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ABSTRACT. A method is outlined to express a Tur,n determinant of solutions of a three term

recurrence relation as a weighted sum of squares. This method is shown to imply the positivity of Tur

determinants of symmetric Pollaczek polynomials, Lommel polynomials and q-Bessel functions.
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1. INTRODUCTION.
Let {Pn(x)" n 0, I, 2 } be ;a sequence of polynomials orthogonal on an interval [a, b]. Then

{P,(x) satisfies a three term recurrence relation

Pn+l(x) (4,x+ Bn)Pn(x)- CnPn_l(X), n=0, 1,2 (1.1)

In (1.1)we take P_I(x)= 0, and CO is generally unspecified. The polynomials {P(x)} are said to satisfy
Turn’s inequality if

An(x Pn2(x)- Pn+l(x)Pn_,(x) > 0, a < x < b. (1.2)

Paul Tur’,ln first noted that (1.2) is satisfied by the Legendre polynomials and Gabor Szeg/5 [15]
subsequently gave two elegant proofs of that fact. Since then various authors have proved that (1.2) is

satisfied by the classical orthogonal polynomials of Jacobi, Hermite and Laguerre for certain ranges of

the parameters involved [9], 14], 151. A survey of Turfin inequalities covering the literature until 1969
is available in [4].

In this note we will prove Turfin’s inequality for an important class of nonclassical orthogonal
polynomials; the symmetric Pollaczek polynomials. The symmetric Pollaczek polynomials satisfy the

relation (1.1) with B 0. Thus they satisfy a recursion

E_,(x):= 0, Eo(x):= 1, En+,(x AnxEn(x CnEn_(x)-, n 0, 1, 2 (1.3)

We will state a general procedure which makes systematic an approach used by Szz in 14] to

prove Tunin inequalities for ultraspherical polynomials and Bessel functions. In [5] we used Szsz’s
method to establish a Turin inequality for the continuous q-ultraspherical polynomials. The procedure
will be outlined in Section 2.
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Nevai 13] conjectured the positivity of the Turanian for orthonormal Pollaczek polynomials. His

conjectures are based on graphing the Turanian for different values of n and his beautiful graphs sparked

our interest and led to this work. In Section 2 we apply the Szsz method to establish the positivity of

the Turanian for the Pollaczek polynomials [3], [6], 16]. In Section 3 we establish a Tunin inequality

for modified Lommel polynomials Ihn, v(X)} and q-Bessel functions. One can then obtain Sz’sz’s

original result for Bessel functions as a limiting case of the positivity of the Turanian for q-Bessel

functions. The Hurwitz asymptotic formula for the modified Lommel polynomial, 17, 9.65(1)],
h.,,+(z)

lim J,,(l/z), (1.4)
.-.0 (2z)"+r( + + 1)

will play a central role in our analysis.

2. THE SZ.SZ METHOD AND APPLICATIONS.
The idea here is to express A as a sum of squares by repeatedly using (i.3). Also note that the

P s of (1.1) or the E’s of (1.3) are orthogonal if and only if the positivity condition [7, thm 1.4.4]

A,,A,,_ C > 0, n 1, 2 (2.1)

is valid.

THEOREM 1. Let Er, be a sequence of polynomials generated by (1.3) and let

C2n/An Cn/A,,> ,, > o,
qc.., c q... c (2.2)

then (n(x) has the finite series representation

,,(x) m(X)+ Egk[I-Ck_,Ak/(Ak_2C:I]E_,(x), n>m>l.
k=m+l

(2.3)

PROOF. Clearly

Anx Ean(x)= [En+,(x + CnEn_,(x) [An_,x En_,(x)- Cn_,En_a(X)]
x An_,[_,(x),+,(x)+ E_,(x)]- _,Anx(x)_,(x).

Divide by xAn_ and rewte e above when n 2 in e form

An E(x)- _,(x)+,(x)= q-IA"[A,_,E_,(x)/A,_2 (x)_a(x)]An_ An_
+ [1- an_/(an_)]E_(x"

Next multiply both sides by /(A,C C... ) to reduce e later identity to

(2.4)

(2.5)

(2.6)

which can be iterated to give (2.4) and the proof is complete.
Paul Nevai pointed out that the identity developed in the proof of Theorem 2.2 can be gotten from

an identity in a paper of Dombrowski 17]. We have included the derivation of the identity for the sake of

completeness and because it is a non-trivial chore to obtain it from Dombrowski’s formula.

Theorem 2.2 has two interesting implications. First note that the gt’s have a fixed sign because of
the positivity condition (2.1). Indeed gn has the same sign as Ao, that is

gnAo > 0, n > 1. (2.7)

There is no loss of generality in always assuming Ao > 0. We will also assume C > 0, n > 1, since this

is the case in all our applications.
COROLLARY 1. Assume that Ao > 0. If A. C._/A._2C < for k > m and if ,n (x) > 0 then

n(x) > 0 for all n > m. On the other hand, if A
k Ck_l/Ak_2Ck > for k > m and if n(x)

then m(x) > 0.
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PROOF. The first statement follows immediately from (2.4). For the second statement note that if

A
k Ck_t/A_2C > for k > m then from (2.4) we have

,,(x) < ,,,(x). (2.8)

Then if jn(x) --+ 0 as n --+ we have ,,,(x) > 0 and the proof is complete.
The inequality ,,(x)>0 is not quite of the form (1.2). However it is easy to renormalize the

polynomials En(x to obtain a Tunin inequality like (1.2). To do this, define the monic polynomials

P.(x y
Vo(X) 1, Pn(x)= E,(x)/Ao An_,, n > 1.

An E(x) 0 is equivalent to (1.2). (2.9)Then the inequality En+(x)E,,_(x >
n-I

Theorem and Corollary are the essence of the method SzMz 14] used to establish the positivity

of Turanians for ultraspherical polynomials and Bessel functions. An interesting feature of Theorem is

that signs of n(x) and the summand in (2.4) are invariant under renormalization. To see this, replace

En(x in (2.4) by cnFn(x so A,, and C need to be replaced by cnAn/cn+ and cn_1Cn/cn+ respectively.
A simple calculation yields the desired invariance property. Also note that the choice of the coefficient

/An_ in (2.3) is the only choice that makes n(x), up to a multiplicative constant, a polynomial of

degree 2n 2.

As an example consider the continuous q-Hermite polynomials{Hn(xlq)’n > 0}[2, 6], with

Iql < I. They satisfy (1.3) with A 2, C 1-qn. They are q-analogs of the Hermite polynomials.

Thus

gk=(l-qt)/[2(q;q)k_l], 1-akc._/ak_2Ck=qt-(1-q)/(1-qt), (2.10)

where we used the notation

(a;q)n’=(l-a)(1-aq)...(l-aqn-l), n>0, (a;q)o=l. (2.11)

Therefore
l-q" [H2(xlq)_Hn+,(xlq)Hn_l(xlq)], (2.12)n(x)=

2{q; q)
so l(x)= (1- q)/2. Now after some simplification the case m of (2.4) reduces to

(l-q")[H2n(xlq)-H.+l(xlq)H._,(xlq)]= (1-q)q H(xlq). (2.13)
(q; q)n :=0 (q;

The above identity is a Tur’,in inequality for the continuous q-Hermite polynomials. The identity (2.13) is

a q-analog of the Hermite polynomial identity
n-I

(x)H.+,(x) 2"Hn(x)-Hn_ n! n;c(x), n>0. (2.14)
k=0

We will briefly show how H,,(x) is a limiting case of H,,(xlq). Since

H.+t(xlq)= 2xH.(xlq)-(I-q")H._,(xlq), (2.15)

then

Pn(X)
Ivl-qJ

nn x [q (2.16)

satisfies

20- q")
Pn+ (x) 2xpn(x)

q
and
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Po(X) 1, pl(x)= 2x. As q the above recurrence relation tends to the recurrence relation

satisfied by the Hermite polynomials. This is how one can find the rescaling necessary to go from the

continuous q-Hermite polyunomials to the Hermite polynomials. We only need to show that lim p,,(x)
q---)l

exists for every n. This easily follows by induction using the recurrence relation and initial conditions.

A simple calculation now shows how (2.13) tends to the corresponding result for Hermite polynomials

as q---) 1.

An important example of Theorem 2.2 is provided by the symmetric Pollaczek polynomials [3,

6], [16]. They satisfy the recursion (1.3) with

An__2(n+a+2)n+l Cn=’n+24-1n+l (2.18)

The polynomials defined by (1.3) and (2.18) are orthogonal if 4 >_ 0 and a + 4 > 0. We find from (2.18)

that

A"Cn-’ 2[an + (4 1)(a + 4)] (2.19)
An_2C,, n(n+a+4-Z)(n+24-1)"

The denominator on the right side of (2.19) is positive for n > 3, a + 4 > 0, 4 > 0. The numerator is

positive for large n only where a > 0, thus we require a > 0. Taking rn 2 in (2.4) we have

’-=3 [1- C-A: ] E2-’ (2.20)n(x) Cz(x) + gt
Ak_2C

for n > 3. For 2(x) we have from (2.3)

2(x) C-C-’9_9_9_ { 4(a + 4)[alq" + a + 42 4]x2 2(a+4+2)42}+ (2.21)
3 3(a + 4 + 1)

Then 2(x) > 0 for -1 < x < if

a2 + a + 42 4 > 0. (2.22)
When (2.10) holds then n(x) > 0, -1 < x < 1, a > 0, a + 4 > 0, n 2, 3, .-., and then inequality (2.6)

holds for the symmetric Pollaczek polynomials. The region defined by (2.10), a > 0, 4 > 0, in which

the Tunin inequality (2.6) holds is shown in Figure 1. The region is the area outside the shaded region

bounded by the curve a and a > 0, /l > 0.
1+4

-1.5 [
FIGURE 1.
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3. LOMMEL POLYNOMIALS AND q-BESSEL FUNCTIONS.
Dickinson, Poll and Wanier [81 studied a class of polynomials generated by

p_,v(x)’=O, Po,v(x):= 1, p,,+.v(x)=c,,+,xp,,,v(x)-pn_,v(x), n >0. (3.1)

The positivity condition (2.1) implies that all the cn+v’s have the same sign. Since we may replace x by

-x there is no loss of generality in assuming, c,+v > 0. Later Goldberg [11] corrected a minor error in

[8] and proved that if cn+ v
-’-) as n -- and

n=0

converges then there exis an even entire function Ev(z such at

lira
p,,,v(z) Ev(1/z). (3.3)

nZ CvCv+ Cv+n_

Fureore if

0 < x < x <-.- (3.4)

denote the positive zeros of Ev(z)then the polynomials {p,.v(x)} are oogonal with respect to a

The Lommel polynomials {hn.(x)} coespond to e ce c.v 2(n + v) [17, 9.63(2)].
THEOREM 2. Assume that c.v

is monotone increing. If c.v./c+ v is bounded and the

sees (3.2) converges then
2p,,,(l/x)-p.,,(l/xt)p,,_,,(l/x)>(l-c./c+.,)p,].,(l/x)>O, k=l,2 (3.5)

PROOF. In e present ce q_,/_q c./c._ > 1.

() p.(x)/c._, p.,.(x)p_.(x)/c.. (3.6)

It is own at when the moment problem sociated wi oronormN polynomiNs {p(x)} has

a unique solution then e co,spanding measure has a point mass at x= u if d only if

converg [1 ]. In the ce under consideration the orthonormN polynomis a c./% p,(x), hence

22c.p.(l/xt) converges for all kl and (1/x) a ,. Thus Corolly is applicable

d for n > 0 we have

(l/x)= -l+c,,,./ ,,,._)p_,.(l/x)> etem=n+l, (3.7)
m=n+l -m+v

and (3.5) tbllows. This completes the proof.
eorem 2 is the only Turfin inequality known tbr a system of discrete orogonal polynomis. It

is interesting to note at (3.7) holds on the spectrum and may not necessarily hold on the interval of

orthogonality (-l/x, 1/x). In the case of Lommel polynomis hn,v (x) the xk’s e the positive zeros

of J_(z). We have calculated the roo of n(x) when n=8 and v=V2. When v=l]2 then

xk (k-1/2)n. 8(x) is symmeic, of degree 14, d h four complex roo d 10 reM symmetric
roo. Denoting the positive real roots by q < r < < r4 < r5 we find at

0<<q < <<r3 <r <<rs. (3.8)
X3 X2 X

This behavior confirms Theorem 2. That l/x lies between t and r becomes numericMly evident only

when these numbers are cculated to a high level of precision. To 17 places we have
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tit .63661942770432881

.636619772367581343
x

r .63661977236760431

Observe that Hurwitz’s formula (1.4) and (3.3) indicate that in the case of Lommel polynomials

{hn.,+l(x)} the entire function Ev(z is F(v+l)(2/z)VJv(z). Goldberg [11] noted the three term

recurrence relation

p,,.v(x) XCvP,,_.v+l(X Pn_2.v+2(x), l > O. (3.9)

If we now let n in (3.9) we obtn from (3.3) the ree term recurrence relation

Ev+,(x) Ev(x)+[x2/cvcv+,]Ev+2(x). (3.10)

If we denote Ev+,,+(z by (z) we will lind at (3.10) resembles (1.3) with

C+nCv+n+l/X2 q Cv+n%+n+l/X (3.11)

Although now A and C depend on x the proof of Theorem remains valid and if cn+ increases with

v d the corresponding m(X) 0 m then

m(X) > g,,,+,(x)[1-Cm+v+,/Cm+v_,]F(x (3.12)

which is equivent to

F(x)- t+l(X),_l(X)> 0 (3.13)

This establishes e next result.

EOREM 3. Let cv+" increase with v such that the series (3.2) converges. If

inCn+v+l 2E+v+(x)- En+,En+v+2(x) 0 (3.14)
Cn+v-1 k=l Ck+Ck+v+l

n then for x > 0

E(x)- E+,(x)E_,(x) > 0, v > 0.

Two interesting examples follow from eorem 3.10. Firstly in the ce Cv+n= 2(n+ v +1),
e(x) (/x)r( +,)4(x) ana ejx), ,nca smoaons rorm 3 fulfilled

for v > 0. us (3.1 l) reduces to

(), > o, > o. (3. 6)g(x)- 4+,(x)4_,(x) >

Szsz [141 proved (3.16) using recursions. The second example is e case of q-Bessel functions of
Jackson. RenormMid q-Lommel polynomiMs satisfy (3.1) wi

cv:2ql/n(q-V/2-qV’2), Ev(x):(2/x)V(qq21q)’;q), 42’(x; q), (3.17)

where we tbllowed the notation

(q+’. q). (-,)(x/)+(;q):=
(q q)_ ,---n

(3.1)

for Jackson’s q-Bessel functions 12]. Jackson’s original notation w diffent but e current notation

is due to IsmNl and since it was introduced in [12] it hs become widely used pecially after Gasper
and Rahm Mopted it in their excellent book 10]. The limiting relation (3.14) is satisfied since

im (x/2) 4)(’q) l/(q;q)., (3.19)

which follows from (3.18) and the assumption 0 < q < 1. Now (3.15) yields eTur inequaty

+ "i-qV Uv x;q) ,v>0, x>0. (3.20)
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It is clear from (3.18) that (l-q) Jv(2)(x(l-q)’q)--) .lv(x as q ---) 1-. The limiting case q ---) 1- of

(3.20), after replacing x by (1 q)x, is the inequality

Jv2(X ), (3.21)s()- 4+,(14_(x) >-j
mentioned earlier.
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