα for almost all α

}

. (4.1)

4.1. Results

Theorem 4.1 (the product of lattices/regular measures). One has

∏

α∈Λ
IR(Lα) = IR(L) = IR

(
∏

α∈Λ
Lα

)

. (4.2)

Proof. We note that
∏

α∈ΛA(Lα) = A(
∏

α∈ΛLα) = A(L) and that
∏

α∈ΛA(Lα) is the collection of
all finite cylinder sets which means that if B ∈ ∏α∈ΛA(Lα) then B is a cylinder set for which
there exists a nonempty finite subset F = {α1, α2, . . . , αn} of Λ and a subset EF ∈ ∏α∈FA(Lα)
such that B = P−1

F (EF) with

PF :
∏

α∈Λ
Xα −→

∏

α∈Λ
Xα = Xα1 × Xα2 × · · · × Xαn , Pα :

∏

α∈Λ
Xα −→ Xα. (4.3)

Let μα ∈ IR(Lα) for all α ∈ Λwith μα : A(Lα) and define

μ =
∏

α∈Λ
μα ∈

∏

α∈Λ
IR(Lα), μ :

∏

α∈Λ
A(Lα). (4.4)

Let A ∈∏α∈ΛA(Lα) with μ(A) = 1. Then (
∏

α∈Λμα)(A) = (
∏

α∈Λμα)(P−1
F (EF)) = 1 that

is

∏

α∈F
A(Lα)

P−1
F−−−→
∏

α

A(Lα)
∏

α μα−−−−−→ {0, 1} (4.5)

and for EF ∈∏α∈FA(Lα) we have

(
∏

α∈Λ
μαP

−1
F

)

(EF) =

(
∏

α∈Λ
μα

)(
P−1
F (EF)

)
=

(
∏

α∈F

)

(EF)

=
(
μα1 × μα2 × · · · × μαn

)
(EF) = 1.

(4.6)

As in the finite case, we get EF ⊃ Lα1 × Lα2 × · · ·Lαn where Lαi ∈ Lαi and μαi(Lαi) = 1 for
all i = 1, 2, . . . , n. Then A = P−1

F (EF) ⊃ P−1
F (Lα1 × Lα2 × · · ·Lαn) and P−1

F (Lα1 × Lα2 × · · ·Lαn) = 1,
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which shows that μ(A) = sup{μ(P−1
F (Lα1 × Lα2 × · · ·Lαn))/P

−1
F (Lα1 × Lα2 × · · ·Lαn) ⊂ A and

P−1
F (Lα1 × Lα2 × · · ·Lαn) ∈

∏
α∈ΛLα = L∗}; hence μ is L-regular.

Conversely, let μ ∈ IR(L) = IR(
∏

α∈ΛLα) and define μα on A(Lα) by

μα(A) = μ

⎛

⎝A ×
∏

β∈Λ−{α}
Xβ

⎞

⎠, A ∈ A(Lα), that is, μα(A) = μ
(
P−1
α (A)

)
. (4.7)

Since μ is a zero-one valued measure on A(
∏

α∈ΛLα) it follows from the above
definition that μα ∈ I(Lα). If μα(A) = 1, then μ(P−1

α (A)) = 1, and since μ is L-regular, there
exists

∏
β∈ΛLβ such that P−1

α (A) ⊃∏β∈ΛLβ ∈ L∗ and μ(
∏

β∈ΛLβ) = 1.
Then P−1

α (Lα) ⊂ P−1
α (A) and μα(Lα) = μα(P−1

α (Lα)) = 1.
Therefore μα(A) = sup{μα(Lα)/Lα ⊂ A,Lα ∈ Lα}, that is, μα ∈ IR(Lα). Next, if B ∈

L∗, we may consider B = P−1
F (Lα1 × Lα2 × · · ·Lαn) and then

∏
α∈Λμα(B) =

∏
α∈Λμα(P−1

F (Lα1 ×
Lα2 × · · ·Lαn)) =

∏
α∈Fμα(Lα1 × Lα2 × · · ·Lαn) = (μα1 × μα2 × · · · × μαn)(Lα1 × Lα2 × · · ·Lαn) =

μα1(Lα1)μα2(Lα2) · · ·μαn(Lαn) = μ(P−1
α1
(Lα1)) · · ·μ(P−1

αn
(Lαn)). If

∏
α∈Λμα(B) = 1, then μ(P−1

αi
(Lαi))

for all i; hence μ(
⋂n

i=1 P
−1
αi
(Lαi)) = 1 and μ(P−1

F ( Lα1 × Lα2 × · · ·Lαn)) = μ(
∏

αLα) = 1, that is,
μ(B) = 1. Thus μ =

∏
αμα ∈ IR(L∗), and then μ =

∏
αμα on

∏
αA(Lα).

Theorem 4.2 (the product of normal lattices). Let Lα be a lattice of subsets of Xα. Then

(a) if μ =
∏

αμα ∈ I(
∏

α∈ΛLα) =
∏

α∈ΛI(Lα) we have S(μ) =
∏

α∈ΛS(μα);

(b) if Lα disjunctive for all α ∈ Λ, then L = L(
∏

α∈ΛLα) is a disjunctive lattice of subsets of∏
α∈ΛXα;

(c) suppose that Lα is a normal lattice of subsets of Xα for all α ∈ Λ; then L = L(
∏

α∈ΛLα) is
a normal lattice of subsets of

∏
α∈ΛXα.

Proof. (a) We have S(μα) = ∩{Lα ∈ Lα/μα(Lα) = μα(Xα) = 1} and S(μ) = S(
∏

α∈Λμα) =
∩{∏α∈ΛLα ∈ ∏α∈ΛLα/μ(

∏
αLα) = μ(

∏
αXα) = 1}. But μ(

∏
αLα) = 1 implies∏

αμα(
∏

α∈ΛLα) = 1. Then S(μ) =
∏

α∈ΛS(μα).

(b) Let x = (xα)α∈Λ ∈ ∏
α∈ΛXα Since

∏
α∈Λμxα(

∏
α∈ΛAα) = μx(

∏
α∈ΛAα) we get∏

α∈Λμxα = μx.

Lα disjunctive implies μxα ∈ IR(Lα) for all α ∈ Λ and then
∏

α∈Λμxα ∈
∏

α∈ΛIR(Lα) =
IR(
∏

α∈ΛLα); therefore μx ∈ IR(
∏

α∈ΛLα) which proves that L = L(
∏

α∈ΛLα) is
disjunctive.

(c) Let μ ∈ I(L) and ν, ρ ∈ IR(L) such that μ ≤ ν, ρ on L.

But μ =
∏

αμα ∈ ∏α∈ΛI(Lα) and both ν =
∏

α∈να, ρ =
∏

α∈ρα ∈ ∏α∈ΛIR(Lα) and
then

∏
αμα ≤∏α∈να and

∏
αμα ≤∏α∈ρα on L with μα(Aα) = μ(P−1

α (Aα)), να(Aα) =
ν(P−1

α (Aα)) forAα ∈ A(Lα). By the previous work we get μα ≤ να and μα ≤ ρα on Lα.

Since each Lα is normal it follows that να = ρα for all α ∈ Λ, and therefore ν =
(να)α∈Λ = (ρα)α∈Λ = ρ which proves that L is a normal lattice.

4.2. Examples

(3) Let Xα be a topological T3.5-spaces and let Lα = Zα be the replete lattices of zero sets
of continuous functions of Xα for all α ∈ A.

Then each Xα is said to be realcompact.
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Consider a lattice Z of subsets of
∏

α∈AXα such that

∏

α∈A
Zα ⊂ t

(
∏

α∈A
Zα

)

. (4.8)

Then Z is replete, and
∏

α∈AXα is realcompact.

(4) Let Xα be a T2 and 0-dimensional space and let Lα = Cα be the replete lattice of clopen
sets for all α ∈ A. Then each Xα is said to be N-compact. Consider any lattice C of
subsets of

∏
α∈AXα such that

∏
α∈ACα ⊂ t(

∏
α∈ACα) ⊂ t(

∏
α∈AZα) = F and C is replete

and
∏

α∈AXα is N-compact.
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