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1. Introduction.

Throughout this paper M will denote a connected real hypersurface of the quaternionic pro-

jective space QP",rn>3, endowed with the metric g of constant quaternionic sectional curvature

4. Let N be a unit local normal vector field on M and Uz -J,N, 1,2,3, where

is a local basis of the quaternionic structure of Qpr,-,, [2].
Now let us define a distribution 29 by 29(x) {XET.M X+/-Ui(x),i = 1,2,3}, xEM, of

a real hypersurface M in Qpm, which is orthogonal to the structure vector fields {U1, U2, U3 }
and invariant with respect to the structure tensors {1, 2, 3},and by D+/- Span{Vl, U2, U3 }
its orthogonal complement in TM.

There exist many studies about real hypersurfaces of quaternionic projective space QP" (See
[1],[3],[4],[5],[6]). Among them Martinez and the third author [4] have classified real hypersurfaces

of QP" with constant principal curvatures and the distribution 29 is invariant by the shape

operator A. It was shown that these real hypersurfaces of QP’ could be divided into three types

which are said to be of type A1 ,A2, and B.

Without the additional assumption of constant principal curvatures, as a further improvement

of this result Berndt [1] showed recently that all real hypersurfaces of QP’ also could be divided

into the above three types when two distributions 29 and 29+/- satisfy g(AD, 29+/-) O. Moreover,
it is known that the formula g(A29, D+/-) 0 is equivalent to the fact that the distribution D is

invariant by the shape operator A of M.

In a similar notation of Takagi [7] a real hypersurface of type A1 denotes a geodesic hyper-
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sphere or a tube over a totally geodesic hyperplane Qp,.-I and of type A2 denotes a tube over

a totally geodesic quaternionic projective space QP’ (1<k<m 2) respectively. Moreover, real

hypersurface of type B denotes a tube over a complex projective space CP".

Now, let us consider the following conditions that the shape operator A of M in QP" may

satisfy

(VxA)Y 3-=,{/,(r),x + g(,z, r)v, }, (.)

g((A,- ,A)X,Y) 0,

for any 1, 2, 3, and any tangent vector fields X and Y of M.

Pak [5] investigated the above conditions and showed that they are equivalent to each other.

Moreover he used the condition (1.1) to find a lower bound of IIVAII for real hypersurfaces in

QP". In fact, it was shown that [[VA[[2>_24(m- 1) for such hypersurfaces and the equality holds

if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent

to a real hypersurface of type Am or As, which is said to be of type A.

If we restrict the properties (1.1) and (1.2) to the orthogonal distribution T), then for any

vector fields X and Y in Z) the shape operator A of M satisfies the following conditions

(VxA)Y -Ei=lg(,X,Y)U

and

g((A, iA)X,Y) 0 (1.4)

for any 1,2,3. Thus the above conditions (1.3) and (1.4) are weaker than the conditions (1.1)
and (1.2) respectively. Thus it is natural that real hypersurfaces of type A should satisfy (1.3)
and (1.4). From this point of view we give a characterization of real hypersurfaces of type A in

QP’ as the following

THEOREM. Let U be a real hypersurface in Qpr,, m>_3, satisfying (1.3) and (1.4) for

all X, Y in :D and any 1,2, 3. Then M is congruent to an open subset of a tube of radius

r over the canonically (totally geodesic) embedded quaternionic projective space QP’, for some

k{0,1, .,m-1},where0<r<

2. Preliminaries.

Let X be a tangent field to M. We write J,X iX + f,(X)N, 1,2, 3, where ,X is the

tangent component of JiX and f,(X) g(X,U,),i 1,2,3. As J -id, 1,2,3, where id

denotes the identity endomorphism on TQP", we get

2,X=-X+f,(X)U,, f,(,X)=0, ,U,=0, i=1,2,3 (2.1)

for any X tangent to M. As JJj -JjJ, J,, where (i,j,k)is a cyclic permutation of (1,2,3)
we obtain

iX Cj,X h(X)U -kX + fj(X)U, (2.2)

and

f,(x) f(,x)=-h(,x) (2.3)

for any vector field X tangent to M, where (i,j,k) is a cyclic permutation of (1,2,3). It is also

easy to see that for any X, Y tangent to M and 1, 2, 3
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(,x, -) + a(x, ,Y) 0, (,x, ,y) a(x, Y) f,(x)f,(Y) (2.4)

and

,u: =-+u, u (2.5)

(,j, k) being a cyclic permutation of (1,2, 3). From the expression of the curvature tensor of

Qpm, m>2, we have that the equations of Gauss and Codazzi are respectively given by

R(X,Y)Z =g(Y, Z)X g(X,Z)Y + ,3=, {g(,y, Z),X g(,X,Z),Y

+ 2g(X, ,Y),Z} + g(AY, Z)AX g(AX, Z)AY,
(2.6)

and

(VxA)Y -(VyA)X ,3=a{f,(X),Y f,(Y),X + 2g(X,,Y)U,} (2.7)

for any X, Y, Z tangent to M, where R denotes the curvature tensor of M, See [4].

From the expressions of the covariant derivatives of J,, 1, 2, 3, it is easy to see that

VxU, --p,(X)Uk + pk(X)U + iAX (2.s)

and

(Vx,)Y -p.(X)kY + p:(X).iY + f,(Y)AX g(AX, Y)U,

for any X, Y tangent to M, (i, j, k) being a cyclic permutation of (1, 2, 3) and p,,

local 1-forms defined on M.

(2.9)

1, 2, 3,

3. Proof of the Theorem.

Let M be a real hypersurface in a quaternionic projective space QP"’, and let 7) be a dis-

tribution defined by 7)(x) {XET,M X..kU,(x),i 1,2,3}. Now we prove the theorem in

the introduction. In order to prove this Theorem we should verify that g(AT), D"t) 0 from

the conditions (1.3) and (1.4). Then by using a theorem of Berndt [1] we can prove that a real

hypersurface M satisfying (1.3) and (1.4) is locally congruent to one of type Aa, or A2 in the

Theorem.

Namely we can obtain another new characterization of real hypersurfaces of type A in a

quaternionic projective space Qpm. For this purpose we need a lemma obtained from the re-

stricted condition (1.4) as the following

LEMMA 3.1. Let M be a real hypersurface of QP"’. If it satisfies the condition (1.4) for

all X, Y in 7) and any 1,2, 3, then we have

9((VxA)Y,Z)=g(AX, Y)g(Z,V), i= 1,2,3,

where 5 denotes the cyclic sum with respect to X, Y and Z in 7) and V, stands for the vector

field defined by ,AU,.
PROOF. Differentiating the condition (1.4) covariantly, for any vector fields X, Y and Z

in D we get

9((VxA),Y + A(Vx,)Y + A,VxY (Vx,)AY i(VxA)Y, Z)

g(,AVxY, Z) + g((A, ,A)Y, VxZ) O.
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Now let us consider the following for a case where 1

g((VxA)Y, , Z) + g((VxA)Z, 1 Y) -g((Vxl)]; AZ) g(lVxY, AZ)

+ g((VxI)AY, Z) g(AVxr, 1Z)+ E,lgi(Y)g(,AX, Z),

where g((Al -IA)Y, U,) is denoted by O,(Y) and we have used the fact that

g((Al aA)Y, VxZ) E,t,(Y)g(V,, V-Z)

-EiO,(Y)g(,AX, Z).

Then by taking account of (2.8) and (2.9) and using the condition (1.4) again, we have

g((7xA)Y, IZ)+g((7xA)Z, 1Y)= fa(AZ)g(AX, Y) + (AY)g(AX, Z)

+ EiO,(Z)g(,AX, Y)+ E,O,(Y)g(,AX, Z).
(3.2)

In this equation we shall replace X, Y and Z in 29 cyclically and we shall then add the second

equation to (3.2), from which we subtract the third one. Consequently, by means of Codazzi

equation (2.7) we get

g((VxA)r, 1Z) =fl(AZ)g(AX, Y) + EiO,(X)g(A,Y, Z)

+ E,lg,(Y)g(A,X,Z).

From this, replacing Z by 1 Z, we have

g((VxA)Y, Z) =g(V, Z)g(AX, Y) E,t?,(X)g(A,Y,

Etg,(Y)g(A,X, 1Z).
(3.3)

where V1 denotes 1AU1 and the second term of the right side are given by the following

EiO,(X)g(AiY, 1Z) g(X, 1AU1 )g(AY, Z) + {g(AlX, U2

+ g(AX, Vs)}g(AY, CsZ) {g(AIX, Us)

g(AX, U2)}g(AY, 2Z),

from this, the third term can be given by exchanging X and Y. Thus substituting this into (3.3),
we have

g((VxA)Y, Z) hg(Vl, Z)g(AX, Y) + a(X, Y, Z) + a(Y, X, Z), (3.4)

where denotes the cyclic sum with respect to X, Y and Z in 29 and a(X, Y, Z) denotes

-{g(AIX, U2 + g(AX, Us )}g(AY, bsZ) + {g(ACaX, Us g(AX, U:)}g(AY, 2Z).

Then by virtue of the assumption a(X, Y, Z) is skew-symmetric with respect to Y and Z in 29.

Now firstly let us take cyclic sum of the both sides of (3.4) one more time. Next using the

skew-symmetry of a(X,Y, Z) to the right and the equation of Codazzi (2.7) to the left of the

obtained equation respectively, we have the above result for 1. For a case where 2 or 3

by using the same method we can also prove the above result.

PROOF OF THE THEOREM. From the assumption (1.3) we know that the shape

operator A is y-parallel, that is, g((VxA)Y, Z) 0 for any X, Y and Z in 29. From this, by
Lemma 3.1 we have for a case where 1
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(v,z)(Ax, r) + (V,Y)(AZ, X) + (Y, X)(AZ, Y) O. (3.5)

Thus in order to prove g(AD, :D+/- 0, we suppose that there is a point p at which 9(AD, 2)+/- )pO.
Then there exists a neighborhood L/ {pEM g(AD, D+/-)p#O} on which there exist such a

distribution D. Now let us denote AU, by

AU, W, + Eja,jUj, (3.6)

where W,,i 1,2,3 denote certain vectors in 9. Since on this neighborhood L/ we have

g(AD, :D+/-):ri0, at least one of the vectors W,, 1,2, 3 should not be vanishing. Thus for a

convenience sake let us assume that W1 is a non zero vector on this neighborhood/g. Then it

follows that

V1 AU1 lWl -- Ejo U.1, W1E),

so that, (3.5) gives the following for any X, Y and Z in 9:)

g(IW1,Z)g(AX, Y) + g(IW,Y)g(AZ, X) + g(,WI,X)g(AZ, Y) O.

From this, putting Z 1W1, then for any X, Y in T)

IIwII2g(AX, Y) + g(aW, Y)g(AI W1,X) + g(IW1,X)g(AI Wa Y) O, (3.7)

so that, putting Y 1Wa gives

2[IWa I[=g(AX, W + g(W1,X)g(AI W1, 1WI O. (3.8)

From this, putting X 1W, by virtue of IIW II#0 we have

g(AlW, 1W1 0.

From this together with (3.8) we have

g(AX, 1 W1 0.

for any X in Z). Thus it can be written

AIW).1..

From this together with (3.7) it follows that for any X, Y in Z)

g(AX, Y) O,

where we also have used the fact IIW II#0 on a neighborhood H. Unless otherwise stated let us

continue our discussion on this open set//. Accordingly, by (3.6) we know for any Xe/)

AX E,g(AX, U)U,

Eig(X, AUi)U (3.9)

On the other hand, from the condition (1.3) let us put



120 U-H. KI, Y. J. SUH AND J. D. D. PEREZ

(VxA)Y 3-,=lg(,X,Y)U,
(3.10)

"1 (X, Y)U, + A=(X, Y)U: + Aa(X, r)ua.

for any X, Y in 7). Since we have put AU1 Wj + E.a.U, from which it follows

(VxA)U =VxW +
+ E.oi.{-pk(X)U, + p,(X)Uk +
A{-p2(X)Ua + pa(X)U2 +

Then for any X, Y in T) the function (X, Y) is given by

l(X, Y) =g((VxA)U,, Y)

=g(VxW,Y) + .ai.g(jAX, Y) + p2(X)g(AUa,Y) (3.11)

pa(X)g(AU, Y) g(AAX, Y).

When we put X W and Y W in (3.10), we get

(W, W) -IIW =- (a-)

On the other hand, by the equation of Codazzi (2.7) and using (3.6) and (3.9) we have

(vvA)W (VA)U W
=Vu,(AW AVu,W Vw, (AU + AVw, f
=,Vl(g(Wi, W1 ))Vi + ig(W,, Wl )Vv, Vi

2,{-(w)v +p,(w)u +AW}

+ A{-p(W)Us + pa(W )V + 1AW1 }.

From this, substituting (2.8) and taking the inner product with W and using (3.6), we have

g(v,w, w) =llw II(llw111 ) (AVv, W, W1) 2ag(AW, W)

p2(Wl )g(AV3, (1Wl -- p3(Wl )g(AU, 1W1

+ g(AAWl, W ).
(3.13)

On the other hand, it can be easily verified that

g(AVu, Wl 1Wl --g(Vv, Wl AW,

=(w,, w)(vvw, v,)

Eg(W,, W)g(W, ,AU)

--0

where we have used (3.9) and (2.8) to the second and the third equality respectively. Moreover,
the facts that AW E,g(W,, W)UT)+/- and W7) imply

jojg(jAWl, 1W1 0. (3.14)

By virtue of these formulae (3.13) can be rewritten as



REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE 121

g(Vw, w, 3) =llW II(llW p(W )g(AU, W
(3.15)

+ p3(W1 )g(AU2, 1 W1 + g(AIAH/’, 1 W1 ).

Now putting X W1 and Y 1W1 in (3.11), from which substituting (3.15) and using

(3.14), we have

/1 (Wl, 1 W, IlWl II(llW, 1).

From this and (3.X2) we know IlWall 0, which makes contradiction on b/. Using the same

method for the cases where W2 or Ws are non vanishing, we can also prove We 0 or Ws 0

respectively. This makes a contradiction. From this we know that there does not exist such a

neighborhood/a on M. Thus we can conclude g(A79, D-L) 0. Then from [1] M is congruent

to an open part of either a tube of radius r, 0 < r < over the canonically (totally geodesic)

embedded quaternionic projective space QP’, k{0,1, rn- 1} or a tube of radius r, 0 < r < ,
over the canonically (totally geodesic) embedded complex projective space CPm.

Let us consider the second kind of tubes. The principal curvatures on :DJ- and Z) of such a

tube are given by al 2cot2r, 2 as -2tan2r, A cotr and I -rant, with multiplicities

1,, 2,2(m 1) and 2(m 1) respectively ([1],[4]). Moreover, it is also known that

A, + 2
A,X O,X, i=1,2,3

2A ,
for a principal vector X in :D with principal curvature A. When we consider for the cases where

2 as -2tan2r, we have

(A,- iA)X -(cotr + tanr)iX, 2,3

for any X in D with principal curvature corr. Then from (1.4) we have -rant cotr 0. This

implies that cot2r -1, which is impossible. Thus the second kind of tubes can not satisfy (1.4).
This completes the proof of the Theorem. O

ACKNOWLEDGEMENT. The first and second authors were supported by the grants from

TGRC-KOSEF and BSRI program, Ministry of Education, Korea, 1995, BSRI-95- 1404. This

work was done while the second author was a visiting professor of the University of Granada,

SPAIN.
The present authors would like to express their sincere gratitude to the referee who made

some improvements in the original manuscript.

1. BERNDT, J.

(1991), 9-26.

2. ISHIHARA, S.

REFERENCES

Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419

Quaternion Kaehlerian manifolds, J. Diff. Geom. 9(1974), 483-500.

3. MARTINEZ, A. Ruled real hypersurfaces in quaternionic projective space, Anal. Sti. Univ.

A1 Cuza, 34(1988), 73-78.

4. MARTINEZ, A. and P]REZ, J.D. Real hypersurfaces in quaternionic projective space,

Ann. Math. Pura Apol. 145(1986), 355-384.



122 U-H. KI, Y. J. SUH AND J. D. D. PEREZ

5. PAK, J.S. Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-
sectional curvature, Kodai Math. Sem. Rep. 29(1977), 22-61.

6. PIREZ, J.D. Real hypersurfaces of quaternionic projective space satisfying Vu.A O,

J. Geom. 49(1994), 166-177.

TAKAGI, R. Real hypersurfaces in a complex projective space with constant principal

curvatures, J. Math. Soc. Japan 27(1975), 43-53.


