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ABSTRACT. This paper is concerned with joins of orbital topologies especially on the orbit of the

reals with the usual topology.
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The importance of comparing two different topologies on the same set was noted by Garrett

Birkhoff in 1936 [1]. Let X be a set and L(X) be the lattice of all topologies on X. If f is a bijective

function from X to X and is a fixed topology on X, then we can define zf {f(U) U "}. Note

that zf is a topology. Let , be the set of all bijections from X to X. Define {zf f ,} to be the

orbit of in L(X). The topologies in this orbit are homeomorphic to each other. Also note that for

all bijective functions f and g, there exists a bijection h such that zf v "cg’ is homeomorphic to

Throughout this paper we will refer to the orbit of the usual topology on the reals as the

Euclidean Orbit. All functions will be bijective, and {(x, f(x)) x X}, the graph of f, will be

denoted CKf).

Bourbaki [2] showed (X, v xf) is homeomorphic to {(x, x) x E X} with the relative

topology of "c x zf via h(x) (x, x). Clearly, (X x X, x zf) is homeomorphic to (X x X, x x z)

via F(x, y) (x, f(y)). Hence (X, z v xf) is homeomorphic to (G (f.1), z x z). It is this graph

which will help us discover properties of (X, v zf).

Note that if X is a metric space, it is trivial to see that v zf is metric. But locally compact

is not so clear. Given a locally compact Hausdorff space, we have the following:
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THEOREM 1. Let G (f) cl(G (f)) G (f). x v x . is locally compact if and only if

cl(G (f)) G (f)

PROOF. If cl(G (f)) c G (f) , then let p el(G (f)) G (f). Then p G (f); hence p is

in the derived set. Let C be a compact neighborhood of p in G (f’)" then there exists an open V c X

such that Vc G (f) c C and V c G (f) is compact. Since el(V) is a neighborhood of p in X:, there

exists a point q V such that q G (f). Let {Vs} be a basis at q. Since X is regular, we can

assume there is a basis element V such that cl(V)_ V= Let Us X cl(Vo); then {Us} covers

X q. Hence {U} covers G (f) cl(V). But since G (0 cl(V) is compact, there exists a finite

subcover {Us U,} which covers G (f) el(V). Let U be the union of the subcover. Then U covers

G (f) c el(V). This is a contradiction since q cl(G (0), but q U.

Now suppose cl(G (f)) G (f) and let p G (0- Then there is an

open U containing p such that U G (f) . Also we can find an open neighborhood V of p such

that el(V) c U. Since cl(V) c cl(G (f)) , G (f) cl(V) is closed. Therefore, G (f) is locally

compact.

For the remainder of this paper, we restrict ourselves to the Euclidean orbit. In the Euclidean

orbit we know that x xf only if f is continuous and that since x is connected, xf is also, but what

about

THEOREM 2. x v xf is connected if and only if x xf.

PROOF. If x xf, then x v xf x, hence it is connected. Now, if x * xf, then f

is not continuous. But f is bijective so neither is the inverse of f. Let x be a

point of discontinuity of f . Then there is a sequence {x} such that {x} -- xo,

but {f "(xO} /+ f (Xo). Suppose {f (x)} is bounded. Then there exists a convergent

subsequence {f(x )}. Let lim {f(x )} y. Without loss of generality, let
k

y > f(x). Then there is an M > 0 such that for every nk > M, f "(x > f "(x).

Let nj > M then f "(x,,j) > f "(xo). Now consider the vertical ray A {(a,b) a x and

b > f(x,,)and let x R such that f (x)- y -< f" (x)- y and without loss of

generality, let x < x Consider the horizontal line segment

B {(a,b) N -< a < N and b f’(N )}. Also, consider the vertical ray

C {(a,b) a-- N and b _< f"(x )}.

Since f " is an injective function, (A B C) C_f-!) . Now
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(x, f (x, )) and (x0, f’(Xo) lie in separate components of R (A w B w C). So in

the bounded case, x v xf is not connected. The unbounded case is similar.

COROLLARY 3. x v xr is path-connected if and only if it is connected.

THEOREM 4. Let D(f) {x f is discontinuous at x}. If D(f") is a

discrete subset of R, then x v x is locally connected.

The proof is very similar to that of Theorem 2 and hence is omitted.

COROLLARY 5. x v xf is locally path connected if and only if x v xf is locally

connected.

THEOREM 6. If x v "q is locally connected, then x v xf is locally compact.

PROOF. Since x v xr is locally connected, each component C of (G (f-L), x v x) is open.

Now x(C) and r(C) are connected subsets of the reals, therefore intervals. Now fl% (C)

mfist be monotone, otherwise we would have points a,b,c e n(C) with a < b < c such that

f(a) e r(C) and without loss of generality fq(b) > f"(a). Now suppose f(c) < f(b). If

f’(c) > f’(a), then the set {(a,y) y f (e)} {(x, f(c)) a < x < b} {(b,y) y < f(e)}

disconnects C. If f(e) < f(a), then the set {(c,y) y -> f(a)} {(x,f (a)) b < x < c}

{(b,y) y -< f(a)}disconnects C. This shows that a function which increases from a to b must

continue to increase, the decreasing ease is similar. So we have f (c) is a monotonic function

from :(c) to (c), hence f-1 is continuous on Xl(C). Therefore G (f x(C)) is homeomorphic to

an interval, thus locally compact. Hence x v xf is locally compact.

The converse of this theorem is not, however, true. The following ,counter example

illustrates this.
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The graph of f is locally compact, but there is no connected neighborhood about

(0,-1).
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