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ABSTRACT. Asymptotic formulae for the solutions of nonlinear functional differential system are
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1 Introduction

Let q > 0 be a constant and let Co C([-q, 0], R") be the Banach space of continuous functions

" I-q, 0] - R" equipped with the norm

For y C([t-q,t],R"), we denoteby yt the element of Co defined by

yt(s) y(t + s), -q<s<O.

We will also denote, for y E C([t- 2q, t],R"),y the functional defined by

yt(s) y(t + s), -2q <_ s <_ O

for which we consider the norm:

Consider F" [0, o) x Co R" and g" [0,) x R" R" two continuous functions satisfying

the closeness condition

(C) There exists a continuous function A’[O,) [0, o) such that

IF(t, ) g(t, (0))1 _< x(t)ll’ll (1.1)

for any continuously differentiable function " [-q, O] R’.

We Remark that (1.1) holds with ]IV’]] and not with 1]]]. See [15].
We wish to study the relation between the solutions of the functional differential system
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and the solutions of the ordinary differential system

x’(t) =g(t,x(t)) (1.3)

For system (1.3) we suppose that the following condition is fulfilled"

(G) The derivative of g’g, g,(t,x) exists and is continuous on [0, o) Rn. System (1.3)is

an h-system in variation with radius of attraction $, where h’[0, o) (0, oc) is a continuous

function.

We recall that a system (1.3) or its null-solution is an h-system in variation [5, 6] with radius of

attraction $, if there exist a continuous function h’[0, o) --, (0, e) and constants K >_ and

$>0 such that for 0_< IXol< we have

I’(t, to, xo)l <_ Kh(t)h(to)-1 ( > o > o),

where (t, to, Xo) is the fundamental matrix of the variational system

z’(,) .(t, (*,*0,0))(*)

such that q(t, to, x0) Id (the identity matrix). Here x x(t, to, xo) represents the solution x

passing throught the point (to, x0).
This problem appears in Bellman [1] who proposed to investigate conditions on the lag r to

know the behavior of solutions of the functional differential equation

u’(t) q- au(t r(t)) 0, a constant (1.4)

when r(t) --, 0 as -- o. In [2], Cooke proves that if a > 0 and r E 1([0, o)) then any solution

u of (1.1) satisfies

for some constant c. In [3], Cooke generalizes this result to linear systems of functional differen-

tial equations asymptotically autonomous. Grossman and Yorke [4] consider the one-dimensional

functional differential equation

u’(t) a(t)u(t r(t)).

In [10] we have extended some of these results to the scalar functional equation

u’(t) a(t)u(t r(t, u))
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with a lag of implicit type, generalizing the case

’(,) -.(t- (.(,)))

studied by Cooke [4]. See also [12, 14]. We note that in all of these cases the estimate (1.1) does

no hold with I111 instead of II’ll-
In this paper, for the nonlinear problem (1.2), we obtain the relation

y x + h. 5(1),

between the solutions y of (1.2) and x of (1.3), where 5(1) is a convergent function as oo.

We will prove also that the nonlinear functional system (1.2) is an h-system (see Remark 1).

As an application we get asymptotic formulae of the solutions of second order delay equation

[11, 13]

y" + c(t)(t- r(t)) 0 (1.5)

in terms of the solutions of

extending ordinary results [7, 8].

z + c(t)z O, (1.6)

2 Main Results

In this section we get asymptotic formulae for the solutions of system (1.2). We denote by y

y(t;to, yto) a solution y of Eq. (1.2) with initial function Yt0 6 Co.

Theorem 1 In addition to conditions (C} and (G),assume:

(i} There exists a continuous and nonnegative function c(t) such that

IF(t, )1 < c(t)llll

for all > O and all qa 6 Co.

(iO (t)A(t)ll,ll L,([O, oo)), where (t)= h(t)-’llh’ll.

Then for any solution y y(t;to, Yto) of (1.2) with Ily,oll there exists a solution x of
(1.3) such that

y=x+h.5(1),

where 5(1) is a function defined on [to, oo) which converges as ---, oo.
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Proof. By condition (G), for [y(t0)l _< i, the solution x x(t;to, y(to)) of the ordinary system

(1.3) is well defined and satisfies [x(t;to, Y(to))] <_ K[y(to)lh(t)h(to) -1 for > to > 0 and K >_

a constant. Now, by (i), the solution y y(t, to, Yto) of system (1.2) is defined on [to- q, cx). By

the formula of variation of the constants, we have for > tl > to

or

y(t) x(t;tl,y(tl)) + ((t,s,y(s))[F(s,y,) g(s,y(s))]ds

Then, by (C) and (G)

[y(t)[ _< K[y(tl)[h(t)h(tl)-1 + Kh(t) h(s)-IA(s)[[y’[[ds

h(t)-l]y(t)[ <_ Kh(t)-lly(t)[ + K A(s)h(s)-a[[y’[Ids.

Thus z(t) h(t)-a[y(t)[ satisfies

(2.1)

z(t) < Kz(tl) + KA(s)h(s)-[[y:[[ds

For u e [-q, 0] and s _> ta, by (i), we have

(2.2)

for some v v(s) e [s- 2q, s]. Further

()-’lu(,)! ()-’()z(,) < Z()().

Thus

h()-allY:ll < ()llcllm(), (2.3)

where re(t) max,_2q_<,_<, lz(s)l. Substituting this into (2.2) we obtain

z(t) <_ Kz(t) + K(s)(s)llclim(s)ds. (2.4)

Since the right member of (2.4) is increasing as a function in t, for > t + 2q we have

re(t) <_ gz(tl)+ ftt gr(s)(s)llcs[Im(s)ds. Then by (ii), Gronwall’s inequality implies that m and

hence z are bounded. Moreover, for any fixed O(t,s,y(s))[F(s, ys)-g(s,y(s))] e L([0,))
as a function of s because from (C), (G), (ii) and (2.3) we get

I(t,,y())[F(,y) (,y())ll <
<_ Klh(t)llc, llA(s)(s)m(s) <_ K2h(t)A(s)3(s)llc,]l Lx([0,)).

Then the integral in (2.1) can be written as h(t). 5(1), where 5(1) denotes a function of

which has a limit as . The proof is complete.
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Remark 1. Since we have proved h(t)-lly(t)] < rn(t) <_ KK, Iz(t,) KI’f,h(t)-ly(t,)] for >_

t _> to and K1 a positive constant, we have also established

ly(t)l < Kh(t)h(tl)-ly(t)l,(t > tl >_ to),K constant

that is, the nonlinear functional system (1.2) is also an h-system.

Theorem includes the interesting type of equations as:

’ (t,(t) (t- (t))),

where r "[0, o) [0, q] is a continuous function.

For this equation, system (1.3) becomes z’ 0 and (1.1) becomes

(2.5)

IF(t, )] <_ r(t)]]’]l (2.6)

Thus here h 1, _= and we have

Corollary 1 Assume that (i) of Theorem 1 and (2.6) hold. If r(t)-I1,11 Ll([O, cx)), then any

solution y y(t; to, Y,o) of (2.5) there ezists a constant vector v such that

y y(to) + v + o(1)

as -- oc. In particular, any solution of (2.5) is asymptotically constant.

Proceeding as in the proof of the Theorem 1, with a Bihari’s inequality, Corollary can be

obtained for the nonlinear equations

y’= y3(t) y3(t- r(t)) or y’ [y(t) y(t r(t))]3

since in this cse we have an estimate of the type:

IF(t, g)l < Kr(t)w(llg’ll),

where w "(0, oo) (0, oo) is a continuous, nondecreasing function satisfying w(0) >_ 0 and

(2.7)

ds
/ (1

o (2.8/

Thus from lemma 1, [6] we obtain:

Corollary 2 Under the conditions of Corollary 1 with (2.7-2.8} instead of (2.6}, there ezists a

constant p > 0 such that any solution y y(t;to, y,o) with Iiy,0ll <_ p i dfid o [t0-q,)

and

y y(to)+ v(to) + o(1), oc (2.9)
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where v V(to) is a constant vector such that v(to) -o 0 as to ---* oo. Moreover, p p(to)

verifies p(to) cxz as to cxz. Then if to is chosen lar9e enou9h for any initial function o
there exists to large enough such that the solution y y(t, to,) verifies the above asymptotic

formulae.

Some simple consequences are the following"

Corollary 3 If, for h(t) exp(f a(s)ds), allat[lh(t)-l]h’llr LI([O, oz)), then the solutions of
the scalar equation

y’(t) a(t)y(t- r(t)),

satisfy

y(t) exp( a(s)ds)[c + o(1)],

Thus, in particular, the solutions of

c constant.

y’(t) -ty(t- e-z’)

and

y’(t) ty(t- r(t)),t2r(t) e LI([O, )),

satisfy respectively,

y e /[c+ o(1)], c constant

and

y eric + o(1)], c constant.

Now, an explicite nonlinear scalar example is shown. Let g(t,x) -etx3 in equation (1.3):

’(t) -e’z(t)

This ordinary system has the solutions

x(t, to, xo) Izol
(z + ;=o(, ,o))/

whence it is an h-system with h(t) e-t/2. Then, Theorem implies that the solutions y

y(t, to, Yto) of the scalar equation

y’(t) =-ety3(t- e-at),a > 2,

satisfy

y(t) x(t) + e-t/ 5(1),

for large enough.
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Corollary 4 If A zs a stable matrix, then any solution of

y’= Ay(t- r(t)), r E LI([O, cx3))

satzsfies

y etAxo + e-at. 5(1)

where xo is a constant vector, 0 > > maxReA .for an eigenvalue of A and 5(1) is a

convergent vector as --
When (1.3)is a linear and an h-system (see [6])we have:

Corollary 5 If system

x’= A(t)x (2.10)

is an h-system and rh(t)-lllhtllzllAIlllAtll LI([0, o)), then for any solution y of

y’= A(t)y(t- r(t))

satisfies

y=Oy0+hS(1) as --, o

where yo is a constant vector and d) is a fundamental matrix of (2.10).

3 An application" Asymptotic formulae for the solutions

of (1.5)

Consider the functional differential equation

’ + (t)(t- (t)) o (3.1)

where c: [0, oo) --, R and r: [0, cx) -- [0, q] are continuous functions.

As usually, a solution of eq. (3.1) is a function y y(t; to, o, ) such that y satisfies the

delay-differential equations (3.1) and

Yto fl, Yto =’
where , e C([-q, 0], R).

For r r(t) small, in some sense which will be precised, we hope that the solutions y of Eq

(3.1) behave asymptotically as the solutions z of the ordinary differential equation
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z + c(t)z(t) O. (3.2)

We will prove that any solution y of Eq (3.1) are defined on all of I [0, c) and it satisfies

as

Y (11 "" O(1 ))Z - (5 -- O(1))Z (3.3)

y’ (61 + o(1 ))z / ( + o(1))z

where {za, z} is a fundamental system of solutions of Eq (3.2) and {, :} are constants. Let

under the condition

y(t) A(t)zx(t) + B(t)zz(t) (3.4)

A’z + B’z 0 (3.5)

Then, we have y’ Az + Bz and y" A’z + B’z2’ + Az1" + Bz." Thus y" A’z’ + B’z’
c(Azl + Bz ). Therefore

A’z’ + B’z’ c(t)[y(t) y(t- r(t))].

Solving Eqs. (3.5) and (3.6), we get

(3.6)

A’ -w-’z c(t)[y(t)- y(t- r(t))]

B’ w-’zl c(t)[y(t) y(t r(t))]
where w is the Wronskian of system {z,zz}. Now, we have

ly(t) y(t r(t))l ft_,(t)) y’(s)dsl f_,(o y’(t -( s)dsl

(3.7)

Y_,oy(s)dsl f_,(o(Az +
Thus

iy(t) y(t- r(t)) < r(t)max IIz:,ll" (IIA, + IIB, II).
t=l,2

Then, by system (3.7), the vector z (A,B) satisfies a system of functional differential

equations of the type

F(t, zt) (3.8)X

satisfying the conditions (i) F’IxCo R is a continuous function (ii) IF(t,o)l _< (t)lloll, (t,)e

IxCo.
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In this point, we need the following Theorem concerning the asymptotic behavior of system

(.s).

Theorem 2 Assume the above cond,tions (i) and (ii), where A 6 C(I,R) satisfies (t) 6 LI(I).

Then the solutions with continuous initial conditions of Eq (3.8) are defined on all of I and they

converge as

The proof of this theorem is omitted because it is similar to that of Theorem 1.

Thus, we get:

Theorem 3 Assume that r(t)lc(t)]. ]z,(t)l. IIz:,l] 6 LI(I) 1,2.

y(t; to, Yto, Yo) satisfies formulae (3.3)

Then any solution y

Proofi The application of Theorem 2 implies that A and B converge as -- o. The formulae

(3.3) follow from (3.4)and y’= Az + Bz’.
So, we have

Corollary 6 If r 6 LI(I), then any solution y of the functional differential equation

satisfies for o,

y" + ay(t r(t)) O, a > 0 constant

y (61 + o(1))sinat + (69_ + o(1))cosat

y’ a(61 + o(1))cosat a(6z + o(1))sinat

More generally, using Green-Liouville formulae ([7]) for the solutions of (3.2) we get:

Corollary Z If c(t) C2(I), c > 0 and c-3/c", r(t) I/’(t)lll/’ll c L(I) then any solution

y of the functional differential equation

y" + c(t)y(t- r(t)) 0

satisfies for oo

y c(t)-/’[(61 + o(1))ezp(i f’ca/(s)ds) + (6 + o(1))exp(-i f’c/(s)ds)]

y’ c(t)’/’[i(6 + o(1))exp(i ftc’/(s)ds) + i(6 + o(1))exp(-i ftc/(s)ds)]

For more related results, see [9].
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