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ABSTRACT. For a Tss-ordered space, certain families of maps are designated as “defining fami-
lies.” For each such defining family we construct the smallest T,-ordered compactification such that
each member of the family can be extended to the compactification space. Each defining family
also generates a quasi-uniformity on the space whose bicompletion produces the same T;-ordered
‘compactification.
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INTRODUCTION.

Let X be a Tjss-crdered space, and let CI*(X) be the sct of all increasing, continuous maps
from X into [0,1]. A subset ® of CI*(X) which induces both the weak order and weak topology
on X is called a defining family for X. For each such defining family ®, we construct the smallest
Tz-ordered compactification Kg with the property that each member of ¢ can be extended to Ke.
If ®; and ®, are two defining families for X such that &; C ®,, then K¢, < Ka,. For each defining
family @, there is a largest defining family & such that K¢ = K. Those defining families which
are ® for some defining family ® are called mazimal defining famillies, and if ® and ¥ are two
maximal defining families, K¢ < Ky iff ® = U. The largest defining family for X is CI*(X), and
if ® = CI"(X) then Ky is the Nachbin (or Stone-Cech ordered) compactification [2].

Each defining family ® also generates a quasi-uniformity V¢ on X (related to the “usual” quasi-
uniformity W on [0, 1]) which is Ty and totally bounded. The bicompletion of (X, Ve) (as defined
in [1]) yields a uniform ordered space which, in turn, gives the compactification Ke¢. The maximal
defining family & is precisely the set of all quasi-uniformly continuous maps from (X, Ve) into
([0, 1], W).

1. PRELIMINARIES.

If X is a set, we denote by F(X) the set of all (proper) filters on X and by UF(X) the set of all
ultrafilters on X. A non-empty collection G of subsets of X is called a grillon X if: (1) 0 € G; (2)
AeGand AC Bimplies B€ G; (3) AUB € G implies A € G or B € G. With every F € F(X), we
associate the grill v(F) = {4 C X : X \ A € F}; equivalently, y(F) is the union of all ultrafilters
finer than F.

Let (X, <) be a poset; A subset A C X is increasing (respectively, decreasing) if z € A and
z < y (respectively, y < z) implies y € A. If (X, <) and (Y, <*) are posets, then a mapping f :
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(X, <) = (Y, <*) is increasing (respectively, decreasing) if ¢ < y implies f(z) <* f(y) (respectively,
fly) £ f(2)).

An ordered space (X, 7, <) consists of a poset (X, <) and a topology 7 on (X, <) which is convez
(meaning that the collection of all T-open sets which are either increasing or decreasing is a subbase
for 7). Usually an ordered space (X, 7, <) will simply be denoted by X. The closed unit interval
[0,1] with its usual order and topology is designated by I. For any ordered space X, let CI*(X)
(respectively, C D*(X)) be the set of all continuous increasing (respectively, decreasing) maps from
X into I. More generally, for ordered spaces X and Y, CI(X,Y) represents the set of all continuous,
increasing functions from X into Y.

An ordered space X is said to be Ty-ordered if the order “<” is closed in X x X. A T,-ordered
space X which has both the weak order (see Condition (W,) below) and weak topology induced by
CI*(X) is said to be Tss-ordered (or completely regular ordered in the terminology of [2]). Some
well-known characterizations of T3 s-ordered spaces are summarized in the following proposition.

PROPOSITION 1.1 The following statements about an ordered space X are equivalent.

(1) X is T3 s-ordered.
(2) X is a subspace of a compact, T;-ordered space.
(3) X satisfies the following conditions:

(i) If z € X, A is a closed subset of X, and z ¢ A, then thereis f € CI*(X) and

g € CD*(X) such that f(x) = g(z) =0 and f(y) Vg(y) =1, for all y € A;

(ii) If z £ y in X, there is f € CI*(X) such that f(y) =0 and f(z) = 1.

(4) The order and topology for X are induced by some quasi-uniformity W on X (i.e., "W is the
order for X and the topology of X is the uniform topology of the uniformity W v W-1).

Every T3 s-ordered space X has a largest Ty-ordered compactification 8,X called the Nachbin
compactification, which can be constructed by embedding X in the “ordered cube” I€T(X) | with
the product order and topology.

Let X be an ordered space. If & is any subset of CI*(X) such that X has the weak order
and the weak topology determined by @, then ® is called a defining family for X. More precisely,
® C CI*(X) is a defining family if the following conditions are satisfied:

(W,) For any 7 € UF(X), F =z in X iff f(F) — f(z)in I, for all f € ®.
(W,) For any (z,y) € X x X,z <y in X iff f(z) < f(y) in I, for all f € ®.

Some rather obvious remarks about defining families are summarized in the next proposition.

PROPOSITION 1.2 Let X be an ordered space.

(1) X is T3 s-ordered iff X allows at least one defining family. In particular, CI*(X) is a
defining family for every T3 s-ordered space.

(2) If &; C &, C CI*(X) and ®, is a defining family for X, then ®; is also a defining family
for X.

2. THE COMPACTIFICATION K.

Let X be a T3s-ordered space. If ¥ € UF(X) and f € CI*(X), there is a unique point ar; in
I such that f(F) — azys. For any a € I, let V(a) denote the neighborhood filter at a. If @ is a
defining family for X and F € UF(X), we define the filter Fo = V{f~'(V(ary)): f € ®}. Note
that if F — z in X, then ar; = f(z) for all f € ®, and in this case F¢ is simply the neighborhood
filter at z.

Continuing with the assumptions of the preceding paragraph, let Xo = {y(Fs) : F € UF(X)}
be the set of grills associated with the filters Fo. If ¥ € X¢ and F,G € UF(X) are such that 7 C v
and G C 7, then ar; = agy, for all f € ®. It therefore follows that, for each f € ®, the function
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fo : Xo — I, defined by fo(vy) = ar,;, where F any ultrafilter that is a subset of v, is well-defined.
If ig : X — Xg is defined by i¢(z) = v(&¢), where z is the fixed ultrafilter generated by {z}, then

clearly ¢4 is an injection and the diagram below commutes for every f € .
)"¢ &‘

id,I
/

X

Let X¢ be equipped with the weak order and weak topology induced by {fs : f € ®}. Then

I

i¢ is an ordered space embedding (i.e., i¢ is topological embedding, and z < y & is(z) <o 1a(y),
where <4 denotes the order of Xg).

THEOREM 2.1 Let X be a T3 s-ordered space and @ a defining family for X. Then (Xs,¢) is
a Ty-ordered compactification of X, and each f € ¢ has a unique, continuous, increasing extension

to X¢ such that the diagram below commutes.
Xo ~_fo
idr] \ I
/
X

PROOF. The family ®" = {fs : f € ®} separates points in X¢, and therefore X¢ is T3s-
ordered; in particular, X is Ty-ordered. In view of the paragraph preceding the theorem, it remains
only to show that X is compact and i4(X) is dense in Xe.

Let A € UF(X). For each v € Xg, choose an ultrafilter F, such that F, C «; in particular,
if vy = 7(F¢) where F — z in X, define 7, = 2. If B C X, let B" = {y € Xo : B € F,}.
Then, define F4 = {A C X : A* € A}; one easily verifies that F4 is an ultrafilter. We shall show
that A — v(F4) in Xg. For this purpose, it suffices to show that fo(A) — fo(v(Fa)) = ax, ;.
for all f € ®. Given f € @, let I/ he a closed neighborhood of ar,,s in I. We first observe
that f(F4) — ar,,s, and hence f~(U/) € Fa, which implies (f~}(U))" € A. Then note that
f(FA) = ax,.s; consequently f3'(U) € A, and fo(A) — ar,,s. Thus X¢ is compact.

Finally, let v € Xg and, for B C X, let B* be defined as in the preceding paragraph. If
F € UF(X) and F C v, let F* be the filter on X¢ generated by {F*: F € F}. One easily shows
that F* — v in Xg. Since ig(F) > F*, it follows that 74(X) is dense in Xq. 1

The compactification (X¢,17¢) of X determined by a defining family ® will be denoted by Ke.
By the preceding theorem, each f € ® has a unique extension fs € CI*(Xs). If Y is any compact,
Ty-ordered space, we define Clo(X,Y) = {f € CI(X,Y): ho f € ®, forall h € CI*(Y)}. The
next theorem establishes that each f € Cls(X,Y) can be “lifted” relative to K¢.

THEOREM 2.2 Let X be a T3s-ordered space, ® a defining family for X, and Y a compact,
T,-ordered space. If g € Cls(X,Y), then there is a unique g, € CI(Xs,Y') such that the diagram

below commutes.
Xo 9e
Y ‘ \
e
X

PROOF. Let g € Cle(X,Y) and v € Xg; assume F is an ultrafilter and F C 7. Define
g, : Xo — Y as following: g,(y) = y,.4, where y,, is the unique limit of g(F) in Y. Using the
facts that g € Cle(X,Y) and CI*(Y) separates points in Y, we see that g,(v) is independent of
the ultrafilter F which represents v, so g, is well defined.
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If h € CI*(Y), let k' = hog. Then we observe that the preceding definition of g, makes the

following diagram commutes:
Xo 9s
k{ -
%
X g

If v < §in Xo, then hy(y) < hy(8),Yh € CI(Y), which implies k(g, (7)) < h(g,(8)) holds
for all A € CI*(Y). Since Y has the weak order induced by CI*(Y), g,(y) < g,(8). Thus g, is
increasing. A similar argument, based on Y having the weak topology induced by CI*(Y'), shows
that g, is continuous. The uniqueness of g, is obvious because all spaces involved are Hausdorff. 1

We omit the simple proof of the next proposition.

PROPOSITION 2.3 If ¢ is a defining family for a Ty s-ordered space X, then & = {fo : f €
CI*(X)} is a defining family for Xe.

Starting with a T3 s-ordered space X and a defining family ® for X, it follows that & and
CI*(Xs) are both defining families for X4, and it is clear that & C CI*(Xs). Let & = {f €
CI“(X) : there is g € CI*(Xs) such that f = g 0is}; in other words, & consists of all members of
CI*(X) which have a continuous, increasing extension in CI*(Xg). Clearly ® C &, and so  is a
defining family for X. Note that (&) = CI*(Xs), and since (®)’ is, by Proposition 2.3, a defining
family for Xg, it follows that X3 = Xs. These observations yield the following result.

PROPOSITION 2.4 If ¢ is a defining family for a Ts-ordered space X, then & = {f €
CI*(X) : there is g € CI*(Xo) such that f = g oig} is the largest defining family for X such that
Ko = K.

THEOREM 2.5 Let &, ¥ be defining families for a T3 s-ordered space.

(a) f & C ¥, then K¢ < Ky.
(b) K¢ < K¢ if & C .
PROOF. (a) & C ¥ implies ® C V. Considering the diagram
i@ X(y
X (16)e

i\
Xs
and applying Theorem 2.2, we see that (i) is increasing and continous. Thus K¢ = K¢ < Ky =
Ky.
(b) If K¢ < Ky, then there is an increasing, continous map ¢ making the diagram

i/Xw

c
i\
Xo

commute. Each member of & has the form f o for some f € CI*(Xs). But foig = foooiyis
also in . Thus & C ¥. The converse follows from (a). I

If X is a T3 5-ordered space, let DF(X') be the poset of all defining families, ordered by inclusion.

X

Two defining families ¢ and ¥ in DF(X) are equivalent if K¢ = Ky (i.e., if K¢ and Ky are

equivalent compactifications of X in the usual sense). Thus DF(X) is partitioned into equivalent
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classes, and each equivalent class (®) contains a largest member & which we call a mazimal defining
family.

COROLLARY 2.6 Let X be a Ty s-ordered space, i = (X', ) a Ty-ordered compactification
of X, and ® € DF(X) such that each f € ® has an extension " € CI*(X"'). Then K¢ < K.

COROLLARY 2.7 For a Tj;s-ordered space, the correspondence ¢ «— K¢ is bijective and
order-preserving between the maximal defining families for X and the T,-ordered compactifications
of X.

3. DEFINING FAMILIES AND QUASI-UNIFORMITIES.

This concluding section is based on the results of Fletcher and Lindgren [1], and to some extent
we borrow their notation.

Let (X,V) be a quasi-uniform space; the associated uniformity ¥V V V= will be denoted by V~.
Recall that (X, V) is Tp iff NV is a partial order (or, equivalently, (X, V") is T3), and totally bounded
iff, for each U € V, there is a finite cover {A;,---, Ao} of X such that A, x A, CU,fort=1,---,n.
Note that V is totally bounded iff V* is totally bounded.

Every Ty, quasi-uniform space (X, V) induces a uniform ordered space (X,U,<), where Y = V*
and “<"=NV; also associated with (X, V) is the T3 s-ordered space (X, 7, <), where 7 = 7y. and
“<” is again NV. Furthermore, for every compact, T,-ordered space (X, 7, <), there is a unique
quasi-uniformity V on X such that 7 = 7y. and “ <” = NV (Theorem 4.21, [1]). In particular, for
the compact, Ty-ordered space I, the unique compatible quasi-uniformity, denoted here by W, has
a base of sets of the form W, = {(z,y) € I x [ :  —y < €}, where € > 0.

For a quasi-uniform space (X, V), let QUC(X, V) be the set of all quasi-uniformly continous maps
from (X,V) into (/,W). If X = (X, 7, <) is the T3s-ordered space associated with (X,V), it is
clear that QUC(X,V) C CI*(X). It is shown in Theorems 3.29 and 3.33 of [1] that every To, quasi-
uniform space (X, V) has a bicompletion ((X,V),7) such that ((X,(V)%),7) is the unique uniform
space completion of (X, V"), and each f € QUC(X,V) has a unique extension in QUC(X,V).
These observations lead to the following proposition.

PROPOSITION 3.1 Let (X, V) be a To, totally bounded quasi-uniform space with associated
Ts5-ordered space (X,7,<), and let ((X,V),) be the bicompletion of (X,V). If (X,7,<) is the
Ts s-ordered space associated with (X, V), then K = ((X,#,<),7) is a Tp-ordered compactification
of (X,7,<). s

THEOREM 3.2 Let X be a T3 s-ordered space and ® € DF(X). Let Vg be the weak uniformity
on X induced by & relative to (I,W). Let ((Xs,Vs),) be the bicompletion of (X,Vs), and
Ko = (Xs,7%s,<),7) be the Tr-ordered compactification of X induced by the bicompletion. Then
i(¢ = Kg.

PROOF. Let V be the unique, Tp totally bounded quasi-uniformity on Xg whose associated
T3 s5-ordered space is the compactification ((X¢,7e,<¢),7¢) derived from ®. The latter space has
the weak order and topology induced by @' (see Proposition 2.3) relative to I, and hence V is the
weak quasi-uniformity on X¢ induced by @' relative to (I, W). If U = (ig)~1(V) is the restriction
of V to X, then U is the weak quasi-uniformity on X induced by & relative to (I, W). In other
words, U = V. Since the T,-ordered compactification associated with a Ty, totally bounded quasi-
uniformity is unique (up to equivalence), Ko = Kg. |

COROLLARY 3.3 Let X be a T s-ordered space and € DF(X). Then & = QUC(X, Vs).

PROOF. By Theorem 3.29, [1], each f € QUC(X, Vs) can be extended to the compactification
Ks = Kg; thus QU C(X,Vs) C d. ‘onversely, each f € $ bhas a unique, increasing, continuous

extension to K¢ = Ko, and this extension of f is quasi-uniformly continuous from (X¢,f)o) into
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(I,W). Thus f € QUC(X,Vs). |
COROLLARY 3.4 Let (X,V) be a Ty, totally bounded quasi-uniform space with associated

compact, Ty-ordered space X = (X,7,<). Then & = QUC(X,V) is a maximal defining family for
X and V = V.

COROLLARY 3.5 Let X be a T;s-ordered space. Then V «—— QUC(X,V) is bijective and

order-preserving between the T, totally bounded quasi-uniformities which induce X and the max-
imal defining families for X.
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