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ABSTRACT. We establish a generalized version of the classical Poisson summation formula. This

formula incorporates a special feature called "compression", whereby, at the same time that the

formula equates a series to its Fourier dual, the compressive feature serves to enable both sides of

the equation to converge.
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1. INTRODUCTION.

Throughout this article, all functions f:dC are to be understood as Lebesgue measurable,

and defined almost everywhere in d. Given x,y E d, let xy denote the dot product x.y, and

let x denote x. x. A function f:IRdC is said to be ezponentially bounded if or some M > 0,

k > 0, and almost all x E [Rd:

f x < Mekllxll (1.1)

Evidently, if f:d is exponentially bounded, then the function x f(x)exp(-r$x) belongs

to L(d) for every > 0. If, moreover, the lit

I lim [ f(x)e- dx

exists and is finite, then we denote this limit by the symbol

I f(x)dz

and call it the compressed integral of f over e. Similarly, if c, n Ze, is a sequence of complex

numbers that grows no faster than an exponential, and if the limit

S lim ce-0+
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exists and is finite, then we denote this limit by the symbol

S= Cn
nE_.

and call it the compressed series of c.
Provided the implied limit exists, a compressed version of the Fourier transform is defined by

’*(f)(t) df(x)e-’xt dx (1.2)

The local averaging operator .4, defined on measurable functions f: IRg--+ g, acts by the formula:

A(f) (zo) lime-/ [ f(z + zo)e-/ dz (1.3)
--.o+ allzll<,"

If f is essentially bounded in a neighborhood of xo, then this limit, if it exists, is independent of

r > 0 (proof below). If the limit exists, then f is said to be averageable at x0.

In terms of the above symbolism, the formula that we wish to establish is

nE nEZ

This formula will be shown to be valid for the class of everywhere averageable compressible functions

(see Section 4 for the definition of "compressible").
2. AVERAGEABLE FUNCTIONS.

Given xo E [Rd and r > 0, let Br(x0) denote the open ball of radius r centered at x0. A

Lebesgue measureable function f: [Rd-+C is said to be averageable at xo 6 Rd provided that for

some r > 0 the function f is essentially bounded in Br(xo) and provided that the limit

A(I) (x0) lira -a/= f f(x + xo)e-2/ dx (2.1)
-,0+ Jll:ll<

exists. By "essentially bounded" we mean bounded relative to the L-norm on B(zo), so that f
may be averageable at zo even if f(zo) is undefined.

In this section we state and prove some basic facts about averageable functions nd the local

averaging operator 4. These facts will be used later.

LEMMA 2.1. Suppose f: [Ra--,C is essentially bounded in a neighborhood V of zo. Let

V0 V zo denote the corresponding neighborhood of the origin in IRa. If B(0) C V0, then

lime-d12 [ f(xo + x)e-’21 dx 0
-o Jvon{llll>,’)

PROOF. Let

I e-al I f(xo + x)e-==it dx
n{Ik:ll>’)

Choose M > 0 such that I/(z)l < M for almost all x 6 V. Then

IIl_< e-":2/’dz,< Me-a/= e-/dz= M
which tends to zero as e+O because exp(-rz=) is integrable over a.

e-=2 dx
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COROLLARY 2.2. Suppose f is averageable at zo and essentially bounded in a neighborhood

V of zo. Let Vo V zo denote the corresponding neighborhood of the origin in [Rd. Then

.A(f) (xo) lira -d/ [ f(x + Xo)e-’x:/ dx

PROPOSITION 2.3. Suppose 9 [Rd--C is continuous at Xo and f:[RdC is averageable at

Xo. Then the product f9 is averageable at xo, and

A(fg)(o) g(xo).A(f)(xo)

PROOF. Shifting f and g by :Co, we may suppose that z0 0. Moreover, by treating the real

and imaginary parts of f and 9 separately, we may suppose that f and g are both real. Choose

rl > 0 such that f(z) is essentially bounded in ]lz]l < r, say by M > 0. Let A > 0. Since 9 is

continuous at 0 we can find ro < ra such that ]9(x)- 9(0)] < A for all Itz]l < r0. Thus, for almost

all IlxII < so, we have

Ig(x)f(z)- g(O)f(z)l < AIf(z)I < AM

which implies

Then

g(O)f(x)- AM < g(z)f(x) < g(O)f(z)+ AM

g(0)4(f)(0) AM < .A(gf)(O) < g(0)4(f)(0)+ AM

which proves the proposition by letting A-,0.

The next proposition asserts that the uniform limit of a family of averageable functions is itself

an averageable function.

PROPOSITION 2.4. Let V be aneighborhood of 0 6 Rd, and let F6 [Ra-- (6 > 0)
be a family of functions each of which is essentially bounded in V and averageable at 0. Suppose

F0 [Ra- is essentially bounded in V and satisfies the condition

lim ess sup F6(x) Fo(x) 0
5-0 x6V

Then F0 is averageable at 0, and

lira A(Fe)(0) A(F0)(0)
6---0

PROOF. As in the proof of the previous proposition, it suffices to consider the case where all

functions are real-valued, since otherwise, by linearity, we could treat their real and imaginary parts

separately. For convenience of notation, let

.A(F) e-al [ F(x)e-’=2/ dz
,Iv

and let

then

M(5) ess sup [F6(x) F0(x)[
zqV

It=(F Fo)l

_
-a/=/v IF,() Fo()l-==/ d

<_ M(6) e-al Iv e-"2l dz
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so that

which implies

Letting --0, we get

IA(F)- .A(Fo)I <_ M(8)A(1)

A(F) M(8)A(1) _< A(Fo) <_ A(F) + M(8)A(1)

A(F) M(3) <_ liminf A(Fo) <_ limsup.A(Fo) <_ A(F) + M()
--0

whereupon the proposition follows by letting $---0.

The final proposition of this section asserts that the local average of a sum of averageable

functions equals the sum of their local averages (i.e. J[ jr), provided that the convergence

of the sum is sufficiently well-controlled.

PROPOSITION 2.5. Let f d n d be a family of functions each of which is

averageable at x0 and essentially bounded in a neighborhood V of x0. Let M esssupev [f(x)[,
and suppose that M converges. Let

() s()

Then F is averageable at xo, and

(F)(o) (A)(o)

PROOF. Let Vo V zo (i.e. the translation of V to the origin ), and let

,a()(o) -z ./ F( + o)-d

By hypothesis, the series in the integrand is uniformly convergent and bounded in Vo. Thus we

may reverse the order of integration and summation to obtain

.(F)(o) -/ [. f.( + o)-==/ d
nE’a J Vo

A,(f,.,)(Xo) (2.2)

Now we want to let 0, and we want to be able to push this limit through the last sum. To do

this we have to show that this sum converges uniformly in . Consider the absolute value of the

terms

I(A)(o)l e-a/=/vo A(= / =o)-=/ d=

<- M’e-el2 /e" e-’=:21 dx M,
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By the Weierstrass Comparison Test, the sum (2.2) converges uniformly in , so that, as --,0, we

get

M(F)(xo) E .A(f,)(xo)

3. POLYGONALLY CONTINUOUS FUNCTIONS.

By Proposition 2.3 we know that if f: R-- is continuous then f is averageable, and M(f)

f. We turn now to the construction of a basic class of discontinous averageable functions. Although

still very small relative to the class of all averageable functions, this class of functions, called

"polygonally continuous", will be large enough to meet all our requirements.

Given x0 [R and r > 0, let B(x0) denote the open ball of radius r centered at x0. The

open set S formed by the intersection of B(x0) with a finite number of open half-spaces each

tangent to x0 is referred to as an open polygonal cone or polygonal sector of radius r centered at

.TO

By definition, the content a(S) of a polygonal sector 5’ is the ratio of the volume of S to the

volume of the ball B(x0) in which it resides. If the ball B(x0) is partitioned (except for a set of

measure zero) as a finite disjoint union of polygonal sectors, say

then by definition of a(S) we have

Br(xo) ’1 (-J (.J N (3.1)

N(S1) ----. 2_ (SN) (3.2)

LEMMA 3.1. Let S be a polygonal sector centered at 0, then

a(S) lime-d/ [ e-2/ dx
.--0 ,Is

PROOF. This is clear from the radial symmetry of the integral

/B e-i dz (S)-l s e-2/ dx
(o)

where r is the radius of S.

Let x0 Rd A function g: iZ4 will be called polygonally continuous at xo provided that

for some r > 0 the ball Br(x0) is decomposible (except for a set of measure zero) as a finite

disjoint union of polygonal sectors Sa such that for each j the restriction of g to Sa admits an

extension ga to S: U {x0) which is continuous at x0. Thus, whenever x-*xo from within the

sector S, we have

lim ga(x) g(xo) (3.3)
’--*0

PROPOSITION 3.2. If g IRd--* is polygonally continuous at x0, then g is averageable at

x0. Suppose B(x0) SI U... U SN (decomposition into polygonal sectors) and let g be as in

formula (3.3). Then
N

3=1
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PROOF. Given > 0, choose r small enough such that Igj(x + xo)- g3(xo)l < 6 for all x

within each of the sectors $3 of radius r. Then

()(0) -/[ (: + :o)-’/ d
JB(0)

N

3=
J S -xo

Letting 0 and using Lemma 3.1 we get

N

A(g)(zo) a(zo)(S) + 0()

Letting 0 completes the proof, m

4. A FORMULA CONNECTING A and 0.

Given e > 0, and x Ra, let O(e,z) denote the principal (positive definite) theta function

in d
0(, z) e-"n-=’n (4.1)

nEE

Thi’s theta function satisfies the well-known functional equation

(4.2)

where

R(e, x) e-a/: Z e-’q"+’)’/ (4.3)
no

Let IEg [-, 1/2) denote the central unit hypercube in IR Note that if x IEd and n e Z

n-0 then [[n/x][> ][nl[, so that

IR(, x)l _< -a/= -=/,, (4.4)
n0

which tends rapidly to 0 as e0. Thus we obtain

lim sup [n(e,x)l 0 (4.5)

PROPOSITION 4.1. Suppose that F IRd--+ is averageable at Xo and essentially bounded in

zo + Ed Then

A(F) (:co) im ./. F(z + zo) 0(, z) dz

PROOF. Let I denote the integral

I [ F(x + xo) 0(, x) dz
JE

By formula (4.2) we have

[ + + [ +
Jd
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Since F is averageable at :co, the limit as e0 of the first term on the right exists and equals

A(F) (z0); furthermore (4.5) together with the boundedness of F and the compactness of E

immediately imply that the second term vanishes as e--.0.

5. COMPRESSIBLE FUNCTIONS.
Our aim in this section is to gain some aquaintance with a class of functions f:[Rell for

which the formula

A(f)(n) 9r*(f) (n) (5.1)

As the reader may recall, a function f: IRd--,l is said to be exponentially bounded if the

condition

If(x)l < Mekllll (5.2)

is satisfied for some M > 0, k > 0, and almost all x E IR
Given an exponentially bounded function f" IRd e, > 0, and z e ;e [__}, 1/2)e, consider

the sum

S(I) (x) f(n + x)e-’(’+,) (5.3)

Me-,e(,’,+:)2

except possibly on aset of measure0. On the other hand, if x E Ed and n Id, then, by the

inequality

llnll < I1 + :11 _< I1,11 + (5.4)

we have

If(n + :c)le-e(+) < Me- +1111+ @ M (5.5)

so that the series (5.3) is absolutely dominated almost everywhere by the convergent series M.
In particular, for every fixed 8 > O, the series defining &(f)(x) is essentially bounded in Ed and

uniformly convergent outside of a set of measure zero.

Of special interest to us at this point is the behavior of the limit

So(f)(x) S,(f)(x) (5.6)

which, for a typical exponentially bounded f, may or may not exist.

An exponentially bounded function f:Rd will be called compressible provided that the

following special condition is satisfied by the sums Se(f)
Compressibility condition: There exists a function S0(f) essentially bounded on Ed such

that

lim S(f) So(f)1[ 0
0

The formula (5.1) will be shown to be valid for the class of compressible everywhere averageable
functions f:e. This will be proved in the next section. For now, let us collect some basic

facts about compressible functions.



88 N. PETULANTE

LEMMA 5.1. If f" IR---C is compressible and everywhere averageable, then for every 5 >_ 0,
the function $(f) is averageable at 0, and

A(S0(f))(0) lim .A(S(f))(0)
6--.0

.A(f)(n)
nE g_

PROOF. For need xEEd and 5>0 let

f6,(x) f(n "4- x)e-=6(+=)

By hypothesis and Proposition 2.3, f6, is averageable at 0, and

4(f6,)(0) 4(f)(n)e-62

By virtue of the inequality (5.5), and Proposition 2.5, it follows that S(f) is averageable at 0, and

A(&(/))(0) .,4(f)(n)e
nEZ

Finally, by the compressibility condition on f, and Proposition 2.4, we conclude that So(f) is

averageable at 0, and

.4(,So(f)) (0) lim .A(,S(f))(0)
6..-0

.A(f)(n)
nEZ

As in the Introduction, let

.7-*(f) (t) f(x)e-E’t dx (5.7)

lim / f(z)e-’::’ e-’6: dx
5.-,.0 JL

denote the "compressed" Fourier transform of f: Rd--C. For a typical exponentially bounded
function f, the limit in the definition of ’*(f) may not exist. Hence the quantities .T*(f)(n),
n E ’d, appearing in the formula (5.1), might be undefined. However, if f is assumed compressible,
then the following result holds:

LEMMA 5.2. If f: [RC is compressible, then the quantities .7-*(f)(n), n ld, exist and

satisfy the boundedness condition

PROOF. Let

lY*(f)(n)l _< esssup I&(f)()l
xEE
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For n C’d we get

.T6(f)(n) ’ [d f(m + x)e- e-*(+=) dx

rn6E

exist and are equal.

Step 2. Show that

Step 3. Show that

I.T*(f)(n)] _< esssup
xE

6. COMPRESSED POISSON SUMMATION.

THEOREM 6.1. If f [Ra (U is compressible and everywhere averageable, then

PROOF. Given 6 > 0, and > 0, consider the integral

I6,(f) /df(x)e-’6=O(,x)dx
The proof of the formula is organized in three steps:

Step 1. Show that the double limits

lim lim I6,(f) and lim lim I6,(f)
6.-,0 --,0 --,.0 6-..*0

lim lim h,,(f) A(f)(n)
6--,0 e--O

lim lim 16,(f) .T*(f)(n)
---,0 6--0

Step 1 Since f is exponentially bounded and 0(, x) is bounded periodic on IRd, the integral

(6.1) defining Ix(f) converges for every > 0 and > 0. Starting with the pattern

(6.1)

and consequently

where the reversal of order of integration and summation is justified by uniform convergence of the

sum representing S6(f)(z). By the compressibility condition on f, as 60, the bounded function

$6(f)(z) converges in L([E) to the the bounded function So(f)(z). Thus

.T*(f)(n) lim [ $6(f)(x)e dx
6.--,o JEd

J/,S(f)(x)e-2 dx
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we get

I,,,(f) Z fE f(n +
n67/a

,E S6(f)(x) O(g, x) dx (6.2)

where the reversal of order of integration and summation is justified by the uniform convergence

(outside a set of measure zero) of the sum representing S6(f)(:r.).
For every fixed > 0 the function 0(, z) is bounded on Ed. Meanwhile, by the compressibility

condition on f, the essentially bounded function S6(f) tends uniformly in Ea as 640 to the

essentially bounded function ,So(f). Therefore

lim I,(f) [ So(f)(x) 0(, x) dx (6.3)
6-.,0 JEa

By Lemma 5.1, So(f) is averageable at 0. Thus, by Proposition 4.1 (formula expressing ,A in

terms of 0 ), we obtain

lim lim I6,(f) A(S0(f))(0) (6.4)
e--O 6--,0

Similarly, going back to formula (5.7) and letting e0, we get, for every fixed 6 > 0

Thus, by Lemma 5.1, we get

so that

lim h,,(f) .A(S,(f))(O) (6.5)
--*0

lim lim I6,(f) ,4(S0(f))(0) (6.6)
6--,.0 .-,,0

lim lim I,,,(f) lim lim I6,(f) (6.7)
6--,0 --,0 e---.O 6--,0

Step 2 The bulk of the work for this step has been done in the proof of Lemma 5.1. Combining

(6.4) with the formula for ,5o(f)(0) given by Lemma 5.1, we get

lim lim Ie,,(f) .A(f) (n) (6.8)
6-,0 e--0

Step 3: Subtitut nto ormula (6.1) the expaio

e

For every 6 > 0 the expression f(z) exp(-u6z=) is essentially bounded on Re exponential bound-

edness of f). Meanwhile, for every e > 0, the series representing O(e,z) converges uniformly in

Re. Thus the order of integration and summation may be reversed to obtain

nE

nEZ
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where, as in the proof of Lemma 5.2, we have

’(f)(n) e/(x)e-’:e-= dx (6.11)

/ S(f)(z)e-: dx

so that the coefficients .T’(f)(n) are uniformly bounded by esssupe IS(/)(z)l. Hence, for

every fixed e > 0, we have

lim lee(f) Z e 2.T’*(I (n)
6--0

Since we have shown that the limit on the left-hand side as e0 exists, the same is true on the

right and the limits agree. This concludes Step 3 and the proof of the theorem.

7. AN EXAMPLE.

Let a be a real non-integer. Set

e:’’ if z>0
f(z) 0 if x<0

ote that f LI(), and hence not in the domain of conventional Poisson Summation. It is

however in the domain of compressed Poisson Summation, as this example will show.

For x e E [-7, g), the critical sum S(f) is given by

n>-x

As 50, the family {Se(/)} converges in L(E1) to the bounded function

e=’=(1-e=’=)- if x>0
&(f)(x) e="=(+)(1-e==) - if z <0

Thus, f is compressible. Next, we must check that f is averageable everywhere in R. Following a

brief calculation, we get
ee’= if t>0

if t=0(f)(t)
0if t<0

The compressed Fourier transform of f is given by

(f) (t) lim e e-==te-’’ dx
50

2ri(t-a)

Thus, by compressed Poisson summation, we get

27ri n a

After some simplification, this reduces to the classical formula

l+e-’’ (62’a 7rz a r/2

which is the Mittag-Leffter expansion of cot(ra).
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