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ABSTRACT. A new approach for the determination of exact solutions of steady plane infin-

itely conducting MHD aligned flows is presented. In this approach, the (f, )- or the (r/, )-
coordinates is used to obtain exact solutions of these flows where (x, y) is the streamfunction

and w f(x, y) + i7(x, y) is an analytic function of z x + iv.
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1. INTRODUCTION.
M. H. Martin [4] developed a new approach in the study of plane viscous flows of incom-

pressible fluids by introducing a natural curvilinear coordinate system (, ) in the physical
plane (x, y) when constant are the streamlines and constant is an arbitrary family of
curves. Following Martin [4] and taking the arbitrary family of curves (x, y) constant to
be x constant, Chandna and Labropulu [1] studied exact solutions of steady plane ordinary
viscous and magnetohydrodynamic (MHD) flows.

In this paper, we present an approach for the determination of exact solutions of steady plane
infinitely conducting MHD aligned flows and we let (x, y) constant to be either (x, y)
constant or ?(x,y) constant where w N(z)= (x,y)+ iq(x,y)is an analytic function of z
and study flows when the streamline pattern is of the form

r/- f(’)
constant or f- k(r/)

constanta() -(,)
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In the cases when f() 0 and g() I or k(r/) 0 and re(r/) I, the problem is called an

isometric flow problem or Hamel’s problem and was first raised by Jeffery [3]. However, Hamel

[2] was the first to give complete solutions of the permissible flow patterns for ordinary viscous

incompressible plane flows. As examples to illustrate the method, we use two analytic functions

N(z) v/ and N(z) lnz.

The plan of this paper is as follows: in section 2, we recapitulate the basic equations governing
the steady plane motion of infinitely conducting MHD aligned fluid flows. This section also

contains the recasting of the equations in a new form by employing some results from differential

geometry. In section 3, we outline the method of determining whether a given family of curves

can be the streamlines. Section 4 consists of applications of this method.

Examples I, II, VII and X are four streamline patterns for the Hamel’s problem for our flows.

Two of these flow patterns are different from the four well known flow patterns for Hamel’s

problem in ordinary viscous fluid dynamics.

2. FLOW EQUATIONS.
The governing equations of a viscous incompressible and electrically conducting fluid flow, in

the presence of a magnetic field, are [5]

divv 0

1
curl (curlH)= curl (v H)

()

where v is the velocity vector field, H the magnetic vector field, p the pressure function, and the

constants p,/, t* and a are the fluid density, coefficient of viscosity, magnetic permeability and

the electrical conductivity respectively. The magnetic field H satisfies an additional equation

divH 0 (2)

expressing the absence of magnetic poles in the flow.

Taking the flow to be aligned (or parallel) so that the magnetic field is everywhere parallel
to the velocity field, we have

H= (3)

where/ is some unknown scalar function such that

(4)

In this paper we study plane motion in the (x, y)-plane of an infinitely conducting fluid (i.e.
a -- oo) and have the velocity components u, v, the magnetic components H1, H2, the pressure

function p and the function as functions of x, y. We define the vorticity function w, current

density function and energy function h given by

Since the fluid is infinitely conducting and the flow is aligned, then the third equation of system

(1) is identically satisfied.
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Using (3) to (5) in system (1), we find that an infinitely conducting steady plane MHD aligned
flow is governed by the following system of six partial differential equations:

Ou Ov
+ -- 0 (continuity)

oy

O’-Oh + #-ffffyow pvw + #[fluQ 0

Or/ tt-z + puo., # uf 0
(linear momentum)

(solenoidal)

Ov Ou
w (vorticity)

Ox Oy

(current density)

(6)
for the six functions u(x, y), v(x, y), h(x, y), w(x, y), f/(x, y) and #(z, y). Once a solution of this

system is determined the magnetic vector field H and the pressure function p(z, y) are found by

using equations (3) and (5).
The equation of continuity in system (6) imphes the existence of a streamfunction (x, y)

such that
0 -v, u (7)Oz

We take (z,y) constant to be some arbitrary family of curves which generates with the

streamlines (x, y) constant a curvilinear net so that in the physical plane the independent

variables x, y can be replaced by , .
Let

(,), u u(,) (8)

define a curvilinear net in the (x, y)-plane with the squared element of arc length along any

curve gien by
ds2 E(,) de2 + 2F(f,q,)dCd + G(,)d2 (9)

where

+ F 0"- 0"---t- O- 0-’ + (10)

Equations (S) can be solved to obtain (x, y), (x, y) such that

0 Oz 0 Oy joe Oy 0Ox
j (11)

0 0’ 0 s, 0 ’ 0
s

provided 0 < [J[ < oo, where J is the transformation Jacobian and

S
Ox Oy Ox Oy 4.v/EG_ F2 +W (say) (12)o o o o

Following Martin [4] and Chandna and Labropulu [1], we transform system (6) into -plane

and we have the following theorem:
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THEOREM 1. If the streamlines (x, y) constant of a viscous, incompressible infinitely

conducting MHD aligned flow are chosen as one set of coordinate curves in a curvilinear coor-

dinate system , in the physical plane, then system (6) in (x, y)-coordinates may be replaced
by the system:

(linear momentum)

0
(Gauss)

(current density)

1 0 E
(vorticity)

0 (solenoidal)
0

(3)
of six equations for seven unknown functions E, F, G, h, , w and/9 of , .

Oh Oh
If we use the integrability condition

694 69 0 04
in the linear momentum equations of

Theorem 1, we find that the unknown functions E(b, ), G(, ), F(, ), w(, ), ft(, ) and

must satisfy the following equations:

1
(4)

E d/ (15)f =/9o;
j2 de

(16)

(18)

Equations (14) to (18) form an underdetermined system, the reason being the arbitrariness

inherent in the choice of the coordinate lines constant. This system can be made determinate

in a number of ways and one plausible way is to assume (x, y) (x, y) or (x, y) (x, y)
where ((x, y) and r(x, y) are the real and imaginary part of an analytic function as outlined in

the next section.

3. METHOD.
Let w + ir be an analytic function of z x + iy where (x, y) and ?(x,y).

Since w is an analytic function of x, y, then its real and imaginary parts must satisfy the

Cauchy-Riemann equations, that is

o 0 o o (9)



EXACT SOLUTIONS OF STEADY PLANE MHD FLOWS 169

The equations f(x, y) and r/= r/(x, y) can be solved to obtain

z x(f, ), y y(f, r/) (20)

such that
0x

j. 0__ 0x
j. 0_. 0y

j. 0__ 0y
j. 0_ (21

provided 0 < J*! < c, where J* is given by

j. a(x, y) ax oy Ox oy
(22)

o( o OV o o
Using (19) and (21)in (22), we obtain

Using (20), (21) and (23) in ds2 dx + dy, we get

(23)

Method for the (f,)-coordinate net.

To analyze whether a given family of curves r/- f(f)
constant can or cannot be streamlines,

()
we assume the affirmative so that there exists some function 7() such that

r/-- f() (), ’() # 0 (25)

where 7’() is the derivative of the unknown function 7() and we take the coordinate lines

constant to be constant.

Employing equation (25) in (24) and simplifying the resulting equation, we obtain

+ 2J* {J" () + g’ () 7 ()} g () 7’() dde + j’g2 () 7,2()
(26)

Comparing (26) with (9) after taking , we get

J" ’/ + [/’()+ ’()()l’,’E

F ]" [:’() + ’()()] ()’(),

G J*()7’()
W /Ea- r J’()7’()

(27)

Since

then

j
o(, ) o(, ) o(, ) o(, )
0(,) 0(,) o(,) 0(,)’

and therefore

J W J*()7’() (28)

F
Equations (27) yields E J* + --. Therefore, the system of equations (14) to (18) becomes a

determinate system of five equations in five unknowns F, G, w, t and/.
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Using (27), (28) and in (14) to (18), we have the following theorem:

THEOREM 2. If a steady, plane, viscous incompressible fluid of infinite electrical conductivity- f()flows along constant in the presence of an aligned magnetic field, then the known
()

functions f(), g() and the unknown functions () and ’() must satisfy

02w 02w 1 + f,2() 2f’()g’()
g()’7’()’__ 2 [f’() -F g’()()] 00 -F g() +

’() ,, o f’()’()++ () t) ,(e) oe + -f"() + () -"()() (
(

+ I’() "(e) f’()’() ()"() ’() (e)"(e) 1 o
() ’(0) () ’() 9() ’() f

p Ow *; +-z) o

1 2

g(’)’7’(’) {1 --t-[f’()-I-- g’()’7(’)] } (:-:-)2j.02
and

02 j.
2 [f’() + g’()-y()]

00

where w and are given by

=hz () P( J’()+
+ +() ’() 9() ’()

2g’2() 7()
() ’()
’() ()"() }a() ,()

(30)

(31)

d 7() is some nction of su that 7’() # 0.

A ven fily of curves
f() const:t is a rmissible fily of strel if d
()

oy if the solution obtned for 7() is su that 7’() # 0.

Method for the (y,)-coordinate net.

To Myze whether a given fily of curves
k(y)

consttc or cnot be strehnes,
()

we :sume the mative so that there exists some function 7() su that

k(y) 7(), 7’() # 0 (33)
m()

where ’() is the deritive of the unkno function () d we te the crdinate fines

constt to be y constt.

Employing equation (33) in (24) and simpnfying the resting equation, we obtn. [ + {’(.)+ ’()()}] ()
+ 2]" [’ () + ’ () ()] () ’()d de + ]’ ()’() de



F_.XACT SOLUTIONS OF STEADY PLANE FLOWS 171

Comparing (34) with (9) after taking , we get

E J" { 1 + [k’(y) + m’(r)7()]2},
F J* [k’(r) + m’(?)7()] m(r)7’(),

G J’.()’()
w v/G- F= s’.()’()

(35)

Since

then

o(,) o(, ) o(, ) o(,)
a(, ) 0(,) o(, ) 0(,)’

j -]’.()’()

and therefore

J -W -J’m(y)7’() (36)

Using (35), (36) and r in (14) to (18), we have the following theorem:
THEOREM 3. If a steady, plane, viscous, incompressible fluid of infinite electrical conduc-

tivity flows along k(r)
constant in the presence of aligned magnetic field, then the known

-()
functions k(r), m(r) and the unknown functions (), 7() must satisfy

(37)

and

2k’.(w)m’(r)] 1 [m"(W)m2() + re(W)
(39)

f ()w
j.m2(r) {1 + [k’() + ()()] } ’(---)

and 7() is some function of such that 0"() # 0.

(40)
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4. APPLICATIONS.
We use analytic functions w + i/ N(z) in the first seven examples and

w + i N(z) In z in the other four examples.

4.1. Examples for w
2 v/. Then, we haveLet z=w orw=

1 ( ) (41)

or

* V/+’/’ +v=
, V/-z

Using equation (41)in (23), we obtain

(42)

j. 2 + 2 (43)

Example I. (Flow with r/= constant as streamlines).
This example gives us a streamline pattern for Hamel’s problem for infinitely conducting

MHD aligned flows. The streamline pattern obtained is not one of the four well known patterns

for ordinary viscous fluid flow. This pattern is given in Figure 1.

We let

r/= 7(); 7’() #- 0 (44)

where 7() is an unknown function of . Employing (44) in (43), we get. +() (45)

Comparing (44) with (25), we have

f() 0, g() 1 (46)

Employing (31), (32), (45) and (46)in equations (29) and (30), we find that equation (30)is
identically satisfied and (29) reduces to

2

E A,,() f" 0 (47)
n’-O

where

A0() 4 4() + ()

2 7"() 2p*+A() [- *()] ()’()
v’() v’()

1

Equation (47) is a quadratic in with coefficients as functions of only. Since , are indepen-

dent variables, it follows that equation (47) can hold true for all values of if all the coefficients

of this quadratic vanish simultaneously and we have

A0() A1()= A2()= 0 (48)
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Integrating A() 0 four times with respect to , we obtain

() +a() +() + 0 (49)

where al, a2, a3 and a4 are arbitrary constants that are not zero simultaneously.
Using equation (49) in A0() 0, we get

a2 --0 (50)

Employing equation (49) with a2 -0 in A1()= 0 and integrating the resulting equation once

with respect to , we obtain

z()
(3el V/X2 + y2 3alx + a3)

(51)

where as is an arbitrary constant of integration. Substituting equation (44) in (49) with a2 0,
we find that

air/3 4- a3r/4- a4 (52)

where r/is given by equation (42). For this flow, the exact solutions are given by

1 [-3al 3a V/x2 + y2 y2u
2V/x2 + y2

x+ 4- a3 V/x 4- V/x2 4-

v
2Z + y2

H, (), H (), = +

4x2’+
a () -a +. + + ’(e)

2 +

where p is bir eons d () is given by equation (1). If a g, then ghe flow
is iotagionN. The, we have the foog hrem:

NEOREM 4. Steady ple flow Mong eonsg is permissible for infinitely conducting
MHD Nixed flow d he exae solutions for he rotationM flow e given by equations ()
d for the irrotaionN flow by equations (g) with 0.

Nxample II. (low with ( eonst stretches).
his exple Mso dens with a streamline pattern for Hel’s problem d this pattern is

not one of he four we known patterns. Pigu 2 shs his flow pattern.
We le

(e); ’() 0 ()

where 7() is unknown funegion of .
Compi equation (4) wih (), we get

k(r/) 0, re(r/) 1 (55)
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Using equation (54) in (43), we get

" , +() (56)

Employing (39), (40), (55) and (56) in (37) and (38), we find that equation (38)is identically

satisfied and (37) takes the form

B.() =o
n=0

where

Equation (57) is a quadratic in r/ with coefficients as functions of only. Since r/, are

,independent variables, it follows that equation (57) can hold true for all values of r/if all the

coefficients of this quadratic vanish simultaneously and we have

B0() B1()= B2()= 0

Integrating B2() 0 four times with respect to , we obtain

b1")’3() +/72() + b37() + b4 0 (58)

where bl, b, b3 and b4 are arbitrary constants that are not zero simultaneously.

Using equation (58) in B0() 0, we get b 0.

Proceeding as in the previous example, we have

+ + , +v + ,2 + + / + + ,
()

+ + +
1 [3blx_.3bl%/,T,2_.12_.b] V/_x+ v/.r2.t.y2,,
+

v + ab + + b + +

1 { ]}
1a ()-
2+= ’()

where 0 d p0 e bitr constts. If b O, then the flow is irrotation.

(59)
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Example III. (Flow with r/- f constant as streamlines).
We assume that

"r(); "r’() # 0

where "r() is an unknown function of . Comparing (60) with (25), we get

(60)

f(f) f, g(f) 1 (61)

Using (61), equation (43) yields

J* 22 + 2’r() + ,/2() (62)

Employing (31), (32), (61) and (62)in equations (29) and (30), we find that equation (30)is
identically satisfied and (29) reduces to

4

C,,,(’) ’’ 0 (63)
."-0

where

.()’() },=()

Equation (63) is a fourth degree polynomial in with coefficients as functions of only. Since, are independent variables, it follows that equation (63) can hold true for all values of if

all the coefficients of this polynomial vanish simultaneously and we have

c,() c() c() c,() c0() o (64)

Integrating C4() 0 four times with respect to , we obtain

v() + =v=() +() + + 0 (65)

where cl, c2, c3 and c4 are arbitrary constants of integration that are not zero simultaneously.
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Using C4() 0 in Ca() O, we get

{ "/’() ()’() )=o[p- ()] ,() + " ,()
whi upon integration implies that

[, ’()] ()() ,
where cs is bitry constt d 7(@) is ven implicitly by equation (65). Employing (6)
a (), c,() 0

e, 0 (7)

Finny, using (65) to (67) in C(@) 0 d C0(@) 0, we find that both of these equations e

identicay satisfied. Hence, the fily of curves - constt e permissible stremlines

for the flow under consideration d the unknown function 7() is given implicitly by equation

(65) with c 0.

Employing (60) in equation (65) th c2 0, we get

, (, ) + ( ) + , (s)

where and r/as functions of z and V are given by equation (42). Thus, the solutions for the

velocity components, the magnetic field components, the pressure, the vorticity and the current

density are given by

( ), ( )

-,. + 4 + +-+ + (9)

2x= +y

V: +
, + u_ +

()
4: +

wh p0 i bi, ontt () i by qu,io ().
The streine patte for this flow is sho in Fi 3.

Example IV. (Flow with r/3 constant as streamlines)
We let - (); ’() # o

where 7() is an unknown function of and , r/are given by equations (42).
Proceeding as in previous examples, we have

1 V/-. + v’.* + * ( 3)
2al V/x2 ’+ y2

(70)



EXACT SOLUTIONS OF STEADY PLANE MHI) FLOWS 177

where al # 0 and p0 are arbitrary constants of integration.

The flow pattern of this example is shown in Figure 4.

(7)

Example V. (Flow with y 3 constant as streamlines)
We assume that

3 (); ’() # 0 (72)

where 7() is an unknown function of and , r/are given by equations (42).
Following the examples above, we get

2b V/z2 + y2

H u, H2= P v, w= +V/x2+y2, f=
b /x2 + y2

/ + " - +/ + + a + + +

+(+)/ +1}+

(73)

where bl - 0 and P0 are arbitrary constants of integration.

Figure 5 shows the streamhne pattern of this flow.

Example VI. (Flow with r/- 3 constant as streamlines).
We assume that - (); ’() # 0 (74)

where 7() is an unknown function and , r/are given by equations (42). Following the same

procedure as in previous examples, we conclude that this family of curves is a permissible

streamline pattern for infinitely conducting MHD aligned flow and the solutions are given by

2dl./z2 + /2
(1 3!/) + V/X +
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v -z + V/x2 + = + 3 +
2d, V/x2 + =

H1 u, H2 v, w=
y2 + =a2 +

where dl # 0, d2 d P0 are arbitry consists. The flow pattern for this exple is shown in

Figure 6.

4.2. Examples for w lnz.

Let z e or w lnz. Then, we have

or

z e cos,7
(76)

y e sinr/

n, 1/2n (== + U=)
(77)

Using equation (76) in (23), we obtain

j* e2 (78)

Example VII. (Flow with r/= constant as streamlines).
This example is a possible streamline pattern for the Harnel’s problem for our fluid flow. This

pattern in given in Figure 7.

We assume that

r/= 7(b); 7’(t/’) # 0 (79)

where 7() is an arbitrary function of b and r/is given by equation (77). Comparing (79) with

equation (25), we get
f(’) O, 9(’) 1 (80)

Employing; (31), (39.), (78) and (80) in equations (9) and (30), we find that equation (30) is

identically satisfied and equation (9) reduces to

Integrating (81) with respect to %b, we obtain

where/ is an bitrm’y constant and (,) is an rbitraxy function of . Thus, this finily of

streamlines is llowed by infinitely conducting MHD Migned flow and the exact solutions for

this roationN flow re iven by

,
"’(,) +, ,,

.,(,) ,, + , o
+ .,(,),

H1 9(b)u, H2 =/(%b)v, a =/(e)w z2 q- /2 7,2() (83)
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where p0 is an arbitrary constant, /()is given by equation (82) and ’() is an arbitrary

function of b.

Example VIII. (Flow with r/- f f2 e2 constant as streamlines).
We assume that

q f f2 e2 ,(); 7’() : 0 (84)

where 0’() is an unknown function and , q are given by (79). The streamlines are shown in

Figure 8.

Proceeding as above, we have

1
() - [- ’0=] + 0, () 0

[ ( +) ( + )][- ,.z0] = +
2/ 1

[- ,’Zo’] ’ + ’ [- (= + ) (= + =)]

H o, H . -[0 ’g] + +
n o

4 [ _( +)] s.

(s)
2p 1

[ ,-Z]= ’ + ’ {= + [ (= + ’)]’ + ( += +=) (’ + =)

+4 (x + y) } + Po

where 0, o # d Po e bitr constts.

Example IX. (Flow along y- f2 constant strelines).
We te

v(); v’() # 0 (86)

where v() is = unkno mnction =d f, =e given by equations (77).
Following the ave procedure, we get

1
() - [- ,-z] + , z() z

x2 + y2
In (x2 +

x y2+ + ( +
(87)

4,u 1 [In (x + y2) + I][- ,.go] =’ + v’
2p,u2 1 2+

where o, o d po e bitrary constts. The flow pattern for this exple is sho

in Figu 9.



180 F. LABROPULU AND O. P. CHANDNA

Example X. (Flow with constant as streamlines).
The flow pattern in this example is a possible solution of the Hamel’s problem for our flow.

Figure 10 is shown this streamline pattern.

We let

(); ’() # 0 (ss)

where 3’() is an unknown function and f is given by (77). Using (88) in (78), we get

J* e27() (89)

Comparing (89) with (33), we obtain

k(r/) 0, re(r/) 1 (90)

Employing (39), (40), (89) and (90)in equations (37) and (38), we find that equation (38)is
identically satisfied and equation (37) gives

7’() \’()] \’()] +-’(i 0 (91)

Thus, constant can serve as streamline pattern for infinitely conducting MHD aligned flow

and the solutions are given by

1 y

,’() +
1 x

7’() z +
H1 (), H ()

-’) ’() 0 +-’ [0- ’()] ,()
p

,() ,’()

+ -’( [o ,’(] . lee .( + +

"() .(e)’
+ ,(),

a (e + ,()

(92)

where p0 is an arbitrary constant,/() is an arbitrary function of and 7() is a solution of

equation (91). Requiring the pressure to be single-valued, we must take

7"() ]’ 0
7,s()

which, upon integration, gives

ale
2"’) + 2a7() + as 0 (93)

where al, a2 and as are arbitrary constants that are not simultaneously zero. Using (93),
equation (91) is identically satisfied. Employing (88) in (93), we obtain

ale2 + 2a2 + as
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Using equation (77)in (94), we obtain

a,( +) + ==n (’ + =) + =,

Hence, the solutions for this rotational flow are given by equations (92) with 0’() given implicitly

by equation (93). If al 0, then the flow is irrotational.
1 [p 0,,2()] and using (93), the solutions (92) take the formLetting 2() -:

[ ’=()]where :() #-;-

-2 1.5 -0.5 0 0.5 1.5 2

Figure 1. Streamline pattern for Example
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-2

-1.5 -1 -0.5 0 0.5 1.5 2

Figure 2. Streamline pattern for Examlpe II

0.5 1.5 2

Figure 3. Streamline pattern for Examlpe IIl
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10

8

-10
-5 -4 -3 -2 -1 0 2 3 4 5

Figure 4. Streamline pattern for Example IV

10

-5 -4 -3 -2 -1 0 2 3 4 5

Figure 5. Streamline pattern for Example V
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8

6

4

2

0

-2

-4

-6

-8
-4 -2 0 2 4 6

Figure 6. Streamline pattern for Example VI

-1

-2

-3

-5

Figure 7. Streamline pattern for Example VII
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1.5

0.5

-0.5

-1.5 -I -0.5 0 0.5 1.5

Figure 8. Streamline pattern for Example VIII

30

20

10

-10

-20

-30

Figure 9. Streamline pattern for Example IX
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-I

-2

-3

Figure 10. Streamline pattern for Example X
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