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ABSTRACT. The multiple Hermite series in R are investigated by the Riesz summability
method of order a > (n- 1)/2. More precisely, localization theorems for some classes of functions

are proved and sharp sufficient conditions are given. Thus the classical Szeg6 results are extended
to the n-dimensional case. In particular, for these classes of functions the localization principle
and summability on the Lebesgue set are established.
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1 Statement of the main results

Let f be locally in LI(Rn), n _> 2, and consider the multiple Hermite series

I(Y) fe-’2/2[-Ik(Y) f /R" f(Y)e-’2/2IfI=(y)dy’

where/:/(y) .(yl)...&,(y,.,),k (k,..,kr,),k, >_ 0, y (y,..,y), is a product of the nor-

malized Hermitian polynomials. Here and later on y2 stands for the scalar product (y, y) in R
and for simplicity we shall write xy instead of (x, y). The corresponding spherical partial sum has

the form

E:,f(y)

where 21k + n and @(z) e-x’/=k(z) are the eigenvalues and orhonormalized egenfunc-
tions of he operator -A + z in L=(R). t

Sf() (1 /)A()
<A

be he corresponng esz mns of order > 0.e shall prove the convergence

f()=(,,) o(1), (.)

A +, locally uniformly wih respect to N, where > 0 and

is the esz kernel, under some contions at inity for the function f, including a system of

sharp scient contions. Thus the clsical Szeg6 results [18] are extended to the n-mensional
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case. In particular, for these classes of functions the localization principle and summability on the
Lebesgue set are established. For other results see, for example, [1]-[4], [6]-[8], [10]-[19] and the
bibliography in [15], [19]. Here

(,,) ()()

is the spectral function of A.
In stating the main results we use the following notations. Let e(l, z) be the characteristic

function of the set {z 6 R A < z < l- l/s} and (l,z) the characteristic function of the
set {x 6 R "X2- A] < A1/3+e} for some small e > 0 and large A > 0.

Theorem 1. If > (n- 1)/2 d

fa a(A, x)(1 x2/A)-/]x]-(+)/2-=f(x)dx o(A=/-("-)/) (H)

/ (,)]f()]d o(+), (H=)
then the convergence relation (1.1) is fulled.

Remark 1. The contion (H2) is exact. Namely, it is satisfied by the function f(x)
x[, D > 0 for every < 2a n + 2, but not for D 2a n + 2. On the other hand, Rf(O) is

vergent if Z 2a n + 2, a > (n- 1)/2.
For the nctions wMch are fferentiable at infinity we can improve the condition (H).
Theorem 2 Let the function f be fferentiable at inity and satisfy for > (n- 1)/2 the

contion f(x) O(]x]) as Ix[ for Z < 2- n + 2 and

/ =(,)( =/)-z]]-("*z=--’]Vl()d o(z=-("-)). (H;)
Then the convergence relation (1.1) is valid.

Corollary 1. t the function f be differentiable at inity and f, Vf O(]x]) as x ,
where D < 2- n + 2, a > (n- 1)/2. Then the relation (1.1) is true.

It is natural to "interpolate" between contions (Ht) and (H) Define

(,/) p0,s[( + H) -/( + g,)#,

where H (h,..,h),H, (h,..,h,_,O,h,+,..,h,).
Theorem 3. Let the fction f satisfy for > (n- 1)/2 the contion f(x) O(]x[) as

]x for D < 2a- n + 2 d

/ =(, )(1 =/)-"-"+’)=-(, I)d o(z=-("-). (g’’)
Then the convergence relation (1.1) is ffilled.

Remark 2. The conditions of threm 3 are satisfied by the function f(x) x]z, > 0, if

D < 2a n + 2, and they are not satisfied if D 2 n + 2. Therefore, accorng to remark 1,
theorem 3 provides a system of sharp scient contions.

Corollary 2 (locahzation principle). Let y 6 R", > 0 be ed. Then der the contions

of threms 1,2,3 respectively we have

Ef(y) 0 if f(x) 0 for x y < $.

As a consequence of threms 1,2,3,4 and corollary 4.16 [16] we obtain

Corollary 3. Under the contions of theorems 1,2,3 respectively we have Ef(y) f(y) on

the bgue set of the function f.
The further organisation of the paper is as follows. The results about the ymptotics of

the esz kernels are formulated in section 2, while the proofs are given in sections 7-10. These

asymptotics are used to prove threms 1-3 in sections 3-5 rpectively. Finally, remark is proved
in section 6.
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2 Asymptotics of Riesz kernels

Here we state the uniform asymptotics of the Riesz kernels which we need. Since

i I’e(A,x,Y)f(x)dx, a > 0, (2.1)Ef(y)

we have to find the asymptotics or bounds for the Riesz kernels I’e(A,x, y) asA , which must

be uniform with respect to the parameters x E Rn, y2 < A. It is convenient to consider also the
functions

e(A,x,y) A"I’e(A,x,y), Eo,(A,x,y) e(A, v/-Ax, vy). (2.2)

Theorem 4. If x + y2 < A and a >_ (n- 1)/2 then

where

G(s) (1 4- s)-("+l)/2-a,s >_ 0, e(A,x,y) (2)- f,._<
and for d, (2r)-/22F(a + 1),

Ie(A,x,y) /=F.(/l yl), F.(s)

(2.3)

Theorem 5. Let A/A < x < -6, lY] < e)xl and a > 0. Then for every small 6 > 0, > 0

and A > 0 we have the uniform asymptotics

4

E(A,x,y) A-I/2 bk(A,x,y,a)e’ + Ixl-(+)/- 0(-),
k--1

where

and

ivl= =, i1= < ( x=)-.
Theorem 6. There exist 6 > 0, > 0 such that the uniform asymptotics

E(,,) ((,,)--/ + (,,):-)
k=0

holds if Ix 11 < 6, lYl < elxl, where

al: (aeA + b:e-’A) Ai(A/B), b (c:e)’A + de-A) Ai’ (A=/B)

(2.6)

and the functions A ak, bk, c, d, or their derivatives with respect to x are bounded. Here
Ai is the Airy function and the smooth functions A A(x,y), B B(x,y) have the following

properties: Re A O, Im B --0. Moreover, let x Ixlw and

(2.7)

Then

B(x,y) < 0 ifx < a,
B(x,y) c(y,w)(x a2) as x a2, c(y,w) > O.

From theorem 6, the asymptotics of the Airy function and (2.8),(2.9) it follows
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Corollary 4. There exists 6 > 0 such that

4

E=(A,x, y) A-/2 (ak(a2 x2)-/’ + b(a2 x=)/’)expiA + (a x)-O(A-),
k=l

uniformly with respect to x, y if -5 < x < A-2/3+, y2 < A/2A, where > 0, A > 0 are fixed
The functions A ak, bk and their derivatives over x are bounded and Ck satisfy (2.5).

Theorem 7. Let x2 > 1 + 5, y2 < . Then we have the uniform estimate

where c is a positive constant.

As a consequence of theorems 6 and 7 it follows
Corollary 5. If x2 > A + ATM, e > 0, y2 < A, then

3 Proof of theorem 1

Let y2 < A/2, 5 > O, a > (n- 1)/2, n >_ 2, According to (1.1) and (2.1)

Rf(y) fl_vl>,f(x)I’e(A,x y)dx.

From theorem 4 and the asymptotics of the Bessel functions it follows

f f(x)I%(A,x,y)dx + o(1). (3.1)Rf(Y)
>A

Therefore it is sufficient to prove the relations

K(,V) fao (,)f()I*(,,v)d o(1), (3.2)

for 1 j 4, y2 < A/2, a > (n- 1)/2,n 2, where ax(A,z) is the characteristic f=ction

of the set {x R A < x2 < A(1- 5)} a2(A,x)- the characteristic function of the set

{x R" (1- 5)A < x2 < A- AI/s+,}, as(A,x) b(A,x) and a4(,x)is the characteristic

fction of the set {x R x2 > A + A1/3+} for some small > 0, 5 > 0.

a. Estimate of K1. It is not hard to see that theorem 5 implies the bound

II,(,z,v)l (1- /)-/’11-("+)/-"-)/’-/ (3.3)

if A < x2 < (1 5)A,y2 < A/2, a > 0. So the hypothesis (HI) gives (3.2) for K1.
b. Estimate of K2. Now we can use corollary 4. Since a x2/A > (1 x2/A)/2 for large A we

see that the estimate (3.3) is fulfilled if (1 -5)A < x < A- A1/3+,,y2 < A/2. Thus (H) shows

(3.2) for K2.
c. Estimate of Ks. From theorem 6 and (H2) we get (3.2) for Ks.
d. Estimate of Ka. Using corollary 5 we obtain

iz(,, y)l G --x/ xp(_c,/)if x2 > + /3+, (3.4)

II%(A,x,y)I 5 c--1/3 exp(-clxl /2) if x > A2. (3.5)

o the othe hnd (H) gie t> Ixl-lf(x)ldx < for large N, so the last thr timates

and (H)imply (3.2) for Ka. Theorem is proved.
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4 Proof of theorem 2

As in the proof of theorem we have to estimate the integrals K(A,) given by (3.2) for
y= < A/2. It is clear that the estimate (3.2) for K and K4 are valid again. Thus it remains to
bound K and K. Consider also the integrals (j 1, 2)

B(, ) /-/, (, 4-)f(v)E(,,)d.

a. Estimate of K. Accorng to threm 5 we have the following ymptotics for a > 0

4

E(,,y) -/b,’ +

uniformly in the domain (x, y E R A/A < x < $, y2 < A/2A}, where b satisfy (2.4).
Using the estimate f(x) O([x[Z), > 0 as Ix[ , we obtn for a > (n- 1)/2"

4

B(A, y) A(-)/:- JR- e’*abf(z)dx+ (4.1)

O(A/+/-- log A + A-/).
t I() be the integral in (4.1) together with the factor A(-)/2-=. We shall inteuate by parts
using the operator L, where its trapose is ven by E0[[-0, j n, and 0 0/0z.
Tang into account (2.5) we get

() (-)/*-"/=(/. =(, )l-(+)/--lv/()la + -/=s)+ (4.)

O(A-/= + A/=+/=-"-a/=),

B =/ =(,)il-(+)/=-"-f()l (4.)

O(A/2+(n- 1)/4-/2-1/2 log A).

Since fl < 2a + 2- n, (4.1)-(4.3) and (H’) give K o(1).
b. Estimate of K=. Using corollary 4 and 2A/A < a= < for y: < A/2A and large A we

obtain:
4

B=(A, y) A(-)/-= fR eXa=(A’ x)gf(x)dz+ (4.4)

O(A/=+/=-=- log A),

where g a(A,x, y)(a- z=)-/4 + b(A,x,y)(a- z=)/4. Integrating by parts at the estimate

of K and taking into accost (2.5), (H’) we get

K= + o(/=/--’) + o(), (4.)

where

I =/R a2(A, z)(1 c=/,x)-’/41f(x)ld: 0(),--/),

Since (1 z2/A) -3/4 < A1/2 in the integral I and f(z) O([x[) as Ix[ oe we find

I O(A/2+n/--I log A).

Hence (4.5), (4.6) imply Ks o(1) since/3 < 2a + 2 n. Theorem 2 is proved.

(4.6)



66 G. E. KARADZHOV AND E. E. EL-ADAD

5 Proof of theorem 3

As in the proof of theorems 1 and 2 it is sufficient to estimate the integrals K K(f), <_
3 -< 4. For j 3, 4 we have the bound (3.2). Further let

f (x) .... f(x + h)dh, fo(x) f(x) f (x).

Then f3 (x) O(ixl) as ix oc for Z < 2c n + 2 and

IVI (x)l < (x,/), lfo(x)l < (x,/),

therefore f0 satisfies (H1) and fl satisfies (HI). Evidently, K, (f) K,(fo)+ K,(fl),j 1, 2. As
in the proof of theorems 1 and 2 we obtain Ki(f) o(1),j 1, 2. Thus theorem 3 is proved.

6 Proof of remark 1

It is not hard to see that for c > (n- 1)/2 remark will follow from (1.1), theorem 4, corollary
4.16 [16] and the asymptotics

Ef(O) A’/+/2--(a(A) + O(A-)) + O(A-/2),

where f(x) Ix[, a > 0, > 0, n >_ 2 and a(A) a+(A) + a_(A) + do(A),

=+/-(A) (-)"1 + /4 + kl-=- sin(Ar(k + 1/4) (a + n/2)r/2),
k>l

do(A) c(r/4)-=- sin(At/4 (a + n/2)/2),

c being a positive constant.

To prove (6.1) we shall use the formula

ea(A,x,y) F(c + 1)(2ri) -j s e’V(p’x’y)H=(A + n,p)dp,

where S ( ir/2, + it 6 > 0, a > 0 and the function s Ha(s, p) is 2-periodic,

(6.1)

(6.2)

where

Ef(O) F(a + 1)(2ri)-lA Is e’H=(A + n,p)u(p,O)dp,

(2r sinh 2P)-"/=/R Ixl exp (--2-1x= coth 2p) dx, Rep > O.0)

The integrand in (6.4) has singularities only at the points p 0, :]=ir/2 and p =J=ir/4. To find

the asymptotics of the function (6.4) we shall apply the method of the stationary phase. Let

(6.4)
we can write

For proving (6.2) we notice that 9--a-ll(l -- 1)Y(p,x,y) is the Laplace transform of the function

A e(A, x, y), where

V(p,x,y) e-’de(A,x,y),Rep > O,

in particular, Y(p + ikr,x, y) e’’Y(p, x, y). Applying the inverse Laplace formula we get (6.2).
Since (see, for example, [18], [19])

x +y= xy
), (6.3)Y(p, x, y) (2r sin5 2p)-/ exp (----- coth 2p + inh 2p
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gl(P) + 92(P) + 93(P) for p e S, where 9: e C and supp 91 C {p. limp] < 7/4},supp 92 C
{p" 0 < Ilmpl < r/2},9 being ir-periodic function. Then

Ef(O) Ile(A) +/2e(A) + he(A), (6.5)

Ij,(A) A-F(a + 1)(2ri)-1 fs ePH(A + n,p)u(p, O)9jdp,

where S1 $2 S, Sa (6 + i0,6 + ir),93 E C(S),j 1,2,3. In obtaining the third integral
we have used the periodicity of the integrand in (6.4). Since

u(p, O) c(p- sinh 2p)Z/2(cosh 2p)-/2-n/2p

we have

II(A) A-(fsa ePp-a-+/ql (p)dp +/s eaP/2q2(p)dp)’
where q E C(S).

On the other hand, we obtain

(6.6)

I=,() "/+/- f ,*.)q(p, )dpd +0(-o) (6.7)

where q C(S= (0, oc)),(p,a) p- 2-a coth2p. Here we have integrated by parts and
used the bound I01 _> c > 0 for a 0 or a o. Consequently (6.5)-(6.7) give

Ef(O) I(A) + O(A-/2), (6.8)

where

I(/) An/2+B/2-a f e’O(t’a)q(t,a)dtda,(t, a) + 2-1r cot 2t,

q(t, a) 2-n/27r-3/2/p(n/2 1/2)H(A + n, it)g2(it)(i sin 2t)-n/2an-l+g(a),
and g

Now the method of the stationary phase implies

x() "/+e/--’(() + o(-)). (6.9)

Evidently (6.1)follows from (6.8), (6.9).

7 Proof of theorem 4

Starting with the formula (6.2) and having in mind the singularities at the points p 0, p
=l=ir/2, we write

e(A,x,y) e(A,x,y, 6), (7.1)
=1

where

6) b fs eV(P’ x, y)H(A + n, p)g(p)dp, (7.2)j(/ X Y,

g are C functions, g(p)+g2(p)+g3(P) for p e S, supp g C {p e S" lImp < e}, suppg2 C

{p S]Imp] > /2-e} for some small e > 0, and g is it- petiole. Here b F(a + 1)(2i)-If j we shall use the representations:

y) a(;, x, y) fa. exp (_2p + i(x y))d (2r)-", p > 0,V(p, X

where a(O,x,y) 1, p a(p,x,y) is smooth for p S and

e-2d rF(a + 1)p--, Rep > O.
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Since

Ha(A + n,p) p-a-1 + h(A + n,p)

and ha has no singularities on S, we have

e (A,X, y, 8) An/2+a+lI1 + An/212,

where

(7.3)

(7.4)

V(p + ir/2, x, y) (-2r sinh 2p)-"/

whence

x + y xy
exp (----- coth 2p

sinh2---- )’

V(p + iTr/2, x,y) b(p,x,y) /R exp (--2p + i(x + y))d, Rep > 0

and b(0, x, y) (2r)-’/2e-’’/. Thus

e2(A,x,y,) A’/2

q2 csb(p,x,y)Ha(A + n,p + ir/2)g(p)e’/2

for some constant c3.

Analogously,

ea A, x, y, 5) /2 /sR. e(1-)P+’/X(-U)qa(A’ P’ x’ y)dpd’

q3 a4a(p, x, y)Ha(/ A n, p)g3(p)"
Since the functions p q are C we can integrate by parts in the integrals e, j 2, 3. So

the integration with respect to is over a ball, the rest being estimated with O(e-A-), c > 0.

Now letting 0 in (7.1), (7.4)-(7.8) we obtain

3

e(A,x,y) e(A,x,y) + O(A-), (7.9)
j----1

el A/+a+lI1 + A/212, (7.10)

11 / e qldtdd, (7.11
R R

12 =/RxR e’qdtd’ (7.12)

where (1--q)t+A-/(x-y), (1-)t+A-/(x-y) and q ca(it, x, y)g (it)g(, ),
g being a cutoff function, and q2 C.

(7.8)

where g

According to (6.3)

Is e(-e:-v)+’/(-)a(p, x, y)g (p)adpdd, (7.5)I1
xR

c. IsR e(-e)P+’V(z-)a(p’ x’ y)ha(A + n, p)gi (p)dpd, (7.6)

c (2r)--- and c2 is a constant.

In both integrals I, I we can suppose that the integration with respect to ((,) or is taken
over a bM1, the rest being estimated with O(eA-), c > 0.

To represent e2 we first use i- periocity of the integrand in (7.2) and conclude that we can

suppose g C, suppg2 C {p 5 + it It- /2[ < e}. The translation p p + i/2 finally
gives

e2(A,xy) bf e+"/2)V(p + ir/2, x,y)H(A + n,p + i/2)g:(p)dp,
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Notice that e3(A,x,y), j 2,3 have the same form as A’/212(A,x,y), therefore it suffices to

find the asymptotics of the integrals I3,j 1,2.
To find the asymptotics of I1 we use polar coordinates (,r]) a(w,),w E R", a > 0, 2 +

2 and the equality

’-Od(,O) c( )-/-J/.(z )
2+82=1

c (2)"/22+iF(a + 1). Therefore

(.13)

where

q C and q(0, 1) (2)-"/2-2+v(a + 1). (.14)

Integrating by parts in the integral (7.13) with respect to when a is close to zero, we can

suppose that q(t, ) has a compact support in R x (0, ), the rest being estimated with O(A-).
Let [x- y > 1. Then we shall use the formula [20, p. 168].

J,/+() -/(,’f() + ,-’f()), > 0 (7.15)

and the bound

If(I )
Consider the phase function

(t, ,, v) (1 )t -/. (.16)

The critical points (t, 1) are nondegenerate and

(t, 1) q(0,1) + o(-/). (.1)

Hence the method of the stationary phase implies for [x y[ >

(l vt)-"/-(d,-g,/+( ) + vI-/o(-’/")), (r.lS)

where da (2)-"/2F(a + 1).
Consider now the ce [x y[ < 1. Then we can write

O) ffn+2a+lql (, if).
2+02=1

The method of the stationary phase shows that-/ (’-)O=d(,O) + 0(-),
2+02=1

whence

I d(x/lx yl)-"/=-J./=+(Xl yl)A- + o(A-=)
if v/lx Yl < 1.

On the other hand, in polar coordinates . aw,

JR e*(1-a2)t+’(z-Y)waan- q2(t a)dtda,I2
x(O,)

_
whence the stationary phe method gives

I: o(-).

Thus (2.2), (7.9), (7.10), (7.18)-(7.20)imply (2.3) for a (n- 1)/2. Theorem 4 is proved.

(7.19)

(7.20)
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8 Proof of theorem 5

Starting with (6.2),(6.3) we see that the phase function p (p,x, y), given by

(p,x,y) p- 2-(x + y2)coth 2p + xy(sinh 2p) -1,

has the critical points p+ it+/- and i5+/-, where cos 2t+/- xy = d and d (xy)2 + x y2.
If x y then p_ 0 and the integrand in (6.2) is not holomorphic function in a neighborhood
of the critical points. So we have to expand the singularities. Analogously to (7.1), (7.2) we can

write

where

Further,

E(,,) E(, , , ),
2=1

E (2i)-r(e + 1) fs eV(P’ /z, x/ry)H(A + n,p)g(p)dp.

V(p,x,y) (2r)-" exp( 2
tanhp -- sinh 2p + i(x- y))d.,

and for Rep > 0,

c(sinh 2p)+1 r2 exp (-r sinh 2p)dr.

Analogously to (7.a) we have

where now

I f
xR xS

1 P- 2-1(.2 + r) sinh 2p 2-1(x + y=) tanhp + i(x y).,

ql (P/sinh 2p) g(, fl)==g (p) and

I2 A/2 f e=q2ddp,- 2- i.a2- 2-(: + u)t.hp + i( u),

q: ha(A,p)g()g(p) for some cutoff nction g.

To represent E: we use the periocity of the inteand in (6.2) and the formula

fR exp (--5
where a) (42 cosh2p) -/2. Thus

E2(,x,y,) /2[ eqddp,
nxS

p- 2-@ tanh 2p + xytanhp + i(x + y)@,

q (cosh2p)-"/=H(A + n,p + i/2)g(f)g= + i/2)e’/.

Therefore letting 5 0 we obtain from (8.3)-(8.6)

E,(,=, ) E(, =, ) + O(-=),

where

E A"/=++I + A"/=I=,

(8.3)

(s.5)

(8.6)

(8.7)

(8.8)
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the integrals I being given by (7.11), (7.12), but now

1 2-1(c2 + 72) sin 2t 2-1(x + y)tant + (x y),

2 2-1c2 sin2t- 2-1(x + y2)tan + (x- y),

ql (t/sin2t)--g(,U)=g(it), q= (cos2t)-"/=h(A, it)g()g(it).

Further, E= is analogous to I= and

E3 /Re’Aq3dt, 3 + 2-(X + y2)cot 2t- xy(sin2t) -,
q (2)-r( + 1)(2risin2t)-/=H=(A + n, it)g(it).

To find the uniform asymptotics of the integrals E in the domain {x, y R A/A < x <
6, ]y] < ]x} we shall apply the method of the stationary phase.
a. Asymptotics of I. Analogously to (7.13) we have

I (Ax yl)-/- e’a/++&/+(AIx y)q(t, a)dtda,

where 0 t- 2-a= sin2t- 2-(x + y=) tant, q C(R x (0, )). Here we have integrated by

rts using the estimate 0o] c > 0 if a is close to zero.

Since ] > > -z= hv fo

g=+() -z=- co( + ) + -z= o(-=),
k=0

where b is a constam. Therefore

( )-(+)=--M + ()-(+)z=-O(-=),
k=0

where

M ee(+/+-q(t, )dtde,

t- 2- sin2t 2-(x
The critical points (t, ) of satisfy

cos2t, z + (-1)+d (j 1,2), ta -t, t4 -t, e sifi2t,

where d (z) + z . Since z < , I1 < elzi for small > 0, e > 0 and the support

of q(t, ) is small enough, we have d > c > 0, det" 4d for the Hessian " in the critical

points. Therefore the critical points are nondegenerate. Thus the stationary phase method implies

4

I -(*/-- %(t,)+ (11)-(*/-0(-/) (8.9)

and b,, have the properties (2.4), (2.5) respectively.

b. Asymptotics of h. In polar coordinates , > 0 we have

t- 2-a sin2t 2-(x2 + y2) tant + (x- y)wa.

Since the support of q(t,) is small, the critical points (t,a) of are nondegenerate if

x < -, ]y < e]x] for small > 0, e > 0. Hence for large M,

=1
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where <k< M, l_<j<4and

Since A x Yl > cv the method of the stationary phase gives

4

/ A-(n+t)/9
3=1

Notice that E2 has the same asymptotics (8.10), where g is replaced by g2.

c. Asymptotics of Ea. The critical points of the phase function Ca satisfy cos 2t zy +
(-1)3+1d and e’(t,,z,) (-)’+4d(sin2t,)-, < j _< 4. Therefore the stationary phase
method implies

4

E A-1/2 b3ee’ga(it3) + O(A-a/9). (8.11)
3=1

Evidently, theorem 5 follows from (8.7)-(8.11).

9 Proof of theorem 6

Starting with (6.2), (2.2), we can write

Ea(A,x,y) Is eqdp’ (9.1)

where the function is given by (8.1) and

q(p) F(a + 1)(2ri)-(2rsinh2p)-"/H(A + n,p).

Now the problem is to find the uniform asymptotics of the integral (9.1) as A oc. The critical

points of the phase function p (p,x,y) satisfy the relation cosh2p xy + d, where d

(xy) + x y2. Let x rw, Iwl 1. Then the critical points degenerate if r a, where

a a(y,w) is given by (2.7). We have two degenerate critical points" p and iO0, where P0 ito
and cos2t0 awy, to > 0. In particular, to < r/2 if ]Yl is sufficiently small. Thus if Ix=- 11 <
5, lYl < elxl for some small 6 > 0, e > 0 there are only four critical points p+/-, /, where

p+/-=it+, cos2t+=xy+d, 0<t+/- <r/2ifx=<a=,
p+=+6+it, cosh26cos2t=xy, 0<t<r/2ifx=>a=,

nd 2o= 2t = + U= (( + U=)= (U)=)/=.
Near these critical points the integrand in (9.1) is a holomorphic function and O/Op

bx(y,w), O=/OpOr -b2(y,w) for p P0 or p , where b(o,w) 8, b(0,w) 2. Therefore

we can apply Lemma 2.3 in [5], p.343 and conclude that there exists a holomorphic change of

variables p p(z,x, y), defined in a neighborhood of the points z 0, r a such that

(p(z,x,y),x,y) A(x,y) B(x,y)z + z/3, p(O, aw, y) po, (9.2)

for every fixed w, y. In addition, the coefficients A, B are given by

1
A -((p+,x,y) + _,x, y)),

3
S (((p+, x, y) (p_,x,y)))/,

and p(:t=v/-, x, y) p+/-.

To use this change of variables in the integral (9.1), we notice first that

E(A,x, y) f eqdp, L L t L=, (9.3)
JL
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where L1 is the segment ($+i(t0-26, 6+i(t0+2)) and L2- the segment (6-i(to+2), +i(-t0+26))
for > 0 small enough. The equivalence relation "a(A, x, y) b(A, x, y)" here means that a b

O(e--), c > 0. Indeed, it is sufficient to notice the bound Re(p,x, y) -c < 0 for p S L,
which follows from the definition (8.1) if > 0 is small enough.

Now (9.1)-(9.3) yield

E(A,x,y) = eA , e(-s+=/a)q,(z,A)dz, (9.4)

where A A, A= A, q(z,A) q(p(z,x,y))Op/Oz, q=(z, A) q(p(f,x,y)) x Op/Oz, L being
the image of the segment L. Notice that Ly C {z Re z > 0} and that the end points %,b of

L satis(v arg % (-/2,-r/6),
arg b (/6, /2).

Using the Weierstrass preparation theorem [9]"

q(z. ) + z + (z B)q.(z. )

and the following representation of the Airy function

A() (2)- f. -=+/dz. M M M.

M z re, r (+,0), 0 (-r/2,-r/6), M2" z re, r (0, +), 0 (/6,/2), in

the integral (9.4), we obtain the uniform asymptoties (2.6), the rest being estimated as in [5], p.

348.

10 Proof of theorem 7

Now we use the formula (6.2) with 6 6(x,y) > 0 such that 2cosh226 x +y2 +
((x2 + y2)2 4(xy)2)1/2. The critical points p(x,y) 6 + it and p(z,y) are nondegenerate and

Re(p,x,y) < Re(p(x,y),x,y) if0 < Imp <_ r/2, p p(x,y); Re(p,x,y) < Re((x,y),x,y)
if -r/2 _< Imp <_ 0, p - i6(x, y). In addition, O2/Op(p(x, y), x, y) 4d/sinh 2p(x, y) and

Re(p(z,y),z,y) 2-1(arcoshZ -/3V’3 -"1), /3 cosh 26. Since 32 >_ c(x 1), c > 0 and

13v/ 1- arcosh >_ "TV2-E--1 if/32- > "7, for some 0 < "7 < 1, one obtains theorem 7 by the

saddle-point method.
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