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ABSTRACT. In this note we introduce a new method of absolute summability. A general theorem is
given. Several results are also deduced.
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1. INTRODUCTION.
L’et be an infinite series with partial sums s.. Let cr and r/ denotes the nth Cesaro mean of

order 6(6 > -1) of the sequences {sn} and {no} respectively. The series o is said to be
summable IC, 6lk, k >_ 1, if

or equivalently

--O’n_ < OO

Let {p.} be a sequence of real or complex constants with

P.=P0++...+P., P-=P-=O-

The series 2 a is said to be summable IN,p [, if

n=l

where

v=O

(1)

We write p {p} and

M "-. {p" 3 > 0 /. Pn+l/Pn <-- Pn+2/Pn+l, 7/, 0,1, ...}

It is known that for p E M, (1) holds if and only if (Das [4])

1

n=l =1



272 W T. SULA!MAN

DEFINITION 1 (Sulaiman [5]). For/9 6 M, we say that an is summable IN, P.lk, k > 1, if

Pn_vVav < O0

v=l

In the special case in which pn A,-I, r > 1, where A is the coefficient of z in the power series

expansion of (1 z)-’-1 for Izl < 1, IN, p,.,ltc summability reduces to IC, r[k summability.

The series a is said to be summable IR, p.lk, IN, p.Ik, k > 1 fBor [2] & [1]), if

E nk- IT, T,-I < c, E IT. Tn-11 <
n=l n=l

respectively, where

In the special case when p, 1 for all values of n (resp. k 1), then IR, P,.,lk, IN,/lk summability is

the same as IC, 11 (resp. IR, pn I) summability.
We set

Q,=qo+ql+..- +q,,, q-l=Q-=O.
U,=uo+ul+... +u,, u-l=U-l=O.
Rn Poqn +Plqn-1 + Phqo

A/,, f.-

We assume {,}, {a,} and {/,} be sequences of positive real constants. Here we give the following

new definition.

DEFINITION 2. Let {p,}, {q,} be sequences of positive real constants such that q E M We

say that a, is summable IN,/,1, k > 1, if

DEFINITION 3 (Sulaiman [6]). The series a, is said to be summable IN, p,, On Ik, k k 1, if

2. LEMMAS
LEMMA 1. Let {Pn }, {q,}, and {un} be sequences of positive real constants such that q E M,

{c1-1/k -p,p,/ ,try_l} nonincreasing for q, # c. Let T, denote the (, u,)-mean ofthe series a Let

[,} be a sequence of constants and write I-I/’AT,.,_i A, If

rn+l k-1 k I _k-l_k-1an P v
.=v+ P/-

q"-- o p
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and

then the series a,en is summable IN, P, a, [k, k 1.

LEM 2 (Sulaim [7]) Let q M. Then for 0 < r 1,

q- o(-).
n=v+l rn-1

LEMMA 3 (Bor [2]). Let k > 1 and A (a,,,) be an infinite matrix. In order that A (Ik;Ik), it
is necessary that

a,,v 0(1) (.,{ ,)

ProofofLemma 1. Write

Since

"rn Pv- qn-vav%
v=l

Tn U tv O,r U E Un Uv-1)ctv
v=0 r=0 v=0

then

Ur,
U,,-la,,-/XT_I

U.U_

By Abel’s transformation,

"r, E
v--1

n-l{ Uv_lUv/,Tv_l}{mv_l/k -1

tr=-I

v=l v

x &T_ P__ eT_ P-qo T_ (2)

Tn.1 + 7"n,2 + 7"n,3 + 7"n,4 + Tn,5, say
In order to prove the lemma, by Minkowski’s inequality, it is sufficient to show that

.=a. r,., < cx), r 1,2,3,4,5.

Applying HOlder’s inequality,
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k-1 Pn
Tn,5

This completes the proofofLemma 1.

3. MAIN RESULT
1-1/kTHEOREM. Let q 6 M such that {a, P,.,/P,.,P-I} nonincreasing for qn :/:c.

k-1PnPn- n O(,PnPn- Un), E an (,Pn/P,’,)k divergent, and

Let

.k-l_k I k-1 k-1 }PP- q"-"- 0 p

Then the necessary and sufficient conditions that a.. is summable IN,/, a,,lk whenever a is

summable IN, p, B, Ik, k _> 1, are

PROOF. Sufficiency. Follows form Lemma 1.

Necessity of (i). Multiplying (2) by a-/kV,,/P,,t_, the last term on the right becomes

aln’I/kpn pnPn_lU
Pntn-1 Tn’5 Pnt:gn-lUn

{’nPn-lUn(-) l-1/k }
Following Bor [2]. By (3), it is possible to write the matrix transforming (fn-1/kATn_l) into

W,., p,/P,.,R_l)’r,.,). Since I,p,3n[k implies [N, R,,, a,I, the matrix e(1k" lk). By Lemma 3, a

necessary condition for this implication is that the elemems (in particular the diagonal elements) of this

matrix should be bounded. Hence (i)
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Necessity of (ii). Suppose I, p,, ,lk of :] a. implies IN,/, a,.,Ik of Z] a.. From (2)

By Minkowski’s inequality, using (i), we have, via the proofofLemma 1,

Therefore

C

n--1

1 n-1 Uv-iE Pvq,.,-,-1
1-1 "tl’v

Now, put AT,_I () () 1-1/k
we obtain

n=l
n

0(1) E lgn-I I/X"-

k- P=0(1) a.
n=l

This should imply

n-1
But pq__ _, we get

v

/k,v} 0(1)

This completes the proof ofthe theorem.

REMARK. It is clear that

IN, r,,, Pr,/P,lk IN, IN, p, nlk IR, Plk, IN, 1, nl IC, 1

and from our definition we may deduce that

q 1 IN, P,1 I/v,pn,1,

which implies

IN, P,,,

and

IN, P., nl IR, rl’r 1 :e, IN, Q., nlk IN, q.l.

4. APPLICATIONS
COROLLARY 1. Let l,u,., O(p,.,U.). Then the necessary and sufficient conditions that

:] a,(, be summable I, p,[k whenever ] an is summable I, u.[, k > 1, are
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PROOF. Follows from the theorem by putting qn 1, a, P./p,, and

COROLLARY 2 or and Thoe [3]) Let Pu O(pU) dpU 0(P) Then a
is suable IN, Pn[k iffit is suable IN, Ulk, k 1

PROOF. Follows from Corolla by puing e 1

COROLLARY 3. Let Q-lU 0(U) Then the necess d sufficient conditions that

a be suable IN, q[k whenever is suable [, u[, k 1, e

PROOF. Follows from the theorem by putting pn 1, an n, / U,Iu, and making use

ofLemma 2.

COROLLARY 4. Let Q,-lU, 0(U,). Then a necessary and sufficient condition that tzn be

summable IN, q,[k whenever it is summable iN, tn[k, k >_ 1, is

nk-U. O(Q_u.)

PROOF. Follows from Corollary 3 by putting , 1.

COROLLARY 5. Let {nl-l/kp./P.P_l} nonincreasing, P.u. 0(p.U), and

PnkPn-1 Ok Pv

Then the necessary and sufficient conditions that o, be summable [R, Pn[k whenever an is

summable N’, u, ]k, k > 1, are

0{ 0{
PROOF. Follows from the theorem by putting q,., 1, a, n and .
COROLLARY 6. Let P,u, O(p,U,.,). Then the necessary and sufficient conditions that

a. be summable IN, P.lk whenever a is summable JR, U.[k, k _> 1, are

1/k} (( Un ) (rl’P 1-1/k),,=o
p,/

PROOF. Follows from the theorem by putting q, 1, o, P./p, and g,,
The following four results follows from Corollary 3 and they are generalizations for the results of

[S].
COROLLARY 7. The necessary and sufficient conditions that ’ anon are summable

0 _< a _< 1, whenever a, is summable [C, 11k, k > 1, are

PROOF. Follows by putting q. An-1 un 1.

COROLLARY 8. The necessary and sufficient conditions that ’a,, be summable

IN, 1/(n + 1)[k whenever o. is summable [C, Ilk, k > 1, are

e, O(logn/n),
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PROOF. Follows by putting q, 1 /(n + 1), u, 1

COROLLARY 9. The necessary and sufficient conditions that a,, be summable

]N, 1/(n + 1)]k whenever a is summable ]R, log n, Ilk, k >_ 1, are

PROOF. Follows by putting q, u,, 1/(n + 1).
COROLLARY 10, The necessary and sufficient conditions that a,, be summable ]C,c],

0 <_ c < 1, whenever a is summable R, log n, 114, k > 1, are

o{-/0o)/}, / o{/Oog)/}.

PROOF. Follows by putting q, A-1, u, 1/(n + 1).
Lastly it may be mentioned that many other results could be obtained either from the theorem or

from its corollaries.
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