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The authors study the coefficient condition for the class §, defined as the family of analytic

functions f, f(0) = 0and f'(0) = 1, which satisfy R[(1-a) f'(z)+a(1+(zf"(2))/(f'(z)))] > a, z€ E,
where «a is a real number.

1. Introduction

Let 4 be the class of functions of the following form:
f(z)=z+ > a,7", (1.1)

which are analytic in the unit disc E = {z : |z| < 1}, and let S be the subclass of <# consisting
of functions which are univalent in E. A function f € &4 is said to be close to convex in the
open unit disc E if there exists a convex function g (not necessarily normalized) such that

<({; 8) >0, z€E. (1.2)

For fixed real numbers a, let §), denote the family of functions f in < which satisfy

fR[(l a)f' (z)+(x<1+ ]{,,;())>] >a, z€E. (1.3)
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In 2005, V. Singh et al. [1] established that, for 0 < a < 1, functions in $, satisfy
Rf'(z) > 0in E and so are close to convex in E.

In [2], Noonan and Thomas defined the Hankel determinant H,(n) of the function f
forg>1landn>1by

an  Ap+l - Opag-1
An+l  Anps2 " An+q
Hy(n) =1| . o | (1.4)
An+g-1 Qn+q *°° An+2(g-1)

The determinant has been investigated by several authors with the subject of inquiry
ranging from rate of growth of H,(n) asn — oo, to the determination of precise bounds on
H,(n) for specific q and n for some special classes of functions. In a classical theorem, Fekete
and Szego [3] considered the Hankel determinant of f € Sforg=2andn =1

|41 a2
H>(1) = 0 as| (1.5)
The well-known result due to them states that if f € S, then
3-4u if <O,
2 2y .
'[13—/1(12 |§ 1+2exp Tox ifo<pu<l, (1.6)
4u-3 ifu>1,

where a; = 1 and yu is a real number. In the present paper, we obtain a sharp bound for
H>(2) = |azas — a3| when f € §,.
2. Preliminary Results

We denote by P the family of all functions p(z) given by
p(z) =1+ciz+cz?+--- (2.1)

analytic in E for which R{p(z)} > 0 for z € E. It is well known that for p € P, |ck| < 2 for each
k.

Lemma 2.1 (See [4]). The power series for p(z) given in (2.1) converges in E to a function in P if
and only if the Toeplitz determinants

2 c1 Cr ot Cy

C-1 2 1 o Cp-1
D,=]. . (22)

Cn Copyl Copya o0 2
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n=1,2,3...and c_i = ¢k are all nonnegative. They are strictly positive except for

p(2) = Ypupo(ez),  pi>0, b real,
k=1

and ty #t; for k # j; in this case, D, > 0 forn <m—1and D,, = 0 for n > m.

Lemma 2.2 (See [5, 6]). Let p € P. Then

2¢y = C12 + x<4 - C12>/

4es = ¢1° + 2xcy <4 - c12> - x2 <4 - c12> + 22(1 - |x|2> <4 - c12>

for some x, z such that |x| <1 and |z| < 1.

3. Main Result

Theorem 3.1. Let a, 0 < a < 1, be a real number. If f € §,, then

4(1-a)?
5 —( Dt)z 0<a<a,
|a2a4—a3 |§ 9(1+a)
K(a) ap<a<l,

where ap = 0.4276891324 ... is the root of the equation 10a® — 5a* + 12a — 5 = 0 and

(1-a)

[10a3 - 502 + 12a - 5]

K(a) [32(1 +2a) — %

T 72(1+ )2 (1 + 2)

Proof. Since f € §,, it follows from (1.3) that there exists a function p € P such that

Zf”(Z)
f'(2)

1-a)f'(z) + ac<1 +

Equating coefficients in (3.3) yields

2a; = (1-a)cy,

B3az(1+a) = (1-a)c +a(l —a)’ci?,

) =a+(1-a)p(z).

4a,(14+2a)=(1-a)cs + 10

1+a)

[4a° — 6a* — 18a + 29a? — 20a — 1]

3a(l - a)? a(l-a)’*Qa-1) ,

(1+a) -

(2.3)

(2.4)

(3.1)

(3.2)

(3.3)

(3.4)
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Thus, we can easily establish that
(1-a)’

_ o2l 2 _ 2 _ _ 2
|a2a4 as | 72(1+0‘)2(1+20‘)>< '{9(1+a) cic3 —8(1+2a)cy” —a(1 — a)(11 = Ba)cr "¢

+a(l - a)2<2(x2 +a- 9)014} |

(3.5)
Using (2.4), in view of Lemma 2.2, we obtain that
|a2a4 - a32|

(-2
C72(1+ a)2(1 + 2a)

{%4 [<9¢x2+2a + 1) +da <2a2+a - 9) (1 -a)2+2a(1 - a)(11 - 5a)]

+ %(4 - c12>c12x[<9a2 +2a + 1) +a(l-a)(11 - 5a)]
+ ;(1 + a)2<4 - c12>01 (1 - |x|2>z - }sz (4 - c12>

x [32(1 +2a) + ¢ <90c2 +2a + 1)] }

(3.6)

Sincep € P, so|ci| < 2. Letting ¢1 = ¢, we may assume without restriction that ¢ € [0, 2].
Thus, applying the triangle inequality on (3.6), with p = |x| < 1, we obtain

|a2a4 - a32|

- [
T 7201+ @)’ (1+2a) | 4

[<9a2+2a+1> +4a<2¢x2+a - 9) (1-a)*+2a(1 - a)(11 - 5a)]
+% <4 - c2>c2p[<9zx2 +2a + 1> +a(l-a)(11 - 5a)]
+§(1+a)2 (4 - c2>c + }1(4 - CZ) (c-2)p°

x[c(9a? +2a+1) ~16(2a + 1)] } = F(p).
(3.7)
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Differentiating F(p), we get the following:

! _ (1 - a)z
Fp) = 72(1 + a)2(1 + 2a)

{%(4 - c2>c2[<9zx2 +2a + 1) +a(l-a)(1l - 5a)]
(3.8)

+%<4 - c2>(c -2)p [c<9zx2 +2a + 1) -16Q2a + 1)] }

Using elementary calculus, one can show that F'(p) > 0 for p > 0. It implies that F is
an increasing function, and, thus, the upper bound for F(p) corresponds to p = 1, in which
case

(1-a)’
72(1 + a)*(1 + 2a)

F(p) <
x {%4[4a(2a2 +a —9)(1 — a)? —2<9zx2 +2a+ 1)]

+c? [3<9a2 +2a+ 1) +2a(1 - a)(11 - 5a) — 8(2a + 1)] +32Qa + 1)} =G(c).

(3.9)
Then,
_ 2
G'(c) = @ 2"‘) c{2c2 [2a<2a2 ta- 9) (1-a)® - <9a2 +2a+ 1)]
+2 [3<9a2 +2a+ 1) +2a(1 - a)(11 - 5a) — 8(2a + 1)] }
Setting G'(c) = 0, since 0 < ¢ < 2, we have
—(10a® - 5a? + 12a —
@ =\/ (10a® - 5a2 + 12a - 5) (3.11)
4a5 — 6a* — 18a3 + 2942 — 20a — 1

provided a > ap, where ag = 0.4276891324 . ... is the root of the equation 10a® — 5a% + 12a -5 =
0. ]

Case 1. When 0 < a < ap, then the maximum value of G(c) corresponds to ¢ = 0. Therefore,

we have

~ 4(1l-a)
Srgl?éG(c) =G(0) = ) - a)z'

(3.12)
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Case 2. When ap < a < 1, the maximum value of G(c) corresponds to ¢ = ¢. Therefore, we
have

max G(c) = G(co) = K(a), (313)
where K(a) is given by (3.2). This completes the proof of the Theorem.

Setting a = 0 in above theorem, we get the following result of Janteng et al. [7].

Corollary 3.2. If an analytic function f is such that R{f'(z)} >0, z € E, then

|a2a4 - a32| < - (3.14)

O| W~

The result is sharp.
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