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ABSTRACT. In the present paper the class P,[a, M] consisting offunctions f(z)= z+ , akzk(n > 1),
k=n+l

which are analytic in the unit disc E (z Izl < 1) and satisfy the condition If(z)+ azf"(z) 11 < M
is introduced. By using the method of differential subordination the properties of the class P, [a, M] are

discussed.
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1. INTRODUCTION

Let A(n >_ 1) denote the class of functions of the form f(z) z + , akzk which are analytic in
k=n+l

the unit disc E {z- Izl < 1}. A function f(z) in A, is said to be in P,[c,M] for some a(c > 0) and

M(M > 0) if it satisfies the condition

If(z) + zf"(z) 1 < M (z ). ( )

Let f(z) and g(z) be analytic in E. Then we say that the function g(z) is subordinate to f(z) in E if

there exists an analytic function w(z) in E such that Iw(z)l < 1 (z E) and g(z) f(w(z)) For this

relation the symbol g(z) -< f(z) is used. In case f(z) is univalent in E we have that the subordination

g(z) -< f(z) is equivalent to g(0) f(0) and g(E) C f(E).
In this paper, we shall use the method of differential subordination [2] to obtain certain properties of

the class P,, [a, M].

2. MAIN RESULTS
In order to give our main results, we need the following lemma.

LEMMA [1]. Let p(z) a + p,z + (n > 1) be analytic in E and let h(z) be convex univalent

fh(t)t-ldtIzIY(z)-<h(z), where c -#- 0 and Rec > 0, then p(z)-< z-in E with h(0) a. If p(z) + -i
Applying the above lemma, we derive

THEOREM 1. Let f(z) E P[a,M], then

M

M
Re f’ (z) > I Izl, (2.2)

1 +nc
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If(z)l Izl +
M

(1 + n)(1 + (2.3)

M
(1 + n)(1 + ha) (2 4)

The results are sharp.
PROOF. Since f(z)

_
P[a,M], it follows from (1.1) that

f’(z) + azf"(z) -< 1 + Mz. (2.5)

With the help ofthe lemma, (2.5) yields

1 fo 1 +
M

z. (2 6)f’(z) -< z-o (1 + Mt)t--ldt 1 +

Using (2.6), we get

M
f’(z) 1 +. w(z), (2.7)

1

where w(z) is analytic in E and Iw(z)l < Izl. Thus, from (2.7) we obtain (2.1) and (2.2) immediately.

Further, using (2.1) and (2.2) we can arrive at (2.3) and (2 4) by integration, as follows

M
(1 + n)(1 + nc)

M
(1 + n)(1 +

n+l

By considering the function

f(z) z q- M
(1 + n)(1 + ha)

Zn+l (2.8)

we can show that all estimates ofthis theorem are sharp.
According to the proofofTheorem 1, we have

COROLLARY. Let f(z) E P[a, M], then

M
If(z)- 11 <, (2.9)

1

]-- Mf(z)_l < (210)
(1 + ,)( + ,)

The results are sharp.
THEOREM 2. Let f(z) P[c,M]. IfM < 1 +ha, thenRe{e’af’(z)} > O(z E), where

is real and I1 5 arc sin 1+ Izl". The result is sharp in the sense that the range of cannot be

increased.

PROOF. From the proof ofTheorem 1, we have
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Mlarg{e’af’() }1 < I1 + largf’(z)l < I1 + arc sin i + na -for ]31 < arc sin Izl
The result is sharp and the extremal function has the form of(2.8)
THEOREM 3. Let f(z) P,[t,M] IfM <_ v/+(+) then f(z)is univalent starlike in E

PROOF. According to the corollary and the assumption of Theorem 3, it follows immediately that
ey’() > 0( e )de- > 0( )

On the other hand, we see that

M l+nlarg f’ (z)l < arc sin < arc sin (2 11)
1 + na V/1 + (1 + n)

and

arg
f(z) < arc sin < arc sin (2.12)
z (1 + n)(1 + ha) V/1 + (1 + n)

Using (2.11) and (2.12), we obtain

()l + rg

l+n
arc sin + arc sin

v/l+ ( +,)

(z 6_ E),
J1 + (1 -+-n)

which implies that f(z) is univalent starlike in E.
TIIEOREM 4. Let c > 1 and let f(z) e P,[a, M]. Then the function F(z) defined by

F(z)
c + 1 c-lI(t)dt

belongs to P, [+---f, +-]. The result is sharp.

PROOF. By (2.13) and (2.6), we have

1
F’(I + t"(/ I’(/- + /

(2.13)

which shows that F(z) 5 P,, c+-",
This result is sharp and the extremal function has the form of (2.8).
TttEOREM 5. Let c > 1 and a > 0. If F(z) e Pn[a,M], then the function f(z) defined by

(2.13) satisfies If’(z) 11 < M for z e E.
PROOF. Since F(z) E P,[a,M], we have from (1.1), (2.5) and (2.6) that

F’(z) + azF"(z) --< 1 + Mz (2 14)

and

M
F’(z) 1 +z. (2.15)

1

From (2.13), we get

c(c + 1)
{[F’(z) + azF"(z)] + [a(c + 1) 1]F’(z)}. (2.16)



228 L NLIN

On using (2 14) and (2.15), (2.16) yields

f(z) -----(+ {[F’(z) + F"()] + [( + )- ]F’()}

c(c / 1) {1 4- Mz / [a(c + 1) 1](1 / Mz)}

=l/Mz

which implies that If(z) 11 <_ Mlzl < M (z
_

E).
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