ON RADII OF STARLIKENESS AND CONVEXITY FOR CONVOLUTIONS OF STARLIKE FUNCTIONS

YI LING*andSHUSEN DING*** Department of Mathematics, Harbin Institute of Technology, Harbin, P. R. China.** Department of Mathematics, The Florida State University, Tallahassee, FL 32306-3027.

(Received May 5, 1995 and in revised form October 10, 1995)

ABSTRACT. In this paper, we obtain the radiuses of univalence, starlikeness and convexity for convolutions of starlike functions.

KEY WORDS AND PHRASES: Hadamard products, starlike and convex functions. 1991 AMS SUBJECT CLASSIFICATION CODES: 30C45, 30C55.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic in the unit disc $D = \{z : |z| < 1\}$, and let S denote the subclass of \mathcal{A} consisting of univalent functions. Let S^* and K be the usual subclasses of S consisting of starlike and convex functions, respectively, that is, $S^* = \{f : Re(zf'(z)/f(z)) > 0\}$ and $K = \{f : Re(1 + zf''(z)/f'(z)) > 0\}$. The convolution or Hadamard product of two power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as the following power series $(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n$. Hadamard products have many interesting properties and important applications, see [3] and [4]. It is well known that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*$, then $z + \sum_{n=0}^{\infty} a_n z^n = \int_0^z \frac{f(t)}{t} dt \in K$.

Theorem A (see [1]). If $f \in K$ and $g \in K(g \in S^*)$, then $f * g \in K(f * g \in S^*)$.

However, it is also known that if $f \in S^*$ and $g \in S^*$, f * g need not be in S^* . Furthermore, Sheil-Small in [2] showed that f * g need not be in S for $f \in S^*$ and $g \in S^*$.

2. MAIN RESULTS

Lemma 1. Let $F(z) = z + \sum_{n=2}^{\infty} n^2 z^n$. Then F(z) is starlike in $|z| < 2 - \sqrt{3} \approx 0.268$. The result is sharp.

Proof. Noting that

$$F(z) = \frac{(z+1)z}{(1-z)^3}$$
(1)

and differentiating logarithmically both sides of (1), we have

$$\frac{zF'(z)}{F(z)} = \frac{z^2 + 4z + 1}{(1+z)(1-z)} = \frac{1+z}{1-z} - \frac{1}{1+z} + \frac{1}{1-z}.$$
(2)

It follows from (2) that

$$Re\left(\frac{zF'(z)}{F(z)}\right) \ge \frac{1-r}{1+r} - \frac{1}{1-r} + \frac{1}{1+r} = \frac{r^2 - 4r + 1}{(1+r)(1-r)},$$

where r = |z|. Thus, if $|z| < 2 - \sqrt{3}$, then Re(zF'(z)/F(z)) > 0. So F(z) is starlike for $|z| < 2 - \sqrt{3}$. Since $F'(-2 + \sqrt{3}) = 0$, we know that the result is sharp.

Lemma 2. Let $F(z) = z + \sum_{n=2}^{\infty} n^2 z^n$, then F(z) is convex in $|z| < 5 - 2\sqrt{6} \approx 0.101$. The result is sharp.

Proof. Using (1), we have

$$1 + \frac{zF''(z)}{F'(z)} = \frac{(1+z)(z^2+10z+1)}{(1-z)(z^2+4z+1)} = \frac{1+z}{1-z} + \frac{2}{1-z} - \frac{2+\sqrt{3}}{z+2+\sqrt{3}} - \frac{2-\sqrt{3}}{z+2-\sqrt{3}},$$
 (3)

$$Re\left(1+\frac{zF''(z)}{F'(z)}\right) \geq \frac{1-r}{1+r} + \frac{2}{1+r} - \frac{2+\sqrt{3}}{2+\sqrt{3}-r} - \frac{2-\sqrt{3}}{2-\sqrt{3}-r} = \frac{(1-r)(r^2-10r+1)}{(1+r)(r^2-4r+1)}$$

for $r = |z| < 2 - \sqrt{3}$. Thus, we have Re(1 + zF''(z)/F'(z)) > 0 for $|z| < 5 - 2\sqrt{6}$. Hence F(z) is convex for $|z| < 5 - 2\sqrt{6}$. It is clear that the result is sharp.

Theorem 1. Let $f \in S^*$ and $g \in S^*$, then f * g is univalent and starlike for $|z| < r_0 = 2 - \sqrt{3}$ and the constant r_0 cannot be replaced by any larger number.

Proof. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^*$, $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*$ and G(z) = f(z) * g(z). Then

$$G(z) = (z + \sum_{n=2}^{\infty} n^2 z^n) * (z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n) * (z + \sum_{n=2}^{\infty} \frac{b_n}{n} z^n).$$

We know that $z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n \in K$ and $z + \sum_{n=2}^{\infty} \frac{b_n}{n} z^n \in K$. By Theorem A, we get

$$\left(z+\sum_{n=2}^{\infty}\frac{a_n}{n}z^n\right)*\left(z+\sum_{n=2}^{\infty}\frac{b_n}{n}z^n\right)\in K.$$

Now, let $H(z) = (z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n) * (z + \sum_{n=2}^{\infty} \frac{b_n}{n} z^n)$, then $H(z) = z + \sum_{n=2}^{\infty} \frac{a_n b_n}{n^2} z^n$. So that

$$G(z) = (z + \sum_{n=2}^{\infty} n^2 z^n) * H(z) = F(z) * H(z),$$

where $F(z) = z + \sum_{n=2}^{\infty} n^2 z^n$. By Lemma 1, we know that F(z) is starlike for $|z| < r_0 = 2 - \sqrt{3}$. Hence $F(r_0 z)/r_0 \in S^*$. Since $H(z) \in K$, by Theorem A we have

$$B(z) = (F(r_0 z)/r_0) * H(z) = z + \sum_{n=2}^{\infty} a_n b_n r_0^{n-1} z^n \in S^*.$$

Therefore, $G(z) = r_0 B(z/r_0)$ is starlike for $|z| < r_0 = 2 - \sqrt{3}$.

Finally, we show that r_0 cannot be replaced by any larger number. Taking $\frac{z}{(1-z)^2} \in S^*$, for $G(z) = \frac{z}{(1-z)^2} * \frac{z}{(1-z)^2} = z + \sum_{n=2}^{\infty} n^2 z^n$, we have $G'(-r_0) = 0$. Thus, for any $r > r_0$, G(z) is not univalent for |z| < r. This completes the proof of our theorem.

Theorem 2. Let $f \in S^*$ and $g \in S^*$, then f * g is convex for $|z| < r_1 = 5 - 2\sqrt{6}$ and the constant r_1 cannot be replaced by any larger number.

Proof. By the method used in the proof of Theorem 1 and by using Lemma 2, we get Theorem 2 immediately and the sharpness of the result in Theorem 2 is obtained from (3).

Remark. The constant r_0 in Theorem 1 is usually refered to as the radius of univalence and starlikeness, while the constant r_1 in Theorem 2 is called the radius of convexity.

REFERENCES

- 1. St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture. Comm. Math. Helv. 48 (1973), 119 135.
- T. Sheil-Small, H. Silverman and E. Silvia, Convolution multiplier and starlike functions. J. Analyse Math. 41 (1982), 181 - 192.
- Yi Ling and Shusen Ding, A class of analytic functions defined by fractional derivation, J. Math. Anal. Appl. Vol.186 2 (1994), 504-513.
- Yi Ling, Shusen Ding and Xiaofei Yang, Convolution properties of some classes of univalent functions, J. Sys. Sci. & Math. Scis., Vol.14, 3 (1994), 193-198.