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ABSTRACT. In this paper a new proof of the Paley-Wiener-Levinson theorem is presented.
This proof is based upon the isometry between the Paley-Wiener space and that of the square-
integrable functions in [-r, r], on one hand, and a Titchmarsh’s theorem which allows recovering
bandlimited, entire functions from their zeros, on the other hand.
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1 Introduction

The aim of this paper is twofold: first, it provides a new somehow simpler- proof of the Paley-
Wiener-Levinson (PWL) theorem, and second, it makes clear the relationship between recovering
finite-energy, bandlimited functions from an infinite set of samples or from its real zeros (zero
crossings, in technical jargon), two well-known tools in signal processing [1, 2, 3].

If B denotes the space of [-r, r]-bandlimited L2-functions, the classic Whittaker-Shannon-
Kotel’nikov (WSK) theorem states that any f B can be written as

f(z) f(n)Sinr(z n)
r(z-n)

z, (1.1)

which can also be written
C(z)f(z) f(n) G’(n)(z n)

(1.2)

if G(z) sin rz/r. The latter expression exhibits the Lagrange type interpolatory character of
the WSK result. Equation (1.1) expresses the possibilty of recovering a certain kind of signal from
a sequence of regularly spaced samples.

From a practical point of view it is interesting to have a similar result, but for a sequence of
samples taken with a nonuniform distribution along the real line (a straightforward application
of this result would be the recovering of signals from samples affected by time-jitter error, i.e..
taken at points t, n + $,, with , some measurement uncertainty). An appropriate question to

get such a result would be how close should the sample points be to the regular sample points so

that a similar equation to (1.2) still holds. A first answer to this question was given by Paley and
Wiener [4], who proved that if the sequence of sample points, {t}eZ, satifies

D sup I,- ,I < , (1.3)



230 A.G. GARCA

where " 1/r2, and the sequence is symmetric, i.e., t_ t (n > 1), then a.ny J" E /3 can be

expressed as

where now

a()f(z) f(t) G,(t,)(z t,)
(1.4)

a(z) (z to) 1"1 (-)

Later on, Levinson [5] extended condition (1.3) to r 1/4 and nonsymmetric sequences. This
result is related with the "maximum" perturbation of the Hilbert basis {e }eZ of the square-
integrable function space LZ[-Tr, r], in such a way that the perturbed sequence {c -’t’’’ }eZ is a

Riesz basis of the same spa.ce. Ka.dec proved that Levinson’s resllt, - 1/4, is 1.1" l,sl, iossiile,
in the sense that if D 1/4 counterexamples can be found. See [6] for details.

The problem of signal recovering has also been considered from a different point of view. It
is well-known from the classic Paley-Wiener theorem that [-zr, r]-bandlimitcd L2-function space
coincides with that of the entire functions of exponential type at most 7r whose restriction to IR
belongs to L(IR). Although entire functions are not completely deter:nined by the location of
their zeros, as can be seen from the Hadamard factorization theorem [6], bandlimited functions

are, as can be deduced from a Titchmarsh’s theorem [7, 8] to which will refer later on. A [a,
bandlimited function is uniquely determined by its zeros up to an exponential factor depending on

the spectral interval. If the spectral interval is of the form [-a, a], this exponential factor reduces
to a constant.

A good survey of all these results can be found in Ref. [9].
As explained in the beginning, the aim of this paper is to combine the ideas of perturbing the

Hilbert basis {e }eZ to get a Riesz basis with those of recovering a bandlimited signal from
its zero crossings, into a new proof of the PWL interpolation theorem.

2 Recovering bandlimited L2-functions
Let us consider the space of [-Tr, 7r]-bandlimited L2-functions

B,, f E L(IR) /[If[[ If(x)[dx < c and supp f C_ [-Tr, ’]

{f entire of exponential type at most 7r, with fllR L(IR)}
where the last equality is the statement of the classic Paley-Wiener theorem. Provided with the

inner product (f, g)s =/(C) f., the space B is a separable Hilbert space, isometrically isomorphic

to L2[-Tr, 7r]. The isomorphism is precisely the Fourier transform

B, [-5’r] f(z)
j_

f(t) dt. (2.1)
f f

The following properties can be established:

(a) The energy of f B is contained in its samples {f(n))=eZ:

--[Ifllt....1- If(n)Ilfl[ If(x)]=dx If(t)[2dt

since {f(n)},eZ are the Fourier coefficients of the 27r-periodic extension of f in the expo-

nential trigonometric basis.
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(b) Since {e )eZ is an orthonormal basis of L[-r,r], so is

.T-1 ({e }eZ) {sinr(z- n)} {Tsinc z},Z,(- ) .z
where T,f(z) f(z-a)is the translation operator. Therefore, any f E B, can be expanded
as the cardinal series

sin 7r(z n)
f(z) c c, (f, T,sinc >B,,.

(c) Convergence in the norm of B implies uniform convergence in horizontal strips il , because

If(z)! _< ,:l’lllJ’ll., z z + ,y.

This follows, in a straightforward way, from the isometry and Cauchy-Schwarz inequality:

(d) The sinc function is the reproducing kernel of B: for f E B and x E IR,

/_" e’’j(z) J"(,) df (f,-’’>z,=[....]=
fir f(t)sinc (t x) dt (f sinc)(x).

By taking z n e ’ in (b) and using (c), it follows that c f(n). This is a proof of the
classic WSK theorem:

THEOREM 2.1 (WKS theorem) Every f e L2(IR) bandhmzted to [-Tr, Tr] can be recon-

structed from zts samples at the integers {f(n)}nez via the formula

f(z) f(n)SinTr(z-- n)
.(z--)

where the convergence is umform in horizontal strips of (. (in partzcular in IR).

By means of this theorem we have a tool for recovering bandlimited signals from a sequence
of samples; but, as commented in the Introduction, these signals can also be recovered from

their zeros (zero crossings in the real case). The following Titchmarsh’s theorem [7] provides the

mathematical foundation for this:

THEOREM 2.2 (Titchmarsh theorem) Let F e L[a, b] and define the entire functzon f
to be

f(z) F(w) edw.

Then f has infinitely many zeros, {z,},e, with nondecreasmg absolute values, such that

f(z) f(O) ez II i-

where the infinite product zs conditionally convergent.
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In the above theorem, it is assumed that a and b are the effective lower and upper limits of
the integral, in the sense that there are no numbers a > a and/9 < b such that F(aa) 0 (a.e.) in

[, ] or [Z, ].
If f is bandlimited to I-a, el, then

provided f(0) # 0, or

f(z)=f(O) H i----
r=l Zn

f(z) Az 1-I 1-

if z 0 is a zero of f of order m.

Notice that the zeros in Titchmarsh theorem may be complex. This poses a difficulty from
a technical viewpoint, a.s complex zeros arc harder to detect 1.l,a, real zeros;
are real, this theorem provides a useful tool for signal recovering, usually referred to as real-zero
mlerpolatwn [2, 10].

3 The PWL interpolation theorem

In what follows {t}eZ C IR will denote a sequence of real numbers such that

Let us define

D sup ]t,- n[ <
,’,eZ 4

O(z) (z-t0) ri 1- 1-

an entire, well-defined function (whose set of zeros is {t,}eZ as it will be made clear along the
proof of the following theorem.

THEOREM 3.1 (PWL theorem) Any f E B, can be recovered from its sample values

{f(t)}ez by means of the Lagrange type interpolation series

a(z)f(z) f(t.)
G,(t.)(z

which is uniformly convergent zn homzontal strops of f. (in partzcular in

PROOF: By Kadec’s -theorem (p. 42 of Ref. [6]), {e-’t"}Z is a Riesz basis of L[-=, ].
Consequently it will admit a unique biorthogonal basis {h()}ez (p. 2S of aef. [6]), i.e., for

every m, n 6 ,
(h, e-’t=)L ....1= 6 (Kronecker’s symbol).

Thus, every ] L2[-r, r] can be expressed

f) (Lh.)L=[....]e-’’"e <Le-""e>L=[....lh()
By using the isometry -, we have in B

f(z)= (,>....-’ (,-,’.)(z)=
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By setting g ’-l(h) and taking into acount that (f,h)L[.... (f,g)s. and that, by
property (d) of section 2, (f,e-’t>L ....]= (f, Tt.sinc)B, f(t,), we can rewrite

Now,

f(z)= [ (f,g)s.(Tt.sinc)(z)= , f(t,)g,(z).

a.(z) :-’(h.)(z) h.()

is an entire function, bandlimited to [-Tr, 7r] whose zeros are {t, },#, and therefore, by Titchmarsh
theorem,

g(z) A G(z)

(Notice that by setting n 0, for instance, the above formula shows that G(z) is a.n entire function,
stated at the begining of this section.) Since g(t) 1, then A 1/G’(t); thus

C(z)

which is convergent in the norm of B,, and, by property (c) of section 2, uniformly in horizontal
strips of .

Although not important for the proof, we have obtained, s a byproduct, the interesting result
that {(Tt,sinc)(z)}ez and {g(z)}e are biorthogonal Riesz bases in

The irregular sampling problem h also been considered within more general
bandlimited L-functions [11], for instance, where there is a similar theorem which has been proved
with complex variables techniques. One of the most striking differences is that the sampling is

somewhat more sensitive to noise, in the sense that {t}eZ must satisfy the stronger restriction

D < 1/2p for 2 p < .
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