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An alternative interpretation of a family of weighted Carleson measures is used to characterize
p-Carleson measures for a class of Hardy-Orlicz spaces admitting a nice weak factorization. As
an application, we provide with a characterization of symbols of bounded weighted composition
operators and Cesàro-type integral operators from these Hardy-Orlicz spaces to some classical
holomorphic function spaces.

1. Introduction

Hardy-Orlicz spaces are the generalization of the usual Hardy spaces. We raise the question
of characterizing those positive measures μ defined on the unit ball � n of � n such that these
spaces embed continuously into the Lebesgue spaces Lp(dμ). More precisely, let denote by
dV the Lebesgue measure on � n and dσ the normalized measure on the unit sphere �n

which is the boundary of � n . H(�n ) denotes the space of holomorphic functions on � n . Let
Φ be continuous and nondecreasing function from [0,∞) onto itself. That is, Φ is a growth
function. The Hardy-Orlicz space HΦ(� n) is the space of function f in H(� n) such that the
functions fr , defined by fr(w) = f(rw) satisfy

sup
r<1

inf

{
λ > 0 :

∫
�n

Φ

(∣∣fr(x)∣∣
λ

)
dσ(x) ≤ 1

}
< ∞. (1.1)
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We denote the quantity on the left of the above inequality by ‖f‖luxHΦ or simply ‖f‖HΦ

when there is no ambiguity. Let us remark that ‖f‖luxHΦ = supr<1‖fr‖luxLΦ , where ‖f‖lux
LΦ denotes

the Luxembourg (quasi)-norm defined by

∥∥f∥∥luxLΦ := inf

{
λ > 0 :

∫
�n

Φ

(∣∣fr(x)∣∣
λ

)
dσ(x) ≤ 1

}
< ∞. (1.2)

Given two growth functionsΦ1 andΦ2, we consider the following question. For which
positive measures μ on � n , the embedding map Iμ : HΦ2(� n) → LΦ1(dμ), is continuous?
When Φ1 and Φ2 are power functions, such a question has been considered and completely
answered in the unit disc and the unit ball in [1–6]. For more general convex growth
functions, an attempt to solve the question appears in [7], in the setting of the unit disc
where the authors provided with a necessary condition which is not always sufficient and
a sufficient condition. The unit ball version of [7] is given in [8]. To be clear at this stage, let
us first introduce some usual notations. For any ξ ∈ �n and δ > 0, let

Bδ(ξ) = {w ∈ �
n : |1 − 〈w, ξ〉| < δ},

Qδ(ξ) = {z ∈ �
n : |1 − 〈z, ξ〉| < δ}.

(1.3)

These are the higher dimension analogues of Carleson regions. We take as Φ1 the
power functions, that is, Φ1(t) = tp for 1 ≤ p < ∞. Thus, the question is now to characterize
those positive measures μ on the unit ball such that there exists a constant C > 0 such that

∫
� n

∣∣f(z)∣∣pdμ(z) ≤ C
(∥∥f∥∥luxHΦ

)p ∀f ∈ HΦ(� n ). (1.4)

We call such measures p-Carleson measures for HΦ(� n). We give a complete answer for a
special class of Hardy-Orlicz spaces HΦ(� n) with Φ(t) = (t/ log(e + t))s, 0 < s ≤ 1. For
simplicity, we denote this space by Hs(� n ).

We prove the following result.

Theorem 1.1. Let 0 < s ≤ 1 and 1 ≤ p < ∞. Then the following assertions are equivalent.

(i) There exists a constant K1 > 0 such that for any ξ ∈ �n and δ > 0,

μ(Qδ(ξ)) ≤ K1
δn(p/s)(

log(4/δ)
)p . (1.5)

(i) There exists a constant K2 > 0 such that

∫
� n

∣∣f(z)∣∣pdμ(z) ≤ K2
∥∥f∥∥pHs

∀f ∈ Hs(� n ). (1.6)
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To prove the above result, we combine weak-factorization results for Hardy-Orlicz
spaces (see [9, 10]) and some equivalent characterizations of weighted Carleson measures
for which we provide an alternative interpretation. We also provide with some further
applications of our characterization of the measures considered here to the boundedness of
weighted Cesàro-type integral operators from our Hardy-Orlicz spaces to some holomorphic
function spaces in Section 3.

All over the text, C, Cj and,Kj , j = 1, . . ., will denote positive constant not necessarily
the same at each occurrence.

This work can be also considered as an application of some recent results obtained by
the author and his collaborators [9–11].

2. λ-Hardy p-logarithmic Carleson Measures

For z = (z1, . . . , zn) and w = (w1, . . . , wn) in � n , we let 〈z,w〉 = z1w1 + · · · + znwn so that
|z|2 = 〈z, z〉 = |z1|2 + · · · + |zn|2.

Recall that when Φ is a power function, the Hardy-Orlicz space HΦ(� n) is just the
classical Hardy space. More precisely, for 0 < p < ∞, let Hp(� n ) denote the Hardy space
which is the space of all f ∈ H(� n ) such that

∥∥f∥∥pp := sup
0<r<1

∫
�n

∣∣f(rξ)∣∣pdσ(ξ) < ∞. (2.1)

We denote by H∞(� n ), the space of bounded analytic functions in � n .
Let ρ be a continuous increasing function from [0,∞) onto itself, and such that for

some α on [0, 1]

�(st) ≤ sα�(t) (2.2)

for s > 1, with st ≤ 1. We define the space BMO(ρ) by

BMO
(
ρ
)
=

{
f ∈ L2(�n); sup

B

inf
R∈PN(B)

1(
�(σ(B))

)2
σ(B)

∫
B

∣∣f − R
∣∣2dσ < ∞

}
, (2.3)

where for B = Bδ(ξ0), the spacePN(B) is the space of polynomials of order ≤ N in the (2n−1)
last coordinates related to an orthonormal basis whose first element is ξ0 and second element
�ξ0. The integerN is taken larger than 2nα−1. For C, the quantity appearing in the definition
of BMO(ρ), we note ‖f‖BMO(ρ) := ‖f‖2 + C. The space BMOA(ρ) is then the space of function
f ∈ H2(� n ) such that

sup
r<1

∥∥fr∥∥BMO(ρ) < ∞. (2.4)

Clearly, BMOA(ρ) coincides with the space of holomorphic functions in H2(� n) such that
their boundary values lie in BMO(ρ). The space BMOA(1) is the usual space of function with
bounded mean oscillation BMOAwhile the space of function of logarithmic mean oscillation
LMOA is given by 1/ρ(t) = log 4/t.
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Let μ denote a positive Borel measure on � n . The measure μ is called an s-Carleson
measure, if there is a finite constant C > 0 such that for any ξ ∈ �n and any 0 < δ < 1,

μ(Qδ(ξ)) ≤ C(σ(Bδ(ξ)))s. (2.5)

When s = 1, μ is just called Carleson measure. The infinimum of all these constants C will be
denoted ‖μ‖s. We use the notation ‖μ‖ for ‖μ‖1. In this section, we are interested in Carleson
measure with weights involving the logarithmic function. Let μ be a positive Borel measure
on �

n and 0 < s < ∞. For ρ, a positive function defined on (0, 1), we say μ is a (ρ, s)-Carleson
measure if there is a constant C > 0 such that for any ξ ∈ �n and 0 < δ < 1,

μ(Qδ(ξ)) ≤ C
(σ(Bδ(ξ)))s

ρ(δ)
. (2.6)

If s = 1, μ is called a ρ-Carleson measure.
We will restrict here to the case ρ(t) = (log(4/t))p(loglog(e4/t))q, 0 < p, q < ∞ studied

by the author in [11] (see also [12] for a special case in one dimension). But here we go
beyond the interpretation provided in [11].

2.1. λ-Hardy ρ-Carleson Measures

In this section, we recall some results of [11] and the notion of λ-Hardy Carleson measures.
We then provide with an alternative interpretation of the results of [11] that will be useful to
our characterization. From now on, the notation K1 ≈ K2, where K1 and K2 are two positive
constants, will mean there exists an absolute positive constantM such that

M−1K2 ≤ K1 ≤ MK2, (2.7)

and in this case, we say K1 and K2 are comparable or equivalent. The notation K1 � K2

means K1 ≤ MK2 for some absolute positive constant M. Let set

Ka(z) =

(
1 − |a|2

)n
|1 − 〈a, z〉|2n

. (2.8)

We first recall the following higher dimension version of the theorem of Carleson [1]
and its reproducing kernel formulation.

Theorem 2.1. For a positive Borel measure μ on � n , and 0 < p < ∞, the following are equivalent

(i) The measure μ is a Carleson measure.

(ii) There is a constantK1 > 0 such that, for all f ∈ Hp(� n),

∫
� n

∣∣f(z)∣∣pdμ(z) ≤ K1
∥∥f∥∥pp. (2.9)
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(iii) There is a constantK2 > 0 such that, for all a ∈ � n ,

∫
� n

Ka(w)dμ(w) ≤ K2 < ∞. (2.10)

We note that the constants K1, K2 in Theorem 2.1 are both comparable to ‖μ‖. The
proof of this theorem can be found in [13].

We now recall some basic facts about λ-Hardy measures.

Definition 2.2. Let 0 < p, q < ∞ and λ = q/p. We say a positive measure μ on �
n is a λ-Hardy

Carleson measure if there exists a constant C > 0 such that for all f ∈ Hp(� n ),

∫
� n

∣∣f(z)∣∣qdμ(z) ≤ C
∥∥f∥∥qHp . (2.11)

The following high dimension Peter Duren’s characterization of λ-Hardy Carleson
measures is useful for our purpose.

Proposition 2.3. Let 0 < p, q < ∞ and λ = q/p > 1. Let μ be a positive measure on � n . Then the
following assertions are equivalent.

(i) There exists a constant K1 > 0 such that for any ξ ∈ �n and any 0 < δ < 1,

μ(Qδ(ξ)) ≤ K1(σ(Bδ(ξ)))λ. (2.12)

(ii) There exists a constant K2 > 0 such that

sup
a∈� n

∫
� n

Kλ
a(z)dμ(z) < K2 < ∞. (2.13)

(iii) There exists a constant K3 > 0 such that for all f ∈ Hp(� n),

∫
� n

∣∣f(z)∣∣qdμ(z) ≤ K3
∥∥f∥∥qHp . (2.14)

The constants K1, K2, and K3 in the above proposition are equivalent. That (i) ⇔ (ii)
can be found in [11]. The equivalence (i) ⇔ (iii) can be found in [14] for example. We have
the following elementary consequence.

Corollary 2.4. Let 0 ≤ p, q < ∞, p /= 0 and let μ be a positive measure on � n . Then the following
assertion are equivalent.

(i) There exists a constant K1 > 0 such that for any ξ ∈ �
n and any 0 < δ < 1,

μ(Qδ(ξ)) ≤ K1(σ(Bδ(ξ)))1+(q/p). (2.15)
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(ii) There exists a constant K2 > 0 such that

sup
a∈� n

∫
� n

K
1+(q/p)
a (z)dμ(z) ≤ K2 < ∞. (2.16)

(iii) There exists a constant K3 > 0 such that for all f ∈ Hp(� n),

sup
a∈� n

∫
� n

Ka(z)
∣∣f(z)∣∣qdμ(z) ≤ K3‖f‖qHp . (2.17)

(iv) There exists a constant K4 > 0 such that for all f ∈ Hp(� n) and any g ∈ Hr(� n),

∫
� n

∣∣f(z)∣∣q∣∣g(z)∣∣rdμ(z) ≤ K4
∥∥f∥∥qHp

∥∥g∥∥rHr . (2.18)

Proof. The equivalence (i)⇔(ii) is a special case of Proposition 2.3. Note that (iii) is equivalent
in saying that for any f ∈ Hp(� n), the measure (|f(z)|qdμ(z))/‖f‖qHp is a Carleson measure
which is equivalent to (iv). The implication (iv)⇒(i) follows from the usual arguments. Thus,
it only remains to prove that (ii)⇒(iii). First by Proposition 2.3, (ii) is equivalent in saying that
there exists a constant K′

2 > 0 such that for any f ∈ Hp(� n),

∫
� n

∣∣f(z)∣∣p+qdμ(z) ≤ K′
2

∥∥f∥∥p+qHp . (2.19)

It follows from the hypotheses, the latter, and Hölder’s inequality that

∫
� n

Ka(z)
∣∣f(z)∣∣qdμ(z) ≤ (∫

� n

Ka(z)1+(q/p)dμ(z)
)p/(p+q)(∫

� n

∣∣f(z)∣∣p+qdμ(z))q/(p+q)

,

≤ K2K
′
2

∥∥f∥∥qHp .

(2.20)

Thus (ii)⇒(iii). The proof is complete.

Next, we recall the following result proved in [11].

Theorem 2.5. Let 0 ≤ p, q < ∞, s ≥ 1, and let μ be a positive Borel measure on �
n . Then the

following conditions are equivalent.

(i) There is K1 > 0 such that for any ξ ∈ �
n and 0 < δ < 1,

μ(Qδ(ξ)) ≤ K1
(σ(Bδ(ξ)))s(

log(4/δ)
)p(loglog(e4/δ))q . (2.21)
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(ii) There is K2 > 0 such that

sup
a∈� n

(
log

4
1 − |a|

)p
(
loglog

e4

1 − |a|

)q ∫
� n

Ka(z)sdμ(z) ≤ K2 < ∞. (2.22)

(iii) There is K3 > 0 such that for any f ∈ BMOA,

sup
a∈� n

(
loglog

e4

1 − |a|

)q ∫
� n

Ka(z)s
∣∣f(z)∣∣pdμ(z) ≤ K3

∥∥f∥∥pBMOA. (2.23)

(iv) There is K4 > 0 such that for any g ∈ LMOA,

sup
a∈� n

(
log

4
1 − |a|

)q ∫
� n

Ka(z)s
∣∣g(z)∣∣qdμ(z) ≤ K

∥∥g∥∥qLMOA. (2.24)

(v) There is K5 > 0 such that for any f ∈ BMOA and any g ∈ LMOA,

sup
a∈� n

∫
Bn

Ka(z)s
∣∣f(z)∣∣p∣∣g(z)∣∣qdμ(z) ≤ K5

∥∥f∥∥pBMOA

∥∥∥∥q
LMOA. (2.25)

Definition 2.6. Let 0 < p, q < ∞ and λ = q/p. Let ρ be a positive function defined on [0,∞).
We say a positive measure μ on � n is a λ-Hardy ρ-Carleson measure if for any f ∈ Hp(� n ),
the measure

dμ̃(z) =

∣∣f(z)∣∣q∥∥f∥∥qp dμ(z) (2.26)

is a ρ-Carleson measure.

We have the following characterization of λ-Hardy ρ-Carleson measure which is in
fact an alternative interpretation of Theorem 2.5.

Theorem 2.7. Let 0 ≤ p, q, r, s < ∞, s /= 0, and let μ be a positive Borel measure on � n . Then the
following conditions are equivalent.

(i) There is K1 > 0 such that for any ξ ∈ �n and 0 < δ < 1,

μ(Qδ(ξ)) ≤ K1
(σ(Bδ(ξ)))1+(r/s)(

log(4/δ)
)p(loglog(e4/δ))q . (2.27)

(ii) There is K2 > 0 such that for any f ∈ BMOA, and any h ∈ Hs(� n),

sup
a∈� n

(
loglog

e4

1 − |a|

)q ∫
� n

Ka(z)|h(z)|r
∣∣f(z)∣∣pdμ(z) ≤ K2‖h‖rHs

∥∥f∥∥pBMOA. (2.28)
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(iii) There is K3 > 0 such that for any g ∈ LMOA, and any h ∈ Hs(� n),

sup
a∈� n

(
log

4
1 − |a|

)p ∫
� n

Ka(z)|h(z)|r
∣∣g(z)∣∣qdμ(z) ≤ K2‖h‖rHs

∥∥g∥∥qLMOA. (2.29)

(iv) There is K4 > 0 such that for any f ∈ BMO, any g ∈ LMOA, and any h ∈ Hs(� n),

sup
a∈� n

∫
� n

Ka(z)|h(z)|r
∣∣f(z)∣∣p∣∣g(z)∣∣qdμ(z) ≤ K3‖h‖rHs

∥∥f∥∥pBMOA

∥∥g∥∥qLMOA. (2.30)

(v) There is K5 > 0 such that for any f ∈ BMOA, g ∈ LMOA, and any h ∈ Hs(� n) and
l ∈ Hm(� n),

∫
� n

∣∣f(z)∣∣p∣∣g(z)∣∣q|h(z)|r |l(z)|mdμ(z) ≤ K5‖h‖rHs‖l‖mHm

∥∥f∥∥pBMOA

∥∥g∥∥qLMOA. (2.31)

Proof. (i)⇔(iv): we first observe with Theorem 2.5 that (i) is equivalent in saying that there is
a constant C1 such that for any f ∈ BMOA and any g ∈ LMOA,

sup
a∈� n

∫
� n

Ka(z)1+(r/s)
∣∣f(z)∣∣p∣∣g(z)∣∣qdμ(z) ≤ C1

∥∥f∥∥pBMOA

∥∥g∥∥qLMOA. (2.32)

By Corollary 2.4, the latter is equivalent to (iv).
(ii)⇔(iii)⇔(iv): by rewriting (ii) as

sup
a∈� n

(
loglog

e4

1 − |a|

)q ∫
� n

Ka(z)
∣∣f(z)∣∣pdμ̃(z) ≤ K2‖h‖rHs

∥∥f∥∥pBMOA, (2.33)

where dμ̃(z) = (|h(z)|r/‖h‖rHs)dμ(z), it follows directly from Theorem 2.5 that (ii)⇔(iii)⇔
(iv).

That (iv)⇔(v) is a consequence of Theorem 2.1. The proof is complete.

2.2. p-Carleson Measures for Hardy-Orlicz Spaces

In this section, we characterize p-Carlesonmeasures of some special Hardy-Orlicz spaces. For
this, we will need a weak factorization result of functions in these spaces which follows from
the one in [10].

Proposition 2.8. Let 0 < s ≤ 1. Let Hs(� n) denote the Hardy-Orlicz space corresponding to the
function Φ(t) = (t/ log(e + t))s. Then the following assertions hold.

(i) The product of two functions, one in Hs(� n) and the other one in BMOA, is in Hs(� n ).
Moreover,

‖fg‖Hs � ‖f‖Hs‖g‖BMOA. (2.34)
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(ii) Any function f in the unit ball of Hs(� n ) admits the following representation (weak fac-
torization):

f =
∑
j

fjgj, fj ∈ Hs(� n ), gj ∈ BMOA (2.35)

with

∞∑
j=0

∥∥fj∥∥Hs

∥∥gj∥∥BMOA
�
∥∥f∥∥Hs

. (2.36)

Let us remark that the space H1(� n) is the predual of LMOA. The following theorem
gives a characterization of p-Carleson measures of the Hardy-Orlicz spaces considered
here.

Theorem 2.9. Let 0 < s ≤ 1, 1 ≤ p < ∞. Let Hs(� n) be the Hardy-Orlicz space HΦ(� n )
corresponding to the function Φ(t) = (t/ log(e + t))s. Then, for μ a positive measure on � n , the
following assertions are equivalent.

(i) There exists a constant K1 > 0 such that for any ξ ∈ �n and any 0 < δ < 1,

μ(Qδ(ξ)) ≤ K1
(σ(Bδ(ξ)))(p/s)(

log(4/δ)
)p . (2.37)

(ii) There exists a constant K2 > 0 such that for any f ∈ Hs(� n),

∫
� n

∣∣f(z)∣∣pdμ(z) ≤ K2
∥∥f∥∥pHs

. (2.38)

Proof. We remark that if (2.38) holds in the unit ball of Hs(� n ), then it holds for all f ∈
Hs(� n). Recall that by Proposition 2.8, every function f in the unit ball of Hs(� n) weakly
factorizes as

f =
∞∑
j=0

fjgj (2.39)

and
∑∞

j=0 ‖fj‖Hs‖gj‖BMOA � ‖f‖Hs . It follows using the equivalent assertion (iv) of
Theorem 2.7 that

(∫
� n

∣∣f(z)∣∣pdμ(z))1/p

=

⎛
⎝∫

� n

∣∣∣∣∣∣
∞∑
j=0

fj(z)gj(z)

∣∣∣∣∣∣
p

dμ(z)

⎞
⎠

1/p

≤
∞∑
j=0

(∫
� n

∣∣fj(z)gj(z)∣∣pdμ(z)
)1/p
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=
∞∑
j=0

(∫
� n

∣∣fj(z)∣∣s∣∣fj(z)∣∣p−s∣∣gj(z)∣∣pdμ(z)
)1/p

�
∞∑
j=0

(∥∥fj∥∥sHs

∥∥fj∥∥p−sHs

∥∥gj∥∥pBMOA

)1/p

=
∞∑
j=0

∥∥fj∥∥Hs

∥∥gj∥∥BMOA
�
∥∥f∥∥Hs

.

(2.40)

Now we prove that (ii)⇒(i). That (ii) holds implies in particular that for any f ∈ Hs(� n) and
any g ∈ BMOA,

∫
� n

∣∣f(z)∣∣p∣∣g(z)∣∣pdμ(z) ≤ K2
∥∥f∥∥pHs

∥∥g∥∥pBMOA. (2.41)

We observe with Corollary 2.4 that (2.41) is equivalent in saying that for any g ∈ BMOA, the
measure

dμ̃(z) =

∣∣g(z)∣∣p∥∥g∥∥pBMOA

dμ(z) (2.42)

is a (p/s)-Carleson measure or equivalently,

sup
a∈� n

∫
� n

Ka(z)(p/s)
∣∣g(z)∣∣pdμ(z) ≤ K3

∥∥g∥∥pBMOA. (2.43)

By Theorem 2.5, the latter is equivalent to

sup
a∈� n

(
log

4
1 − |a|

)p ∫
� n

Ka(z)(p/s)dμ(z) ≤ K4, (2.44)

which is equivalent to (i). The proof is complete.

3. Some Applications

We provide in this section with some applications of p-Carleson measures of the above
Hardy-Orlicz spaces to the boundedness of multiplication operators, composition operators,
and Cesàro integral-type operators. Let us first introduce the generalized Bergman spaces in
the unit ball. We recall that for f ∈ H(� n), its radial derivativeRf is the holomorphic function
defined by

Rf(z) =
n∑
j=1

zj
∂f

∂zj
(z). (3.1)
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Let α ∈ �, 1 ≤ p < ∞ with α + p > −1. The generalized Bergman space Ap
α(� n ) consists of

holomorphic function f such that

∥∥f∥∥pp,α :=
∫
� n

∣∣Rf(z)∣∣p(1 − |z|2
)α+p

dV (z) < ∞. (3.2)

Clearly,Ap
α(� n ) is a Banach under

∥∥f∥∥pp,α :=
∣∣f(0)∣∣ + ∫

� n

∣∣Rf(z)∣∣p(1 − |z|2
)α+p

dV (z) < ∞. (3.3)

These spaces have been studied in [15]. When α > −1, the space Ap
α(� n ) corresponds to the

usual weighted Bergman space which consists of holomorphic function f in � n such that

∥∥f∥∥pp,α :=
∫
�n

∣∣f(z)∣∣p(1 − |z|2
)α

dV (z) < ∞. (3.4)

For α = −1 and p = 2, the corresponding space is just the Hardy spaceH2(� n ).
Let u be a holomorphic function in � n . We denote by Mu the multiplication operator

by u defined on H(�n ) by

Mu

(
f
)
(z) = u(z)f(z), f ∈ H(� n ). (3.5)

We recall that if ϕ is a holomorphic self map of � n , then the composition operatorCϕ is defined
on H(� n) by

Cϕ

(
f
)
:= f ◦ ϕ. (3.6)

For u a holomorphic function in � n , the weighted composition operator uCϕ is the
composition operator followed by the multiplication by u. That is,

uCϕ

(
f
)
= Mu

(
f ◦ ϕ) = u

(
f ◦ ϕ). (3.7)

For b a holomorphic function in �
n , the Cesàro-type integral operator Tb is defined by

Tb
(
f
)
(z) =

∫1

0
f(tz)Rg(tz)

dt

t
, g, f ∈ H(� n). (3.8)

Combining this operator with the weighted composition operator, we obtain a more general
operator Tu,ϕ,b = Tb(Mu(f ◦ ϕ)) = Tb(u(f ◦ ϕ)) given by

Tu,ϕ,b
(
f
)
(z) =

∫1

0
u(tz)

(
f ◦ ϕ)(tz)Rg(tz)dt

t
, f ∈ H(� n ). (3.9)
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When ϕ(z) = z for all z ∈ � n , we write Tu,ϕ,b = Tu,b. The multiplication operator, the composi-
tion operator, the Cesàro-type integral, and their products have been intensively studied by
many authors on various holomorphic function spaces. We refer to the following and the
references therein [11, 12, 16–30]. As an application of the characterization of p-Carleson
measures for the Hardy-Orlicz spaces of the previous section, we consider boundedness
criteria of the above operators fromHardy-Orlicz spaces to (generalized)weighted Bergman
spaces and weighted BMOA spaces in the unit ball. We have the following result.

Theorem 3.1. Let 0 < s ≤ 1, 1 ≤ p < ∞ and, α > −1. Then uCϕ is bounded fromHs(� n) toAp
α(� n )

if and only if

sup
a∈� n

(
log

4
(1 − |a|)

)p ∫
� n

⎛
⎜⎝

(
1 − |a|2

)n
∣∣1 − 〈ϕ(z), a〉∣∣2n

⎞
⎟⎠

(p/s)

|u(z)|p
(
1 − |z|2

)α
dV (z) < ∞. (3.10)

Proof. Clearly, that uCϕ is bounded fromHs(� n) to Ap
α(� n ) is equivalent in saying that there

is a constant C > 0 such that for any f ∈ Hs(� n ),

∫
� n

∣∣f ◦ ϕ(z)∣∣p|u(z)|p(1 − |z|2
)α

dV (z) ≤ C
∥∥f∥∥pHs

. (3.11)

Let us write dVα(z) = (1− |z|2)αdV (z), dVα,u(z) = |u(z)|pdVα(z). If μ = Vα,u ◦ϕ−1, then an easy
change of variables gives that (3.11) is equivalent to

∫
� n

∣∣f(z)∣∣pdμ(z) ≤ C
∥∥f∥∥pHs

. (3.12)

The latter inequality is equivalent in saying that the measure μ is a p-Carleson measure for
Hs(� n). It follows from Theorem 2.9 and the equivalent definitions in Theorem 2.7 that (3.11)
is equivalent to

sup
a∈� n

(
log

4
(1 − |a|)

)p ∫
� n

⎛
⎜⎝
(
1 − |a|2

)n
|1 − 〈w, a〉|2n

⎞
⎟⎠

p/s

dμ(w) < ∞. (3.13)

Changing the variables back, we finally obtain that uCϕ is bounded fromHΦs(� n) toAp
α(� n )

if and only if

sup
a∈� n

(
log

4
(1 − |a|)

)p ∫
� n

⎛
⎜⎝

(
1 − |a|2

)n
∣∣1 − 〈ϕ(z), a〉∣∣2n

⎞
⎟⎠

(p/s)

|u(z)|p
(
1 − |z|2

)α
dV (z) < ∞. (3.14)

The proof is complete.
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Remarking that one has

R
(
Tbf
)
(z) = f(z)Rb(z) for any g, f ∈ H(� n ), (3.15)

we prove in the same way the following result.

Theorem 3.2. Let 0 < s ≤ 1, 1 ≤ p < ∞ and α ∈ � with α + p > −1. Then Tu,ϕ,b is bounded from
Hs(� n) to Ap

α(� n) if and only if

sup
a∈� n

(
log

4
1 − |a|

)p ∫
� n

⎛
⎜⎝

(
1 − |a|2

)n
∣∣1 − 〈ϕ(z), a〉∣∣2n

⎞
⎟⎠

p/s

dμ(z) < ∞, (3.16)

where dμ(z) = |u(z)|p|Rb(z)|p(1 − |z|2)α+pdV (z).
Let us consider now the operator Tu,b. We have the following:

Theorem 3.3. Let 0 < s ≤ 1, 0 ≤ p, q < ∞, and α > −1. Let 1/ρ(t) = (log(4/t))p(loglog(e4/t))q.
Then Tu,b is bounded fromHs(� n) to BMOA(ρ), if and only if

sup
a∈� n

(
log

4
1 − |a|

)2(p+1)
(
loglog

e4

1 − |a|

)2q ∫
� n

⎛
⎜⎝
(
1 − |a|2

)n
|1 − 〈z, a〉|2n

⎞
⎟⎠

1+(2/s)

dμ(z) < ∞, (3.17)

with dμ(z) = |u(z)|2|Rb(z)|2(1 − |z|2)dV (z).

Proof. We recall that a function h is in BMOA(ρ) if and only if the measure |Rh(z)|2(1 −
|z|2)dV (z) is a (1/ρ2)-Carleson measure (see [31]). That is

sup
a∈� n

(
log

4
1 − |a|

)2p
(
loglog

e4

1 − |a|

)2q ∫
� n

(
1 − |a|2

)n
|1 − 〈z, a〉|2n

|Rh(z)|2
(
1 − |z|2

)
dV (z) < ∞.

(3.18)

It follows that Tu,b is bounded fromHs(� n) to BMOA(ρ) if and only if for any f ∈ Hs(� n ),

sup
a∈� n

(
log

4
1 − |a|

)2p
(
loglog

e4

1 − |a|

)2q ∫
� n

(
1 − |a|2

)n
|1 − 〈z, a〉|2n

∣∣f(z)∣∣2dμ(z) ≤ C
∥∥f∥∥2Hs

, (3.19)
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dμ(z) = |u(z)|2|Rb(z)|2(1 − |z|2)dV (z). By the equivalent definition in Theorem 2.7, this is
equivalent in saying that for any f1 ∈ BMOA, f2 ∈ LMOA, and any g ∈ Hm(� n),

∫
� n

∣∣f(z)∣∣2∣∣g(z)∣∣m∣∣f1(z)∣∣2p∣∣f2(z)∣∣2qdμ(z) ≤ C
∥∥f∥∥2Hs

∥∥f1∥∥2pBMOA

∥∥f2∥∥2qLMOA

∥∥g∥∥mm, (3.20)

which is equivalent in saying that the measure

dμ̃(z) =

∣∣f1(z)∣∣2p∣∣f2(z)∣∣2q∥∥f1∥∥2pBMOA

∥∥f2∥∥2qLMOA

∣∣g(z)∣∣m∥∥g∥∥m
m

|u(z)|2|Rb(z)|2
(
1 − |z|2

)
dV (z) (3.21)

is a 2-Carleson measure for Hs(� n). It follows from the equivalent definitions of Theorems
2.7 and 2.9 that the latter is equivalent to

sup
a∈� n

(
log

4
1 − |a|

)2(p+1)
(
loglog

e4

1 − |a|

)2q ∫
� n

⎛
⎜⎝
(
1 − |a|2

)n
|1 − 〈z, a〉|2n

⎞
⎟⎠

1+(2/s)

dμ(z) < ∞. (3.22)

The proof is complete.

The methods used in this text are quite specific to the case considered here, that is,
the embedding Iμ : Hs(� n) → Lp(� n). We remark that even in the case 0 < s ≤ p < 1, the
condition (i) of Theorem 2.9 is still necessary. The proof given here does not allow to say if
it is sufficient. In general, the characterization of those positive measures μ on �

n such that
the embedding map Iμ : HΦ1(� n ) → HΦ2(� n ) (Φ1 /=Φ2 if Φ1 and Φ2 are convex growth
functions) is bounded, is still open.
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